Prelithiation Reagents and Strategies on High Energy Lithium‐Ion Batteries

Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemistry : a European journal Ročník 28; číslo 23; s. e202104282 - n/a
Hlavní autoři: Xin, Chen, Gao, Jian, Luo, Rui, Zhou, Weidong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 22.04.2022
Témata:
ISSN:0947-6539, 1521-3765, 1521-3765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full‐cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed. The strategy of prelithiation is an effective pathway to supply Li source for compensating the lithium loss in the first cycle, thus promoting the energy density of batteries. This review outlines the chemical and electrochemical prelithiation methods for anodes and cathodes, with particularly discussion on the complexity of different prelithiation reagents/strategies and corresponding lithiation degree reached.
AbstractList Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.
Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.
Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full‐cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed. The strategy of prelithiation is an effective pathway to supply Li source for compensating the lithium loss in the first cycle, thus promoting the energy density of batteries. This review outlines the chemical and electrochemical prelithiation methods for anodes and cathodes, with particularly discussion on the complexity of different prelithiation reagents/strategies and corresponding lithiation degree reached.
Author Xin, Chen
Zhou, Weidong
Luo, Rui
Gao, Jian
Author_xml – sequence: 1
  givenname: Chen
  surname: Xin
  fullname: Xin, Chen
  organization: Beijing University of Chemical Technology
– sequence: 2
  givenname: Jian
  surname: Gao
  fullname: Gao, Jian
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Rui
  surname: Luo
  fullname: Luo, Rui
  email: luorui502462@163.com
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Weidong
  orcidid: 0000-0002-3764-8498
  surname: Zhou
  fullname: Zhou, Weidong
  email: zhouwd@mail.buct.edu.cn
  organization: Beijing University of Chemical Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35137468$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoMoWi9blzLgxs3U3CaZLLVUK1QUL-uQTs-0kblokkG68xF8Rp_E1HoBQVxlcb4v5_D_22i9aRtAaJ_gPsGYHhdzqPsUU4I5zeka6pGMkpRJka2jHlZcpiJjagtte_-AMVaCsU20xTLCJBd5D42vHVQ2zK0Jtm2SGzAzaIJPTDNNboMzAWYWfBJHIzubJ8MG3GyRjJdGV7-9vF7EyakJAVzEdtFGaSoPe5_vDro_G94NRun46vxicDJOCyYZTaEkRU4mJQOgzCgWLxaUTqhRnOdCSTEhkE2FBMxZqbgQnExJoUBgwIpKYDvoaPXvo2ufOvBB19YXUFWmgbbzmgoqCaNckYge_kIf2s418TpNZdyb45yISB18Ut2khql-dLY2bqG_copAfwUUrvXeQfmNEKyXRehlEfq7iCjwX0Jhw0fGMVRb_a2plfZsK1j8s0QPRsPLH_cdsOiboA
CitedBy_id crossref_primary_10_1002_smll_202306262
crossref_primary_10_1002_aesr_202200083
crossref_primary_10_1002_chem_202300331
crossref_primary_10_1016_j_jechem_2022_10_001
crossref_primary_10_1002_sus2_177
crossref_primary_10_1007_s40843_022_2235_4
crossref_primary_10_3390_batteries9010058
crossref_primary_10_1039_D5MH00504C
crossref_primary_10_1002_adfm_202409628
crossref_primary_10_3390_en18092276
crossref_primary_10_1007_s10163_023_01654_3
crossref_primary_10_1002_aenm_202203256
crossref_primary_10_1016_j_jiec_2023_12_024
crossref_primary_10_1002_cey2_323
crossref_primary_10_1021_acsenergylett_5c01240
crossref_primary_10_1002_ange_202409929
crossref_primary_10_1016_j_matlet_2022_133791
crossref_primary_10_1002_chem_202201687
crossref_primary_10_1002_advs_202309155
crossref_primary_10_1002_anie_202409929
crossref_primary_10_1007_s12598_025_03550_1
crossref_primary_10_1016_j_apsusc_2023_156955
crossref_primary_10_1002_cplu_202400240
crossref_primary_10_3390_en15239165
Cites_doi 10.1021/acsami.7b00087
10.1149/1.1393344
10.1016/j.elecom.2011.04.003
10.1002/cssc.201500287
10.1021/nl401776d
10.1073/pnas.1603810113
10.1149/2.086309jes
10.1039/b919877f
10.1021/jacs.7b05251
10.1038/nenergy.2015.8
10.1021/cm902713m
10.1149/1945-7111/ac38f7
10.1002/aenm.201600154
10.1002/anie.200351203
10.1149/1.2127188
10.1021/nl502238b
10.1016/S0167-2738(99)00038-7
10.1016/j.jpowsour.2013.07.065
10.1016/S0167-2738(99)00018-1
10.1039/C7CC04646D
10.1149/2.1361614jes
10.1038/35035045
10.1039/b814161d
10.1016/j.electacta.2017.03.110
10.1039/D1TA01290H
10.1002/cssc.201600365
10.1021/cm401496k
10.1002/adma.200700621
10.1021/cr3001884
10.1002/chem.201801809
10.1149/1.2069372
10.1002/aenm.201502534
10.1016/j.jpowsour.2014.02.112
10.1149/1.1838428
10.1021/cr500207g
10.1016/j.nanoen.2019.104175
10.1021/acsenergylett.0c02487
10.1039/C7TA01113J
10.5796/electrochemistry.83.843
10.1016/j.jpowsour.2017.02.061
10.1016/j.ensm.2016.10.004
10.1016/j.ensm.2017.06.013
10.1016/j.jpowsour.2016.05.063
10.1016/j.ensm.2019.08.025
10.1016/j.ssi.2006.06.029
10.1021/acsami.9b21417
10.1149/1.1393416
10.1016/j.ssi.2005.05.019
10.1039/c3ra42773k
10.1016/j.jpowsour.2008.11.029
10.1021/acsami.9b12086
10.1149/2.0251701jes
10.1002/aenm.202101650
10.1002/anie.202002411
10.1016/j.electacta.2010.05.072
10.1149/1.1838511
10.1021/acs.nanolett.9b04278
10.1016/j.matlet.2008.11.036
10.1002/tcr.20151
10.1016/j.jpowsour.2006.09.084
10.1039/C5TA00297D
10.1002/ange.202002411
10.1016/j.jpowsour.2021.229868
10.1149/2.018303jes
10.1002/adma.200903755
10.1021/acs.nanolett.0c01413
10.1016/j.jelechem.2019.113386
10.1007/s12598-019-01354-8
10.1149/1945-7111/abfc9e
10.1002/admi.201801631
10.1016/j.ensm.2018.11.030
10.1021/cr500003w
10.1016/j.jpowsour.2005.03.112
10.1016/j.matchemphys.2004.08.032
10.1002/1099-0682(200205)2002:5<1108::AID-EJIC1108>3.0.CO;2-0
10.1016/S0378-7753(96)02554-2
10.1149/2.085208jes
10.1039/C7NR02151H
10.1016/j.mattod.2014.10.040
10.1016/j.jpowsour.2003.10.007
10.1016/S0013-4686(99)00198-X
10.1149/1945-7111/ac18e1
10.1016/j.electacta.2019.134848
10.1038/s41560-021-00839-0
10.1016/j.elecom.2006.11.028
10.1016/j.jpowsour.2005.03.100
10.1021/acsami.0c00729
10.1002/anie.202102605
10.1021/acsami.8b02150
10.1021/cm300505y
10.1021/cm702290p
10.1002/adfm.202101181
10.1016/j.electacta.2016.08.078
10.1038/ncomms6088
10.1016/j.jpowsour.2016.01.061
10.1149/1945-7111/ab68d7
10.1016/j.jpowsour.2020.229067
10.1021/acs.nanolett.5b05228
10.1016/j.jpowsour.2017.05.092
10.1039/C9EE01404G
10.1016/S0013-4686(01)00474-1
10.1038/nnano.2017.129
10.1021/acsenergylett.9b00889
10.1149/1.2085331
10.1016/j.jpowsour.2005.03.023
10.1126/science.205.4407.651
10.5796/electrochemistry.85.656
10.1002/smll.201907602
10.1039/C8TA10880C
10.1038/nnano.2007.411
10.1016/j.jpowsour.2017.03.051
10.1039/C5TA05879A
10.1021/acsami.8b19416
10.1149/2.0361512jes
10.1149/1.1518988
10.1021/acs.nanolett.5b03776
10.1002/aenm.201400054
10.1016/j.jpowsour.2005.07.051
10.1016/0167-2738(96)00174-9
10.1149/2.105206jes
10.1038/35104644
10.1016/0378-7753(94)02061-7
10.1016/j.nanoen.2014.11.031
10.1016/j.jpowsour.2015.01.193
10.1149/2.0351702jes
10.1021/cm5024426
10.1021/jacs.5b04526
10.1021/nn2017167
10.1021/acsami.6b16773
10.1016/j.electacta.2016.05.035
10.1016/j.carbon.2020.11.027
10.1002/ange.200351203
10.1016/j.jpowsour.2020.229109
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202104282
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 35137468
10_1002_chem_202104282
CHEM202104282
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21875016; 22179004
– fundername: National Natural Science Foundation of China
  grantid: 22179004
– fundername: National Natural Science Foundation of China
  grantid: 21875016
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3732-ef1c81bf3ee23a93521622b2a94486976b1e5d67e043f946641d1c9e60e0927e3
IEDL.DBID DRFUL
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760181900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 18:32:09 EDT 2025
Tue Oct 07 07:04:24 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Sat Nov 29 07:09:42 EST 2025
Tue Nov 18 21:27:10 EST 2025
Wed Jan 22 16:24:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords prelithiation
electrolysis
high energy density
lithium-ion battery
SEI
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-ef1c81bf3ee23a93521622b2a94486976b1e5d67e043f946641d1c9e60e0927e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3764-8498
PMID 35137468
PQID 2721680816
PQPubID 986340
PageCount 15
ParticipantIDs proquest_miscellaneous_2627132491
proquest_journals_2721680816
pubmed_primary_35137468
crossref_primary_10_1002_chem_202104282
crossref_citationtrail_10_1002_chem_202104282
wiley_primary_10_1002_chem_202104282_CHEM202104282
PublicationCentury 2000
PublicationDate April 22, 2022
PublicationDateYYYYMMDD 2022-04-22
PublicationDate_xml – month: 04
  year: 2022
  text: April 22, 2022
  day: 22
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 85
2013; 3
2005; 176
2020; 20
2021; 168
2019; 11
2019; 12
2016; 309
2019; 324
1999; 45
2020; 16
2014; 26
2020; 167
2020; 12
2001; 46
2006; 177
2000; 407
2010; 22
2015; 137
2019; 20
2015; 83
2007; 9
2006; 162
2014; 14
2013; 113
2002; 149
2008; 20
2012; 24
2014; 246
2001; 414
2019; 7
2007; 19
2019; 4
2009; 63
2019; 6
2016; 208
2010; 39
2007; 163
1995; 54
2016; 324
2016; 16
2011; 5
2016; 164
2005; 89
2016; 163
2017; 139
2018; 24
2017; 53
2016; 6
2016; 1
1992; 139
2009; 189
2019; 850
2020; 24
2014; 260
2016; 215
2021; 496
2021; 60
2018; 10
1998; 145
2016; 9
1996; 86
2017; 5
2010; 55
2017; 6
2013; 25
2020; 480
2020 2020; 59 132
2008; 8
2011; 13
2008; 3
2017; 351
1999; 122
2004; 129
2013; 160
2017; 235
2017; 9
2017; 359
2002; 2002
2020; 7
2014; 5
2021; 31
2014; 4
2013; 13
2019; 66
2005; 146
2016; 113
2021; 40
2015; 162
2021; 9
2015; 283
2021; 6
2021; 4
2015; 18
2015; 3
2008; 18
1979; 205
2015; 11
1997; 68
1981; 128
2003 2003; 42 115
1991; 138
2015; 8
2014; 114
2021; 11
2000; 147
2017; 12
2020; 478
2021; 173
2012; 159
2017; 347
e_1_2_8_49_2
e_1_2_8_26_1
e_1_2_8_68_2
e_1_2_8_132_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_113_1
e_1_2_8_136_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_11_3
e_1_2_8_34_2
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_2
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_2
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_133_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_140_1
e_1_2_8_98_2
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_10_2
e_1_2_8_75_2
e_1_2_8_33_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_28_2
e_1_2_8_47_1
Kamma N. (e_1_2_8_89_1) 2020; 7
e_1_2_8_24_2
e_1_2_8_81_1
Wang X. (e_1_2_8_112_1) 2021; 4
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_119_1
e_1_2_8_138_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_32_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_93_2
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_2
e_1_2_8_27_2
e_1_2_8_69_2
e_1_2_8_46_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_2
e_1_2_8_139_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_135_2
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_2
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_31_2
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_50_2
e_1_2_8_146_2
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_92_2
e_1_2_8_104_1
References_xml – volume: 9
  start-page: 1843
  year: 2016
  end-page: 1849
  publication-title: ChemSusChem
– volume: 46
  start-page: 2659
  year: 2001
  end-page: 2664
  publication-title: Electrochim. Acta
– volume: 324
  year: 2019
  publication-title: Electrochim. Acta
– volume: 145
  start-page: 1506
  year: 1998
  end-page: 1510
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 320
  year: 2021
  end-page: 328
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 11566
  year: 2017
  end-page: 11573
  publication-title: Nanoscale
– volume: 260
  start-page: 57
  year: 2014
  end-page: 61
  publication-title: J. Power Sources
– volume: 54
  start-page: 171
  year: 1995
  end-page: 174
  publication-title: J. Power Sources
– volume: 145
  start-page: 1131
  year: 1998
  publication-title: J. Electrochem. Soc.
– volume: 2002
  start-page: 1108
  year: 2002
  end-page: 1114
  publication-title: Eur. J. Inorg. Chem.
– volume: 215
  start-page: 647
  year: 2016
  end-page: 651
  publication-title: Electrochim. Acta
– volume: 496
  year: 2021
  publication-title: J. Power Sources
– volume: 63
  start-page: 504
  year: 2009
  end-page: 506
  publication-title: Mater. Lett.
– volume: 11
  start-page: 8699
  year: 2019
  end-page: 8703
  publication-title: ACS Appl. Mater. Interfaces
– volume: 146
  start-page: 507
  year: 2005
  end-page: 509
  publication-title: J. Power Sources
– volume: 114
  start-page: 11444
  year: 2014
  end-page: 11502
  publication-title: Chem. Rev.
– volume: 163
  start-page: A3140
  year: 2016
  end-page: A3145
  publication-title: J. Electrochem. Soc.
– volume: 177
  start-page: 1331
  year: 2006
  end-page: 1334
  publication-title: Solid State Ionics
– volume: 3
  start-page: 15022
  year: 2013
  end-page: 15027
  publication-title: RSC Adv.
– volume: 138
  start-page: 2864
  year: 1991
  publication-title: J. Electrochem. Soc.
– volume: 26
  start-page: 5905
  year: 2014
  end-page: 5913
  publication-title: Chem. Mater.
– volume: 162
  start-page: A2281
  year: 2015
  publication-title: J. Electrochem. Soc.
– volume: 478
  year: 2020
  publication-title: J. Power Sources
– volume: 12
  start-page: 19423
  year: 2020
  end-page: 19430
  publication-title: Appl. Mater. Interf.
– volume: 20
  start-page: 4558
  year: 2020
  end-page: 4565
  publication-title: Nano Lett.
– volume: 139
  start-page: 937
  year: 1992
  end-page: 948
  publication-title: J. Electrochem. Soc.
– volume: 11
  start-page: 490
  year: 2015
  end-page: 499
  publication-title: Nano Energy
– volume: 12
  start-page: 2991
  year: 2019
  end-page: 3000
  publication-title: Energy Environ. Sci.
– volume: 324
  start-page: 150
  year: 2016
  end-page: 157
  publication-title: J. Power Sources
– volume: 11
  start-page: 32062
  year: 2019
  end-page: 32068
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  start-page: A415
  year: 2013
  end-page: A419
  publication-title: J. Electrochem. Soc.
– volume: 147
  start-page: 1671
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 129
  start-page: 264
  year: 2004
  end-page: 269
  publication-title: J. Power Sources
– volume: 25
  start-page: 2890
  year: 2013
  end-page: 2897
  publication-title: Chem. Mater.
– volume: 12
  start-page: 11589
  year: 2020
  end-page: 11599
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  start-page: 5880
  year: 2008
  end-page: 5887
  publication-title: J. Mater. Chem.
– volume: 60
  start-page: 13013
  year: 2021
  end-page: 13020
  publication-title: Angew. Chem. Int. Ed.
– volume: 14
  start-page: 5250
  year: 2014
  end-page: 5256
  publication-title: Nano Lett.
– volume: 85
  start-page: 656
  year: 2017
  end-page: 659
  publication-title: Electrochemistry
– volume: 22
  start-page: 2247
  year: 2010
  end-page: 2250
  publication-title: Adv. Mater.
– volume: 10
  start-page: 275
  year: 2018
  end-page: 281
  publication-title: Energy Storage Mater.
– volume: 68
  start-page: 216
  year: 1997
  end-page: 220
  publication-title: J. Power Sources
– volume: 39
  start-page: 3115
  year: 2010
  end-page: 3141
  publication-title: Chem. Soc. Rev.
– volume: 159
  start-page: A1329
  year: 2012
  end-page: A1334
  publication-title: J. Electrochem. Soc.
– volume: 6
  year: 2019
  publication-title: Adv. Mater. Interfaces
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 229
  year: 2008
  end-page: 239
  publication-title: Chem. Rec.
– volume: 24
  start-page: 2673
  year: 2012
  end-page: 2683
  publication-title: Chem. Mater.
– volume: 24
  start-page: 13815
  year: 2018
  end-page: 13820
  publication-title: Chemistry
– volume: 359
  start-page: 458
  year: 2017
  end-page: 467
  publication-title: J. Power Sources
– volume: 7
  start-page: 30
  year: 2020
  end-page: 36
  publication-title: Suan Sunandha Sci. Technol. J.
– volume: 246
  start-page: 167
  year: 2014
  end-page: 177
  publication-title: J. Power Sources
– volume: 146
  start-page: 331
  year: 2005
  end-page: 334
  publication-title: J. Power Sources
– volume: 20
  start-page: 546
  year: 2020
  end-page: 552
  publication-title: Nano Lett.
– volume: 173
  start-page: 477
  year: 2021
  end-page: 484
  publication-title: Carbon
– volume: 160
  start-page: A1497
  year: 2013
  end-page: A1501
  publication-title: J. Electrochem. Soc.
– volume: 59 132
  start-page: 14473 14581
  year: 2020 2020
  end-page: 14480 14588
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 128
  start-page: 2053
  year: 1981
  publication-title: J. Electrochem. Soc.
– volume: 235
  start-page: 158
  year: 2017
  end-page: 166
  publication-title: Electrochim. Acta
– volume: 351
  start-page: 35
  year: 2017
  end-page: 44
  publication-title: J. Power Sources
– volume: 9
  start-page: 9738
  year: 2017
  end-page: 9746
  publication-title: ACS Appl. Mater. Interfaces
– volume: 407
  start-page: 496
  year: 2000
  end-page: 499
  publication-title: Nature
– volume: 5
  start-page: 6487
  year: 2011
  end-page: 6493
  publication-title: ACS Nano
– volume: 137
  start-page: 8372
  year: 2015
  end-page: 8375
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 2737
  year: 2015
  end-page: 2744
  publication-title: ChemSusChem
– volume: 122
  start-page: 85
  year: 1999
  end-page: 93
  publication-title: Solid State Ionics
– volume: 13
  start-page: 664
  year: 2011
  end-page: 667
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 1717
  year: 2019
  end-page: 1724
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 282
  year: 2016
  end-page: 288
  publication-title: Nano Lett.
– volume: 55
  start-page: 6332
  year: 2010
  end-page: 6341
  publication-title: Electrochim. Acta
– volume: 22
  start-page: 1263
  year: 2010
  end-page: 1270
  publication-title: Chem. Mater.
– volume: 20
  start-page: 7
  year: 2019
  end-page: 13
  publication-title: Energy Storage Mater.
– volume: 18
  start-page: 252
  year: 2015
  end-page: 264
  publication-title: Mater. Today
– volume: 53
  start-page: 8324
  year: 2017
  end-page: 8327
  publication-title: Chem. Commun.
– volume: 480
  year: 2020
  publication-title: J. Power Sources
– volume: 4
  start-page: 5246
  year: 2021
  end-page: 5254
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 31
  year: 2008
  end-page: 35
  publication-title: Nat. Nanotechnol.
– volume: 347
  start-page: 170
  year: 2017
  end-page: 177
  publication-title: J. Power Sources
– volume: 12
  start-page: 993
  year: 2017
  end-page: 999
  publication-title: Nat. Nanotechnol.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 283
  start-page: 68
  year: 2015
  end-page: 73
  publication-title: J. Power Sources
– volume: 9
  start-page: 941
  year: 2007
  end-page: 946
  publication-title: Electrochem. Commun.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 19
  start-page: 4067
  year: 2007
  end-page: 4070
  publication-title: Adv. Mater.
– volume: 13
  start-page: 4158
  year: 2013
  end-page: 4163
  publication-title: Nano Lett.
– volume: 89
  start-page: 80
  year: 2005
  end-page: 84
  publication-title: Mater. Chem. Phys.
– volume: 16
  start-page: 1497
  year: 2016
  end-page: 1501
  publication-title: Nano Lett.
– volume: 208
  start-page: 225
  year: 2016
  end-page: 230
  publication-title: Electrochim. Acta
– volume: 147
  start-page: 1245
  year: 2000
  publication-title: J. Electrochem. Soc.
– volume: 4
  year: 2014
  publication-title: Adv. Energy Mater.
– volume: 122
  start-page: 59
  year: 1999
  end-page: 64
  publication-title: Solid State Ionics
– volume: 850
  year: 2019
  publication-title: J. Electroanal. Chem.
– volume: 189
  start-page: 511
  year: 2009
  end-page: 514
  publication-title: J. Power Sources
– volume: 10
  start-page: 12750
  year: 2018
  end-page: 12758
  publication-title: ACS Appl. Mater. Interfaces
– volume: 205
  start-page: 651
  year: 1979
  end-page: 656
  publication-title: Science
– volume: 7
  start-page: 4804
  year: 2019
  end-page: 4812
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 147
  year: 2020
  end-page: 152
  publication-title: Energy Storage Mater.
– volume: 309
  start-page: 33
  year: 2016
  end-page: 41
  publication-title: J. Power Sources
– volume: 113
  start-page: 5364
  year: 2013
  end-page: 5457
  publication-title: Chem. Rev.
– volume: 149
  start-page: A1598
  year: 2002
  publication-title: J. Electrochem. Soc.
– volume: 176
  start-page: 2383
  year: 2005
  end-page: 2387
  publication-title: Solid State Ionics
– volume: 159
  start-page: A887
  year: 2012
  end-page: A893
  publication-title: J. Electrochem. Soc.
– volume: 414
  start-page: 359
  year: 2001
  end-page: 367
  publication-title: Nature
– volume: 164
  start-page: A93
  year: 2016
  end-page: A98
  publication-title: J. Electrochem. Soc.
– volume: 40
  start-page: 2440
  year: 2021
  end-page: 2446
  publication-title: Rare Met.
– volume: 139
  start-page: 11550
  year: 2017
  end-page: 11558
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 42 115
  start-page: 4203 4335
  year: 2003 2003
  end-page: 4206 4338
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 5
  year: 2008
  end-page: 7
  publication-title: Chem. Mater.
– volume: 66
  year: 2019
  publication-title: Nano Energy
– volume: 5
  start-page: 13601
  year: 2017
  end-page: 13609
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 5088
  year: 2014
  publication-title: Nat. Commun.
– volume: 163
  start-page: 1003
  year: 2007
  end-page: 1039
  publication-title: J. Power Sources
– volume: 6
  start-page: 119
  year: 2017
  end-page: 124
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 12818
  year: 2021
  end-page: 12829
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 15008
  year: 2016
  publication-title: Nat. Energy
– volume: 3
  start-page: 12377
  year: 2015
  end-page: 12385
  publication-title: J. Mater. Chem. A
– volume: 164
  start-page: A5019
  year: 2016
  end-page: A5025
  publication-title: J. Electrochem. Soc.
– volume: 162
  start-page: 800
  year: 2006
  end-page: 802
  publication-title: J. Power Sources
– volume: 45
  start-page: 121
  year: 1999
  end-page: 130
  publication-title: Electrochim. Acta
– volume: 146
  start-page: 448
  year: 2005
  end-page: 451
  publication-title: J. Power Sources
– volume: 86
  start-page: 785
  year: 1996
  end-page: 789
  publication-title: Solid State Ionics
– volume: 113
  start-page: 7408
  year: 2016
  end-page: 7413
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 22739
  year: 2015
  end-page: 22749
  publication-title: J. Mater. Chem. A
– volume: 83
  start-page: 843
  year: 2015
  end-page: 845
  publication-title: Electrochemistry
– volume: 9
  start-page: 16071
  year: 2017
  end-page: 16080
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 653
  year: 2021
  end-page: 662
  publication-title: Nat. Energy
– ident: e_1_2_8_59_1
  doi: 10.1021/acsami.7b00087
– ident: e_1_2_8_10_2
  doi: 10.1149/1.1393344
– ident: e_1_2_8_65_1
  doi: 10.1016/j.elecom.2011.04.003
– ident: e_1_2_8_143_1
  doi: 10.1002/cssc.201500287
– ident: e_1_2_8_72_1
  doi: 10.1021/nl401776d
– ident: e_1_2_8_101_1
  doi: 10.1073/pnas.1603810113
– ident: e_1_2_8_70_1
  doi: 10.1149/2.086309jes
– ident: e_1_2_8_14_2
  doi: 10.1039/b919877f
– ident: e_1_2_8_67_1
– ident: e_1_2_8_103_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_8_42_1
  doi: 10.1038/nenergy.2015.8
– ident: e_1_2_8_127_1
  doi: 10.1021/cm902713m
– ident: e_1_2_8_36_1
– ident: e_1_2_8_140_1
  doi: 10.1149/1945-7111/ac38f7
– ident: e_1_2_8_110_1
  doi: 10.1002/aenm.201600154
– ident: e_1_2_8_11_2
  doi: 10.1002/anie.200351203
– ident: e_1_2_8_39_1
  doi: 10.1149/1.2127188
– ident: e_1_2_8_132_1
  doi: 10.1021/nl502238b
– ident: e_1_2_8_93_2
  doi: 10.1016/S0167-2738(99)00038-7
– ident: e_1_2_8_34_2
  doi: 10.1016/j.jpowsour.2013.07.065
– ident: e_1_2_8_97_1
– ident: e_1_2_8_124_1
  doi: 10.1016/S0167-2738(99)00018-1
– ident: e_1_2_8_108_1
  doi: 10.1039/C7CC04646D
– ident: e_1_2_8_145_2
  doi: 10.1149/2.1361614jes
– ident: e_1_2_8_20_2
  doi: 10.1038/35035045
– ident: e_1_2_8_114_1
  doi: 10.1039/b814161d
– ident: e_1_2_8_138_2
  doi: 10.1016/j.electacta.2017.03.110
– ident: e_1_2_8_84_1
  doi: 10.1039/D1TA01290H
– ident: e_1_2_8_86_1
  doi: 10.1002/cssc.201600365
– ident: e_1_2_8_152_1
  doi: 10.1021/cm401496k
– ident: e_1_2_8_9_1
– ident: e_1_2_8_23_1
– ident: e_1_2_8_24_2
  doi: 10.1002/adma.200700621
– ident: e_1_2_8_21_2
  doi: 10.1021/cr3001884
– ident: e_1_2_8_48_1
– ident: e_1_2_8_122_1
  doi: 10.1002/chem.201801809
– ident: e_1_2_8_149_1
  doi: 10.1149/1.2069372
– ident: e_1_2_8_121_1
  doi: 10.1002/aenm.201502534
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jpowsour.2014.02.112
– ident: e_1_2_8_83_1
  doi: 10.1149/1.1838428
– ident: e_1_2_8_135_2
– ident: e_1_2_8_15_2
  doi: 10.1021/cr500207g
– ident: e_1_2_8_154_1
  doi: 10.1016/j.nanoen.2019.104175
– ident: e_1_2_8_85_1
  doi: 10.1021/acsenergylett.0c02487
– ident: e_1_2_8_147_2
  doi: 10.1039/C7TA01113J
– ident: e_1_2_8_51_1
  doi: 10.5796/electrochemistry.83.843
– ident: e_1_2_8_73_1
  doi: 10.1016/j.jpowsour.2017.02.061
– ident: e_1_2_8_1_1
– ident: e_1_2_8_111_1
  doi: 10.1016/j.ensm.2016.10.004
– ident: e_1_2_8_90_1
  doi: 10.1016/j.ensm.2017.06.013
– ident: e_1_2_8_116_1
  doi: 10.1016/j.jpowsour.2016.05.063
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ensm.2019.08.025
– ident: e_1_2_8_95_1
  doi: 10.1016/j.ssi.2006.06.029
– ident: e_1_2_8_55_1
  doi: 10.1021/acsami.9b21417
– ident: e_1_2_8_98_2
  doi: 10.1149/1.1393416
– ident: e_1_2_8_19_1
– ident: e_1_2_8_40_1
  doi: 10.1016/j.ssi.2005.05.019
– ident: e_1_2_8_77_1
  doi: 10.1039/c3ra42773k
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jpowsour.2008.11.029
– volume: 4
  start-page: 5246
  year: 2021
  ident: e_1_2_8_112_1
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_63_1
  doi: 10.1021/acsami.9b12086
– ident: e_1_2_8_3_2
  doi: 10.1149/2.0251701jes
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.202101650
– ident: e_1_2_8_57_1
  doi: 10.1002/anie.202002411
– ident: e_1_2_8_6_2
  doi: 10.1016/j.electacta.2010.05.072
– ident: e_1_2_8_44_1
  doi: 10.1149/1.1838511
– ident: e_1_2_8_119_1
  doi: 10.1021/acs.nanolett.9b04278
– ident: e_1_2_8_94_1
  doi: 10.1016/j.matlet.2008.11.036
– ident: e_1_2_8_120_1
  doi: 10.1002/tcr.20151
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jpowsour.2006.09.084
– ident: e_1_2_8_128_1
  doi: 10.1039/C5TA00297D
– ident: e_1_2_8_134_1
– volume: 7
  start-page: 30
  year: 2020
  ident: e_1_2_8_89_1
  publication-title: Suan Sunandha Sci. Technol. J.
– ident: e_1_2_8_57_2
  doi: 10.1002/ange.202002411
– ident: e_1_2_8_80_1
  doi: 10.1016/j.jpowsour.2021.229868
– ident: e_1_2_8_66_1
  doi: 10.1149/2.018303jes
– ident: e_1_2_8_18_1
  doi: 10.1002/adma.200903755
– ident: e_1_2_8_118_1
  doi: 10.1021/acs.nanolett.0c01413
– ident: e_1_2_8_139_2
  doi: 10.1016/j.jelechem.2019.113386
– ident: e_1_2_8_32_2
  doi: 10.1007/s12598-019-01354-8
– ident: e_1_2_8_150_1
  doi: 10.1149/1945-7111/abfc9e
– ident: e_1_2_8_22_2
  doi: 10.1002/admi.201801631
– ident: e_1_2_8_107_1
  doi: 10.1016/j.ensm.2018.11.030
– ident: e_1_2_8_7_2
  doi: 10.1021/cr500003w
– ident: e_1_2_8_27_2
  doi: 10.1016/j.jpowsour.2005.03.112
– ident: e_1_2_8_96_1
  doi: 10.1016/j.matchemphys.2004.08.032
– ident: e_1_2_8_41_1
  doi: 10.1002/1099-0682(200205)2002:5<1108::AID-EJIC1108>3.0.CO;2-0
– ident: e_1_2_8_49_2
  doi: 10.1016/S0378-7753(96)02554-2
– ident: e_1_2_8_113_1
  doi: 10.1149/2.085208jes
– ident: e_1_2_8_130_1
  doi: 10.1039/C7NR02151H
– ident: e_1_2_8_4_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_8_37_2
  doi: 10.1016/j.jpowsour.2003.10.007
– ident: e_1_2_8_13_1
– ident: e_1_2_8_12_1
  doi: 10.1016/S0013-4686(99)00198-X
– ident: e_1_2_8_129_1
  doi: 10.1149/1945-7111/ac18e1
– ident: e_1_2_8_141_1
  doi: 10.1016/j.electacta.2019.134848
– ident: e_1_2_8_117_1
  doi: 10.1038/s41560-021-00839-0
– ident: e_1_2_8_28_2
  doi: 10.1016/j.elecom.2006.11.028
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jpowsour.2005.03.100
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.0c00729
– ident: e_1_2_8_142_1
  doi: 10.1002/anie.202102605
– ident: e_1_2_8_105_1
  doi: 10.1021/acsami.8b02150
– ident: e_1_2_8_115_1
  doi: 10.1021/cm300505y
– ident: e_1_2_8_125_1
  doi: 10.1021/cm702290p
– ident: e_1_2_8_50_2
  doi: 10.1002/adfm.202101181
– ident: e_1_2_8_153_1
  doi: 10.1016/j.electacta.2016.08.078
– ident: e_1_2_8_91_1
– ident: e_1_2_8_100_1
  doi: 10.1038/ncomms6088
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jpowsour.2016.01.061
– ident: e_1_2_8_38_2
  doi: 10.1149/1945-7111/ab68d7
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jpowsour.2020.229067
– ident: e_1_2_8_64_1
– ident: e_1_2_8_109_1
  doi: 10.1021/acs.nanolett.5b05228
– ident: e_1_2_8_148_1
  doi: 10.1016/j.jpowsour.2017.05.092
– ident: e_1_2_8_61_1
  doi: 10.1039/C9EE01404G
– ident: e_1_2_8_99_2
  doi: 10.1016/S0013-4686(01)00474-1
– ident: e_1_2_8_106_1
  doi: 10.1038/nnano.2017.129
– ident: e_1_2_8_29_1
– ident: e_1_2_8_47_1
  doi: 10.1021/acsenergylett.9b00889
– ident: e_1_2_8_81_1
  doi: 10.1149/1.2085331
– ident: e_1_2_8_26_1
– ident: e_1_2_8_68_2
  doi: 10.1016/j.jpowsour.2005.03.023
– ident: e_1_2_8_82_1
  doi: 10.1126/science.205.4407.651
– ident: e_1_2_8_146_2
  doi: 10.5796/electrochemistry.85.656
– ident: e_1_2_8_52_1
  doi: 10.1002/smll.201907602
– ident: e_1_2_8_75_2
  doi: 10.1039/C8TA10880C
– ident: e_1_2_8_25_2
  doi: 10.1038/nnano.2007.411
– ident: e_1_2_8_137_1
– ident: e_1_2_8_87_1
  doi: 10.1016/j.jpowsour.2017.03.051
– ident: e_1_2_8_31_2
  doi: 10.1039/C5TA05879A
– ident: e_1_2_8_53_1
  doi: 10.1021/acsami.8b19416
– ident: e_1_2_8_136_2
– ident: e_1_2_8_33_1
– ident: e_1_2_8_8_2
  doi: 10.1149/2.0361512jes
– ident: e_1_2_8_30_2
  doi: 10.1149/1.1518988
– ident: e_1_2_8_74_1
– ident: e_1_2_8_133_1
  doi: 10.1021/acs.nanolett.5b03776
– ident: e_1_2_8_131_1
  doi: 10.1002/aenm.201400054
– ident: e_1_2_8_69_2
  doi: 10.1016/j.jpowsour.2005.07.051
– ident: e_1_2_8_5_1
– ident: e_1_2_8_92_2
  doi: 10.1016/0167-2738(96)00174-9
– ident: e_1_2_8_126_1
  doi: 10.1149/2.105206jes
– ident: e_1_2_8_2_2
  doi: 10.1038/35104644
– ident: e_1_2_8_45_1
  doi: 10.1016/0378-7753(94)02061-7
– ident: e_1_2_8_35_2
  doi: 10.1016/j.nanoen.2014.11.031
– ident: e_1_2_8_60_1
  doi: 10.1016/j.jpowsour.2015.01.193
– ident: e_1_2_8_62_1
  doi: 10.1149/2.0351702jes
– ident: e_1_2_8_88_1
  doi: 10.1021/cm5024426
– ident: e_1_2_8_102_1
  doi: 10.1021/jacs.5b04526
– ident: e_1_2_8_58_1
  doi: 10.1021/nn2017167
– ident: e_1_2_8_104_1
  doi: 10.1021/acsami.6b16773
– ident: e_1_2_8_151_1
  doi: 10.1016/j.electacta.2016.05.035
– ident: e_1_2_8_76_2
  doi: 10.1016/j.carbon.2020.11.027
– ident: e_1_2_8_144_1
– ident: e_1_2_8_11_3
  doi: 10.1002/ange.200351203
– ident: e_1_2_8_123_1
  doi: 10.1016/j.jpowsour.2020.229109
SSID ssj0009633
Score 2.5459244
SecondaryResourceType review_article
Snippet Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life....
Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202104282
SubjectTerms Batteries
Chemistry
Electrochemical analysis
Electrochemistry
electrolysis
Electrolytic cells
Energy storage
high energy density
Lithium
Lithium-ion batteries
lithium-ion battery
prelithiation
Reagents
SEI
Solid electrolytes
Storage batteries
Title Prelithiation Reagents and Strategies on High Energy Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202104282
https://www.ncbi.nlm.nih.gov/pubmed/35137468
https://www.proquest.com/docview/2721680816
https://www.proquest.com/docview/2627132491
Volume 28
WOSCitedRecordID wos000760181900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-3765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009633
  issn: 0947-6539
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FfTi-xGtJYLgaWky2byOUlsUSinFQm9hk25Q0FSa1rM_wd_oL3E2r1pEBD0mO7vZzCMzk2S-Abj0bXLqkUBmkPYyLsjSPT-0GZ1T3eO449lx1mzC7fe98dgffKniz_EhqhduyjKy57UycBGmrSVoKN2TqiSnlIUiaHoI15GUl9egfjPsjnpL4F2naCfPXaZgWEvgRgNbqyusOqZv0eZq8Jp5n-7O__e9C9tF5Klf56qyB2sy2YfNdtnw7QB6gxktPX_IhaUPpVBlV6kukolegtjKVKch9XOI3smqBvWemrF4_nh7v6ORHK6TyA5h1O3ct29Z0WyBRZZrIZOxGVEIG1tSoiV8istMBzFE4VMC51DQEprSnjiuNLgVZ6D05sSMfOkY0vDRldYR1JJpIk9Aj0PhkduPeWhzLjD0-URGjhBxpKql0NOAlZwOogKJXDXEeApyDGUMFI-CikcaXFX0LzkGx4-UjVJwQWGLaYAKnyhrMKLBRTVMvFWfRkQipwuicZCydUpFTQ2Oc4FXl7Js03JJaTXATK6_7CFQWBbV0elfJp3BFqoqC4MzxAbU5rOFPIeN6HX-mM6asO6OvWah55-6b_oq
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB5kFfTF-6iuWkHwKdhO0-tR1EWxLiIKvpW0m6KgXdnDZ3-Cv9Ff4kyvZRERxMc2kzSdo5lJM98AHIYuLeqpQmGR9gqpyNKDMHEF3ePqcdIL3KwoNuF3u8HDQ3hTnSbkXJgSH6LZcGPLKL7XbOC8IX08QQ2ll-JUcopZyIWmr_CsJF1yWzB7dtu5jybIu15VT176gnFYa-RGC4-nR5hemb65m9Pea7H8dJb-YeLLsFj5nuZJqSwrMKPzVZg_rUu-rUF0M6CxR4-luMxbrTjxamiqvGfWMLZ6aFITHw8xz4u8QTPiHuOXz_ePS2opATuJbB3uO-d3pxeiKrcgUsd3UOjMTsmJzRyt0VEheWa2h5igCimE88htSWzt9jxfW9LJClh6u2enofYsbYXoa2cDWnk_11tgZokKaOHPZOJKqTAJZU-nnlJZyvlSGBggalbHaYVFziUxnuMSRRlj5lHc8MiAo4b-tUTh-JGyXUsurqxxGCMjFBUlRgw4aJqJt_xzROW6PyYaDylep2DUNmCzlHjzKMe1HZ_U1gAsBPvLHGJGs2iutv_SaR_mL-6uozi67F7twAJyzoUlBWIbWqPBWO_CXPo2ehoO9ip1_wLeBv0y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB5ERX3xPupZQfAp2E7TtHmU1cXFZVlEwbeStikK2pU9fPYn-Bv9JU56ySIiiI9tJmk6RzLTZr4BOJE-beqJQuaQ9jKuyNJDGfuM7pnqcVyEflYUmwh6vfD-Xvar04QmF6bEh2g-uBnLKNZrY-D6Jc3OvlBD6aVMKjnFLORC0yo8x30pyDbnLm7ad90v5F1R1ZPnATM4rDVyo4Nn0yNM70zf3M1p77XYftor_zDxVViufE_7vFSWNZjR-TostuqSbxvQ7Q9p7PFDKS77RiuTeDWyVZ7aNYytHtnUZI6H2JdF3qDdNT0mzx9v7x1qKQE7iWwT7tqXt60rVpVbYIkXeMh05ibkxGae1ugpSZ6ZKxBjVJJCOEFuS-xqPxWBdriXFbD0buomUgtHOxID7W3BbD7I9Q7YWaxC2vgzHvucK4wlT3UilMoSky-FoQWsZnWUVFjkpiTGU1SiKGNkeBQ1PLLgtKF_KVE4fqTcryUXVdY4itAgFBUlRiw4bpqJt-bniMr1YEI0Ailep2DUtWC7lHjzKM93vYDU1gIsBPvLHCKDZtFc7f6l0xEs9C_aUbfTu96DJTQpFw5niPswOx5O9AHMJ6_jx9HwsNL2T2sM_K0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prelithiation+Reagents+and+Strategies+on+High+Energy+Lithium-Ion+Batteries&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Xin%2C+Chen&rft.au=Gao%2C+Jian&rft.au=Luo%2C+Rui&rft.au=Zhou%2C+Weidong&rft.date=2022-04-22&rft.eissn=1521-3765&rft.volume=28&rft.issue=23&rft.spage=e202104282&rft_id=info:doi/10.1002%2Fchem.202104282&rft_id=info%3Apmid%2F35137468&rft.externalDocID=35137468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon