Prelithiation Reagents and Strategies on High Energy Lithium‐Ion Batteries
Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect,...
Uloženo v:
| Vydáno v: | Chemistry : a European journal Ročník 28; číslo 23; s. e202104282 - n/a |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
22.04.2022
|
| Témata: | |
| ISSN: | 0947-6539, 1521-3765, 1521-3765 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full‐cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.
The strategy of prelithiation is an effective pathway to supply Li source for compensating the lithium loss in the first cycle, thus promoting the energy density of batteries. This review outlines the chemical and electrochemical prelithiation methods for anodes and cathodes, with particularly discussion on the complexity of different prelithiation reagents/strategies and corresponding lithiation degree reached. |
|---|---|
| AbstractList | Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed.Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed. Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full-cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed. Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life. However, they still need further improvement especially on the energy density to satisfy the increasing demands on the market. In this respect, the irreversible capacity loss (ICL) in the initial cycle is a critical challenge due to the lithium loss during the formation of solid electrolyte interphase (SEI) layer on the anode surface. The strategy of prelithiation was then proposed to compensate for the ICL in the anode and recover the energy density. Here, various methods of the prelithiation are summarized and classified according to the basic working mechanism. Further, considering the critical importance and promising progress of prelithiation in both fundamental research and real applications, this Review article is intended to discuss the considerations involved in the selection of prelithiation reagents/strategies and the electrochemical performance in full‐cells. Moreover, insights are provided regarding the practical application prospects and the challenges that still need to be addressed. The strategy of prelithiation is an effective pathway to supply Li source for compensating the lithium loss in the first cycle, thus promoting the energy density of batteries. This review outlines the chemical and electrochemical prelithiation methods for anodes and cathodes, with particularly discussion on the complexity of different prelithiation reagents/strategies and corresponding lithiation degree reached. |
| Author | Xin, Chen Zhou, Weidong Luo, Rui Gao, Jian |
| Author_xml | – sequence: 1 givenname: Chen surname: Xin fullname: Xin, Chen organization: Beijing University of Chemical Technology – sequence: 2 givenname: Jian surname: Gao fullname: Gao, Jian organization: Beijing University of Chemical Technology – sequence: 3 givenname: Rui surname: Luo fullname: Luo, Rui email: luorui502462@163.com organization: Beijing Institute of Technology – sequence: 4 givenname: Weidong orcidid: 0000-0002-3764-8498 surname: Zhou fullname: Zhou, Weidong email: zhouwd@mail.buct.edu.cn organization: Beijing University of Chemical Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35137468$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctKAzEUhoMoWi9blzLgxs3U3CaZLLVUK1QUL-uQTs-0kblokkG68xF8Rp_E1HoBQVxlcb4v5_D_22i9aRtAaJ_gPsGYHhdzqPsUU4I5zeka6pGMkpRJka2jHlZcpiJjagtte_-AMVaCsU20xTLCJBd5D42vHVQ2zK0Jtm2SGzAzaIJPTDNNboMzAWYWfBJHIzubJ8MG3GyRjJdGV7-9vF7EyakJAVzEdtFGaSoPe5_vDro_G94NRun46vxicDJOCyYZTaEkRU4mJQOgzCgWLxaUTqhRnOdCSTEhkE2FBMxZqbgQnExJoUBgwIpKYDvoaPXvo2ufOvBB19YXUFWmgbbzmgoqCaNckYge_kIf2s418TpNZdyb45yISB18Ut2khql-dLY2bqG_copAfwUUrvXeQfmNEKyXRehlEfq7iCjwX0Jhw0fGMVRb_a2plfZsK1j8s0QPRsPLH_cdsOiboA |
| CitedBy_id | crossref_primary_10_1002_smll_202306262 crossref_primary_10_1002_aesr_202200083 crossref_primary_10_1002_chem_202300331 crossref_primary_10_1016_j_jechem_2022_10_001 crossref_primary_10_1002_sus2_177 crossref_primary_10_1007_s40843_022_2235_4 crossref_primary_10_3390_batteries9010058 crossref_primary_10_1039_D5MH00504C crossref_primary_10_1002_adfm_202409628 crossref_primary_10_3390_en18092276 crossref_primary_10_1007_s10163_023_01654_3 crossref_primary_10_1002_aenm_202203256 crossref_primary_10_1016_j_jiec_2023_12_024 crossref_primary_10_1002_cey2_323 crossref_primary_10_1021_acsenergylett_5c01240 crossref_primary_10_1002_ange_202409929 crossref_primary_10_1016_j_matlet_2022_133791 crossref_primary_10_1002_chem_202201687 crossref_primary_10_1002_advs_202309155 crossref_primary_10_1002_anie_202409929 crossref_primary_10_1007_s12598_025_03550_1 crossref_primary_10_1016_j_apsusc_2023_156955 crossref_primary_10_1002_cplu_202400240 crossref_primary_10_3390_en15239165 |
| Cites_doi | 10.1021/acsami.7b00087 10.1149/1.1393344 10.1016/j.elecom.2011.04.003 10.1002/cssc.201500287 10.1021/nl401776d 10.1073/pnas.1603810113 10.1149/2.086309jes 10.1039/b919877f 10.1021/jacs.7b05251 10.1038/nenergy.2015.8 10.1021/cm902713m 10.1149/1945-7111/ac38f7 10.1002/aenm.201600154 10.1002/anie.200351203 10.1149/1.2127188 10.1021/nl502238b 10.1016/S0167-2738(99)00038-7 10.1016/j.jpowsour.2013.07.065 10.1016/S0167-2738(99)00018-1 10.1039/C7CC04646D 10.1149/2.1361614jes 10.1038/35035045 10.1039/b814161d 10.1016/j.electacta.2017.03.110 10.1039/D1TA01290H 10.1002/cssc.201600365 10.1021/cm401496k 10.1002/adma.200700621 10.1021/cr3001884 10.1002/chem.201801809 10.1149/1.2069372 10.1002/aenm.201502534 10.1016/j.jpowsour.2014.02.112 10.1149/1.1838428 10.1021/cr500207g 10.1016/j.nanoen.2019.104175 10.1021/acsenergylett.0c02487 10.1039/C7TA01113J 10.5796/electrochemistry.83.843 10.1016/j.jpowsour.2017.02.061 10.1016/j.ensm.2016.10.004 10.1016/j.ensm.2017.06.013 10.1016/j.jpowsour.2016.05.063 10.1016/j.ensm.2019.08.025 10.1016/j.ssi.2006.06.029 10.1021/acsami.9b21417 10.1149/1.1393416 10.1016/j.ssi.2005.05.019 10.1039/c3ra42773k 10.1016/j.jpowsour.2008.11.029 10.1021/acsami.9b12086 10.1149/2.0251701jes 10.1002/aenm.202101650 10.1002/anie.202002411 10.1016/j.electacta.2010.05.072 10.1149/1.1838511 10.1021/acs.nanolett.9b04278 10.1016/j.matlet.2008.11.036 10.1002/tcr.20151 10.1016/j.jpowsour.2006.09.084 10.1039/C5TA00297D 10.1002/ange.202002411 10.1016/j.jpowsour.2021.229868 10.1149/2.018303jes 10.1002/adma.200903755 10.1021/acs.nanolett.0c01413 10.1016/j.jelechem.2019.113386 10.1007/s12598-019-01354-8 10.1149/1945-7111/abfc9e 10.1002/admi.201801631 10.1016/j.ensm.2018.11.030 10.1021/cr500003w 10.1016/j.jpowsour.2005.03.112 10.1016/j.matchemphys.2004.08.032 10.1002/1099-0682(200205)2002:5<1108::AID-EJIC1108>3.0.CO;2-0 10.1016/S0378-7753(96)02554-2 10.1149/2.085208jes 10.1039/C7NR02151H 10.1016/j.mattod.2014.10.040 10.1016/j.jpowsour.2003.10.007 10.1016/S0013-4686(99)00198-X 10.1149/1945-7111/ac18e1 10.1016/j.electacta.2019.134848 10.1038/s41560-021-00839-0 10.1016/j.elecom.2006.11.028 10.1016/j.jpowsour.2005.03.100 10.1021/acsami.0c00729 10.1002/anie.202102605 10.1021/acsami.8b02150 10.1021/cm300505y 10.1021/cm702290p 10.1002/adfm.202101181 10.1016/j.electacta.2016.08.078 10.1038/ncomms6088 10.1016/j.jpowsour.2016.01.061 10.1149/1945-7111/ab68d7 10.1016/j.jpowsour.2020.229067 10.1021/acs.nanolett.5b05228 10.1016/j.jpowsour.2017.05.092 10.1039/C9EE01404G 10.1016/S0013-4686(01)00474-1 10.1038/nnano.2017.129 10.1021/acsenergylett.9b00889 10.1149/1.2085331 10.1016/j.jpowsour.2005.03.023 10.1126/science.205.4407.651 10.5796/electrochemistry.85.656 10.1002/smll.201907602 10.1039/C8TA10880C 10.1038/nnano.2007.411 10.1016/j.jpowsour.2017.03.051 10.1039/C5TA05879A 10.1021/acsami.8b19416 10.1149/2.0361512jes 10.1149/1.1518988 10.1021/acs.nanolett.5b03776 10.1002/aenm.201400054 10.1016/j.jpowsour.2005.07.051 10.1016/0167-2738(96)00174-9 10.1149/2.105206jes 10.1038/35104644 10.1016/0378-7753(94)02061-7 10.1016/j.nanoen.2014.11.031 10.1016/j.jpowsour.2015.01.193 10.1149/2.0351702jes 10.1021/cm5024426 10.1021/jacs.5b04526 10.1021/nn2017167 10.1021/acsami.6b16773 10.1016/j.electacta.2016.05.035 10.1016/j.carbon.2020.11.027 10.1002/ange.200351203 10.1016/j.jpowsour.2020.229109 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/chem.202104282 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3765 |
| EndPage | n/a |
| ExternalDocumentID | 35137468 10_1002_chem_202104282 CHEM202104282 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21875016; 22179004 – fundername: National Natural Science Foundation of China grantid: 22179004 – fundername: National Natural Science Foundation of China grantid: 21875016 |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION O8X NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c3732-ef1c81bf3ee23a93521622b2a94486976b1e5d67e043f946641d1c9e60e0927e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760181900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0947-6539 1521-3765 |
| IngestDate | Thu Jul 10 18:32:09 EDT 2025 Tue Oct 07 07:04:24 EDT 2025 Thu Apr 03 07:08:23 EDT 2025 Sat Nov 29 07:09:42 EST 2025 Tue Nov 18 21:27:10 EST 2025 Wed Jan 22 16:24:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Keywords | prelithiation electrolysis high energy density lithium-ion battery SEI |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3732-ef1c81bf3ee23a93521622b2a94486976b1e5d67e043f946641d1c9e60e0927e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3764-8498 |
| PMID | 35137468 |
| PQID | 2721680816 |
| PQPubID | 986340 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2627132491 proquest_journals_2721680816 pubmed_primary_35137468 crossref_primary_10_1002_chem_202104282 crossref_citationtrail_10_1002_chem_202104282 wiley_primary_10_1002_chem_202104282_CHEM202104282 |
| PublicationCentury | 2000 |
| PublicationDate | April 22, 2022 |
| PublicationDateYYYYMMDD | 2022-04-22 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 22, 2022 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationSubtitle | A European Journal |
| PublicationTitle | Chemistry : a European journal |
| PublicationTitleAlternate | Chemistry |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 85 2013; 3 2005; 176 2020; 20 2021; 168 2019; 11 2019; 12 2016; 309 2019; 324 1999; 45 2020; 16 2014; 26 2020; 167 2020; 12 2001; 46 2006; 177 2000; 407 2010; 22 2015; 137 2019; 20 2015; 83 2007; 9 2006; 162 2014; 14 2013; 113 2002; 149 2008; 20 2012; 24 2014; 246 2001; 414 2019; 7 2007; 19 2019; 4 2009; 63 2019; 6 2016; 208 2010; 39 2007; 163 1995; 54 2016; 324 2016; 16 2011; 5 2016; 164 2005; 89 2016; 163 2017; 139 2018; 24 2017; 53 2016; 6 2016; 1 1992; 139 2009; 189 2019; 850 2020; 24 2014; 260 2016; 215 2021; 496 2021; 60 2018; 10 1998; 145 2016; 9 1996; 86 2017; 5 2010; 55 2017; 6 2013; 25 2020; 480 2020 2020; 59 132 2008; 8 2011; 13 2008; 3 2017; 351 1999; 122 2004; 129 2013; 160 2017; 235 2017; 9 2017; 359 2002; 2002 2020; 7 2014; 5 2021; 31 2014; 4 2013; 13 2019; 66 2005; 146 2016; 113 2021; 40 2015; 162 2021; 9 2015; 283 2021; 6 2021; 4 2015; 18 2015; 3 2008; 18 1979; 205 2015; 11 1997; 68 1981; 128 2003 2003; 42 115 1991; 138 2015; 8 2014; 114 2021; 11 2000; 147 2017; 12 2020; 478 2021; 173 2012; 159 2017; 347 e_1_2_8_49_2 e_1_2_8_26_1 e_1_2_8_68_2 e_1_2_8_132_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_113_1 e_1_2_8_136_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_34_2 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_2 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_53_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_2 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_133_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_2 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_140_1 e_1_2_8_98_2 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_10_2 e_1_2_8_75_2 e_1_2_8_33_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_28_2 e_1_2_8_47_1 Kamma N. (e_1_2_8_89_1) 2020; 7 e_1_2_8_24_2 e_1_2_8_81_1 Wang X. (e_1_2_8_112_1) 2021; 4 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_20_2 e_1_2_8_119_1 e_1_2_8_138_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_93_2 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_2 e_1_2_8_27_2 e_1_2_8_69_2 e_1_2_8_46_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_2 e_1_2_8_139_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_135_2 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_2 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_31_2 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_50_2 e_1_2_8_146_2 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_92_2 e_1_2_8_104_1 |
| References_xml | – volume: 9 start-page: 1843 year: 2016 end-page: 1849 publication-title: ChemSusChem – volume: 46 start-page: 2659 year: 2001 end-page: 2664 publication-title: Electrochim. Acta – volume: 324 year: 2019 publication-title: Electrochim. Acta – volume: 145 start-page: 1506 year: 1998 end-page: 1510 publication-title: J. Electrochem. Soc. – volume: 6 start-page: 320 year: 2021 end-page: 328 publication-title: ACS Energy Lett. – volume: 9 start-page: 11566 year: 2017 end-page: 11573 publication-title: Nanoscale – volume: 260 start-page: 57 year: 2014 end-page: 61 publication-title: J. Power Sources – volume: 54 start-page: 171 year: 1995 end-page: 174 publication-title: J. Power Sources – volume: 145 start-page: 1131 year: 1998 publication-title: J. Electrochem. Soc. – volume: 2002 start-page: 1108 year: 2002 end-page: 1114 publication-title: Eur. J. Inorg. Chem. – volume: 215 start-page: 647 year: 2016 end-page: 651 publication-title: Electrochim. Acta – volume: 496 year: 2021 publication-title: J. Power Sources – volume: 63 start-page: 504 year: 2009 end-page: 506 publication-title: Mater. Lett. – volume: 11 start-page: 8699 year: 2019 end-page: 8703 publication-title: ACS Appl. Mater. Interfaces – volume: 146 start-page: 507 year: 2005 end-page: 509 publication-title: J. Power Sources – volume: 114 start-page: 11444 year: 2014 end-page: 11502 publication-title: Chem. Rev. – volume: 163 start-page: A3140 year: 2016 end-page: A3145 publication-title: J. Electrochem. Soc. – volume: 177 start-page: 1331 year: 2006 end-page: 1334 publication-title: Solid State Ionics – volume: 3 start-page: 15022 year: 2013 end-page: 15027 publication-title: RSC Adv. – volume: 138 start-page: 2864 year: 1991 publication-title: J. Electrochem. Soc. – volume: 26 start-page: 5905 year: 2014 end-page: 5913 publication-title: Chem. Mater. – volume: 162 start-page: A2281 year: 2015 publication-title: J. Electrochem. Soc. – volume: 478 year: 2020 publication-title: J. Power Sources – volume: 12 start-page: 19423 year: 2020 end-page: 19430 publication-title: Appl. Mater. Interf. – volume: 20 start-page: 4558 year: 2020 end-page: 4565 publication-title: Nano Lett. – volume: 139 start-page: 937 year: 1992 end-page: 948 publication-title: J. Electrochem. Soc. – volume: 11 start-page: 490 year: 2015 end-page: 499 publication-title: Nano Energy – volume: 12 start-page: 2991 year: 2019 end-page: 3000 publication-title: Energy Environ. Sci. – volume: 324 start-page: 150 year: 2016 end-page: 157 publication-title: J. Power Sources – volume: 11 start-page: 32062 year: 2019 end-page: 32068 publication-title: ACS Appl. Mater. Interfaces – volume: 160 start-page: A415 year: 2013 end-page: A419 publication-title: J. Electrochem. Soc. – volume: 147 start-page: 1671 year: 2000 publication-title: J. Electrochem. Soc. – volume: 129 start-page: 264 year: 2004 end-page: 269 publication-title: J. Power Sources – volume: 25 start-page: 2890 year: 2013 end-page: 2897 publication-title: Chem. Mater. – volume: 12 start-page: 11589 year: 2020 end-page: 11599 publication-title: ACS Appl. Mater. Interfaces – volume: 18 start-page: 5880 year: 2008 end-page: 5887 publication-title: J. Mater. Chem. – volume: 60 start-page: 13013 year: 2021 end-page: 13020 publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 5250 year: 2014 end-page: 5256 publication-title: Nano Lett. – volume: 85 start-page: 656 year: 2017 end-page: 659 publication-title: Electrochemistry – volume: 22 start-page: 2247 year: 2010 end-page: 2250 publication-title: Adv. Mater. – volume: 10 start-page: 275 year: 2018 end-page: 281 publication-title: Energy Storage Mater. – volume: 68 start-page: 216 year: 1997 end-page: 220 publication-title: J. Power Sources – volume: 39 start-page: 3115 year: 2010 end-page: 3141 publication-title: Chem. Soc. Rev. – volume: 159 start-page: A1329 year: 2012 end-page: A1334 publication-title: J. Electrochem. Soc. – volume: 6 year: 2019 publication-title: Adv. Mater. Interfaces – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 229 year: 2008 end-page: 239 publication-title: Chem. Rec. – volume: 24 start-page: 2673 year: 2012 end-page: 2683 publication-title: Chem. Mater. – volume: 24 start-page: 13815 year: 2018 end-page: 13820 publication-title: Chemistry – volume: 359 start-page: 458 year: 2017 end-page: 467 publication-title: J. Power Sources – volume: 7 start-page: 30 year: 2020 end-page: 36 publication-title: Suan Sunandha Sci. Technol. J. – volume: 246 start-page: 167 year: 2014 end-page: 177 publication-title: J. Power Sources – volume: 146 start-page: 331 year: 2005 end-page: 334 publication-title: J. Power Sources – volume: 20 start-page: 546 year: 2020 end-page: 552 publication-title: Nano Lett. – volume: 173 start-page: 477 year: 2021 end-page: 484 publication-title: Carbon – volume: 160 start-page: A1497 year: 2013 end-page: A1501 publication-title: J. Electrochem. Soc. – volume: 59 132 start-page: 14473 14581 year: 2020 2020 end-page: 14480 14588 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 128 start-page: 2053 year: 1981 publication-title: J. Electrochem. Soc. – volume: 235 start-page: 158 year: 2017 end-page: 166 publication-title: Electrochim. Acta – volume: 351 start-page: 35 year: 2017 end-page: 44 publication-title: J. Power Sources – volume: 9 start-page: 9738 year: 2017 end-page: 9746 publication-title: ACS Appl. Mater. Interfaces – volume: 407 start-page: 496 year: 2000 end-page: 499 publication-title: Nature – volume: 5 start-page: 6487 year: 2011 end-page: 6493 publication-title: ACS Nano – volume: 137 start-page: 8372 year: 2015 end-page: 8375 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 2737 year: 2015 end-page: 2744 publication-title: ChemSusChem – volume: 122 start-page: 85 year: 1999 end-page: 93 publication-title: Solid State Ionics – volume: 13 start-page: 664 year: 2011 end-page: 667 publication-title: Electrochem. Commun. – volume: 4 start-page: 1717 year: 2019 end-page: 1724 publication-title: ACS Energy Lett. – volume: 16 start-page: 282 year: 2016 end-page: 288 publication-title: Nano Lett. – volume: 55 start-page: 6332 year: 2010 end-page: 6341 publication-title: Electrochim. Acta – volume: 22 start-page: 1263 year: 2010 end-page: 1270 publication-title: Chem. Mater. – volume: 20 start-page: 7 year: 2019 end-page: 13 publication-title: Energy Storage Mater. – volume: 18 start-page: 252 year: 2015 end-page: 264 publication-title: Mater. Today – volume: 53 start-page: 8324 year: 2017 end-page: 8327 publication-title: Chem. Commun. – volume: 480 year: 2020 publication-title: J. Power Sources – volume: 4 start-page: 5246 year: 2021 end-page: 5254 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 31 year: 2008 end-page: 35 publication-title: Nat. Nanotechnol. – volume: 347 start-page: 170 year: 2017 end-page: 177 publication-title: J. Power Sources – volume: 12 start-page: 993 year: 2017 end-page: 999 publication-title: Nat. Nanotechnol. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 283 start-page: 68 year: 2015 end-page: 73 publication-title: J. Power Sources – volume: 9 start-page: 941 year: 2007 end-page: 946 publication-title: Electrochem. Commun. – volume: 16 year: 2020 publication-title: Small – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 19 start-page: 4067 year: 2007 end-page: 4070 publication-title: Adv. Mater. – volume: 13 start-page: 4158 year: 2013 end-page: 4163 publication-title: Nano Lett. – volume: 89 start-page: 80 year: 2005 end-page: 84 publication-title: Mater. Chem. Phys. – volume: 16 start-page: 1497 year: 2016 end-page: 1501 publication-title: Nano Lett. – volume: 208 start-page: 225 year: 2016 end-page: 230 publication-title: Electrochim. Acta – volume: 147 start-page: 1245 year: 2000 publication-title: J. Electrochem. Soc. – volume: 4 year: 2014 publication-title: Adv. Energy Mater. – volume: 122 start-page: 59 year: 1999 end-page: 64 publication-title: Solid State Ionics – volume: 850 year: 2019 publication-title: J. Electroanal. Chem. – volume: 189 start-page: 511 year: 2009 end-page: 514 publication-title: J. Power Sources – volume: 10 start-page: 12750 year: 2018 end-page: 12758 publication-title: ACS Appl. Mater. Interfaces – volume: 205 start-page: 651 year: 1979 end-page: 656 publication-title: Science – volume: 7 start-page: 4804 year: 2019 end-page: 4812 publication-title: J. Mater. Chem. A – volume: 24 start-page: 147 year: 2020 end-page: 152 publication-title: Energy Storage Mater. – volume: 309 start-page: 33 year: 2016 end-page: 41 publication-title: J. Power Sources – volume: 113 start-page: 5364 year: 2013 end-page: 5457 publication-title: Chem. Rev. – volume: 149 start-page: A1598 year: 2002 publication-title: J. Electrochem. Soc. – volume: 176 start-page: 2383 year: 2005 end-page: 2387 publication-title: Solid State Ionics – volume: 159 start-page: A887 year: 2012 end-page: A893 publication-title: J. Electrochem. Soc. – volume: 414 start-page: 359 year: 2001 end-page: 367 publication-title: Nature – volume: 164 start-page: A93 year: 2016 end-page: A98 publication-title: J. Electrochem. Soc. – volume: 40 start-page: 2440 year: 2021 end-page: 2446 publication-title: Rare Met. – volume: 139 start-page: 11550 year: 2017 end-page: 11558 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 42 115 start-page: 4203 4335 year: 2003 2003 end-page: 4206 4338 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 5 year: 2008 end-page: 7 publication-title: Chem. Mater. – volume: 66 year: 2019 publication-title: Nano Energy – volume: 5 start-page: 13601 year: 2017 end-page: 13609 publication-title: J. Mater. Chem. A – volume: 5 start-page: 5088 year: 2014 publication-title: Nat. Commun. – volume: 163 start-page: 1003 year: 2007 end-page: 1039 publication-title: J. Power Sources – volume: 6 start-page: 119 year: 2017 end-page: 124 publication-title: Energy Storage Mater. – volume: 9 start-page: 12818 year: 2021 end-page: 12829 publication-title: J. Mater. Chem. A – volume: 1 start-page: 15008 year: 2016 publication-title: Nat. Energy – volume: 3 start-page: 12377 year: 2015 end-page: 12385 publication-title: J. Mater. Chem. A – volume: 164 start-page: A5019 year: 2016 end-page: A5025 publication-title: J. Electrochem. Soc. – volume: 162 start-page: 800 year: 2006 end-page: 802 publication-title: J. Power Sources – volume: 45 start-page: 121 year: 1999 end-page: 130 publication-title: Electrochim. Acta – volume: 146 start-page: 448 year: 2005 end-page: 451 publication-title: J. Power Sources – volume: 86 start-page: 785 year: 1996 end-page: 789 publication-title: Solid State Ionics – volume: 113 start-page: 7408 year: 2016 end-page: 7413 publication-title: Proc. Natl. Acad. Sci. USA – volume: 3 start-page: 22739 year: 2015 end-page: 22749 publication-title: J. Mater. Chem. A – volume: 83 start-page: 843 year: 2015 end-page: 845 publication-title: Electrochemistry – volume: 9 start-page: 16071 year: 2017 end-page: 16080 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 653 year: 2021 end-page: 662 publication-title: Nat. Energy – ident: e_1_2_8_59_1 doi: 10.1021/acsami.7b00087 – ident: e_1_2_8_10_2 doi: 10.1149/1.1393344 – ident: e_1_2_8_65_1 doi: 10.1016/j.elecom.2011.04.003 – ident: e_1_2_8_143_1 doi: 10.1002/cssc.201500287 – ident: e_1_2_8_72_1 doi: 10.1021/nl401776d – ident: e_1_2_8_101_1 doi: 10.1073/pnas.1603810113 – ident: e_1_2_8_70_1 doi: 10.1149/2.086309jes – ident: e_1_2_8_14_2 doi: 10.1039/b919877f – ident: e_1_2_8_67_1 – ident: e_1_2_8_103_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_8_42_1 doi: 10.1038/nenergy.2015.8 – ident: e_1_2_8_127_1 doi: 10.1021/cm902713m – ident: e_1_2_8_36_1 – ident: e_1_2_8_140_1 doi: 10.1149/1945-7111/ac38f7 – ident: e_1_2_8_110_1 doi: 10.1002/aenm.201600154 – ident: e_1_2_8_11_2 doi: 10.1002/anie.200351203 – ident: e_1_2_8_39_1 doi: 10.1149/1.2127188 – ident: e_1_2_8_132_1 doi: 10.1021/nl502238b – ident: e_1_2_8_93_2 doi: 10.1016/S0167-2738(99)00038-7 – ident: e_1_2_8_34_2 doi: 10.1016/j.jpowsour.2013.07.065 – ident: e_1_2_8_97_1 – ident: e_1_2_8_124_1 doi: 10.1016/S0167-2738(99)00018-1 – ident: e_1_2_8_108_1 doi: 10.1039/C7CC04646D – ident: e_1_2_8_145_2 doi: 10.1149/2.1361614jes – ident: e_1_2_8_20_2 doi: 10.1038/35035045 – ident: e_1_2_8_114_1 doi: 10.1039/b814161d – ident: e_1_2_8_138_2 doi: 10.1016/j.electacta.2017.03.110 – ident: e_1_2_8_84_1 doi: 10.1039/D1TA01290H – ident: e_1_2_8_86_1 doi: 10.1002/cssc.201600365 – ident: e_1_2_8_152_1 doi: 10.1021/cm401496k – ident: e_1_2_8_9_1 – ident: e_1_2_8_23_1 – ident: e_1_2_8_24_2 doi: 10.1002/adma.200700621 – ident: e_1_2_8_21_2 doi: 10.1021/cr3001884 – ident: e_1_2_8_48_1 – ident: e_1_2_8_122_1 doi: 10.1002/chem.201801809 – ident: e_1_2_8_149_1 doi: 10.1149/1.2069372 – ident: e_1_2_8_121_1 doi: 10.1002/aenm.201502534 – ident: e_1_2_8_71_1 doi: 10.1016/j.jpowsour.2014.02.112 – ident: e_1_2_8_83_1 doi: 10.1149/1.1838428 – ident: e_1_2_8_135_2 – ident: e_1_2_8_15_2 doi: 10.1021/cr500207g – ident: e_1_2_8_154_1 doi: 10.1016/j.nanoen.2019.104175 – ident: e_1_2_8_85_1 doi: 10.1021/acsenergylett.0c02487 – ident: e_1_2_8_147_2 doi: 10.1039/C7TA01113J – ident: e_1_2_8_51_1 doi: 10.5796/electrochemistry.83.843 – ident: e_1_2_8_73_1 doi: 10.1016/j.jpowsour.2017.02.061 – ident: e_1_2_8_1_1 – ident: e_1_2_8_111_1 doi: 10.1016/j.ensm.2016.10.004 – ident: e_1_2_8_90_1 doi: 10.1016/j.ensm.2017.06.013 – ident: e_1_2_8_116_1 doi: 10.1016/j.jpowsour.2016.05.063 – ident: e_1_2_8_54_1 doi: 10.1016/j.ensm.2019.08.025 – ident: e_1_2_8_95_1 doi: 10.1016/j.ssi.2006.06.029 – ident: e_1_2_8_55_1 doi: 10.1021/acsami.9b21417 – ident: e_1_2_8_98_2 doi: 10.1149/1.1393416 – ident: e_1_2_8_19_1 – ident: e_1_2_8_40_1 doi: 10.1016/j.ssi.2005.05.019 – ident: e_1_2_8_77_1 doi: 10.1039/c3ra42773k – ident: e_1_2_8_79_1 doi: 10.1016/j.jpowsour.2008.11.029 – volume: 4 start-page: 5246 year: 2021 ident: e_1_2_8_112_1 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_63_1 doi: 10.1021/acsami.9b12086 – ident: e_1_2_8_3_2 doi: 10.1149/2.0251701jes – ident: e_1_2_8_16_1 doi: 10.1002/aenm.202101650 – ident: e_1_2_8_57_1 doi: 10.1002/anie.202002411 – ident: e_1_2_8_6_2 doi: 10.1016/j.electacta.2010.05.072 – ident: e_1_2_8_44_1 doi: 10.1149/1.1838511 – ident: e_1_2_8_119_1 doi: 10.1021/acs.nanolett.9b04278 – ident: e_1_2_8_94_1 doi: 10.1016/j.matlet.2008.11.036 – ident: e_1_2_8_120_1 doi: 10.1002/tcr.20151 – ident: e_1_2_8_17_1 doi: 10.1016/j.jpowsour.2006.09.084 – ident: e_1_2_8_128_1 doi: 10.1039/C5TA00297D – ident: e_1_2_8_134_1 – volume: 7 start-page: 30 year: 2020 ident: e_1_2_8_89_1 publication-title: Suan Sunandha Sci. Technol. J. – ident: e_1_2_8_57_2 doi: 10.1002/ange.202002411 – ident: e_1_2_8_80_1 doi: 10.1016/j.jpowsour.2021.229868 – ident: e_1_2_8_66_1 doi: 10.1149/2.018303jes – ident: e_1_2_8_18_1 doi: 10.1002/adma.200903755 – ident: e_1_2_8_118_1 doi: 10.1021/acs.nanolett.0c01413 – ident: e_1_2_8_139_2 doi: 10.1016/j.jelechem.2019.113386 – ident: e_1_2_8_32_2 doi: 10.1007/s12598-019-01354-8 – ident: e_1_2_8_150_1 doi: 10.1149/1945-7111/abfc9e – ident: e_1_2_8_22_2 doi: 10.1002/admi.201801631 – ident: e_1_2_8_107_1 doi: 10.1016/j.ensm.2018.11.030 – ident: e_1_2_8_7_2 doi: 10.1021/cr500003w – ident: e_1_2_8_27_2 doi: 10.1016/j.jpowsour.2005.03.112 – ident: e_1_2_8_96_1 doi: 10.1016/j.matchemphys.2004.08.032 – ident: e_1_2_8_41_1 doi: 10.1002/1099-0682(200205)2002:5<1108::AID-EJIC1108>3.0.CO;2-0 – ident: e_1_2_8_49_2 doi: 10.1016/S0378-7753(96)02554-2 – ident: e_1_2_8_113_1 doi: 10.1149/2.085208jes – ident: e_1_2_8_130_1 doi: 10.1039/C7NR02151H – ident: e_1_2_8_4_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_8_37_2 doi: 10.1016/j.jpowsour.2003.10.007 – ident: e_1_2_8_13_1 – ident: e_1_2_8_12_1 doi: 10.1016/S0013-4686(99)00198-X – ident: e_1_2_8_129_1 doi: 10.1149/1945-7111/ac18e1 – ident: e_1_2_8_141_1 doi: 10.1016/j.electacta.2019.134848 – ident: e_1_2_8_117_1 doi: 10.1038/s41560-021-00839-0 – ident: e_1_2_8_28_2 doi: 10.1016/j.elecom.2006.11.028 – ident: e_1_2_8_46_1 doi: 10.1016/j.jpowsour.2005.03.100 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.0c00729 – ident: e_1_2_8_142_1 doi: 10.1002/anie.202102605 – ident: e_1_2_8_105_1 doi: 10.1021/acsami.8b02150 – ident: e_1_2_8_115_1 doi: 10.1021/cm300505y – ident: e_1_2_8_125_1 doi: 10.1021/cm702290p – ident: e_1_2_8_50_2 doi: 10.1002/adfm.202101181 – ident: e_1_2_8_153_1 doi: 10.1016/j.electacta.2016.08.078 – ident: e_1_2_8_91_1 – ident: e_1_2_8_100_1 doi: 10.1038/ncomms6088 – ident: e_1_2_8_78_1 doi: 10.1016/j.jpowsour.2016.01.061 – ident: e_1_2_8_38_2 doi: 10.1149/1945-7111/ab68d7 – ident: e_1_2_8_43_1 doi: 10.1016/j.jpowsour.2020.229067 – ident: e_1_2_8_64_1 – ident: e_1_2_8_109_1 doi: 10.1021/acs.nanolett.5b05228 – ident: e_1_2_8_148_1 doi: 10.1016/j.jpowsour.2017.05.092 – ident: e_1_2_8_61_1 doi: 10.1039/C9EE01404G – ident: e_1_2_8_99_2 doi: 10.1016/S0013-4686(01)00474-1 – ident: e_1_2_8_106_1 doi: 10.1038/nnano.2017.129 – ident: e_1_2_8_29_1 – ident: e_1_2_8_47_1 doi: 10.1021/acsenergylett.9b00889 – ident: e_1_2_8_81_1 doi: 10.1149/1.2085331 – ident: e_1_2_8_26_1 – ident: e_1_2_8_68_2 doi: 10.1016/j.jpowsour.2005.03.023 – ident: e_1_2_8_82_1 doi: 10.1126/science.205.4407.651 – ident: e_1_2_8_146_2 doi: 10.5796/electrochemistry.85.656 – ident: e_1_2_8_52_1 doi: 10.1002/smll.201907602 – ident: e_1_2_8_75_2 doi: 10.1039/C8TA10880C – ident: e_1_2_8_25_2 doi: 10.1038/nnano.2007.411 – ident: e_1_2_8_137_1 – ident: e_1_2_8_87_1 doi: 10.1016/j.jpowsour.2017.03.051 – ident: e_1_2_8_31_2 doi: 10.1039/C5TA05879A – ident: e_1_2_8_53_1 doi: 10.1021/acsami.8b19416 – ident: e_1_2_8_136_2 – ident: e_1_2_8_33_1 – ident: e_1_2_8_8_2 doi: 10.1149/2.0361512jes – ident: e_1_2_8_30_2 doi: 10.1149/1.1518988 – ident: e_1_2_8_74_1 – ident: e_1_2_8_133_1 doi: 10.1021/acs.nanolett.5b03776 – ident: e_1_2_8_131_1 doi: 10.1002/aenm.201400054 – ident: e_1_2_8_69_2 doi: 10.1016/j.jpowsour.2005.07.051 – ident: e_1_2_8_5_1 – ident: e_1_2_8_92_2 doi: 10.1016/0167-2738(96)00174-9 – ident: e_1_2_8_126_1 doi: 10.1149/2.105206jes – ident: e_1_2_8_2_2 doi: 10.1038/35104644 – ident: e_1_2_8_45_1 doi: 10.1016/0378-7753(94)02061-7 – ident: e_1_2_8_35_2 doi: 10.1016/j.nanoen.2014.11.031 – ident: e_1_2_8_60_1 doi: 10.1016/j.jpowsour.2015.01.193 – ident: e_1_2_8_62_1 doi: 10.1149/2.0351702jes – ident: e_1_2_8_88_1 doi: 10.1021/cm5024426 – ident: e_1_2_8_102_1 doi: 10.1021/jacs.5b04526 – ident: e_1_2_8_58_1 doi: 10.1021/nn2017167 – ident: e_1_2_8_104_1 doi: 10.1021/acsami.6b16773 – ident: e_1_2_8_151_1 doi: 10.1016/j.electacta.2016.05.035 – ident: e_1_2_8_76_2 doi: 10.1016/j.carbon.2020.11.027 – ident: e_1_2_8_144_1 – ident: e_1_2_8_11_3 doi: 10.1002/ange.200351203 – ident: e_1_2_8_123_1 doi: 10.1016/j.jpowsour.2020.229109 |
| SSID | ssj0009633 |
| Score | 2.5459244 |
| SecondaryResourceType | review_article |
| Snippet | Lithium‐ion batteries (LIBs) have been widely employed in energy‐storage applications owing to the relatively higher energy density and longer cycling life.... Lithium-ion batteries (LIBs) have been widely employed in energy-storage applications owing to the relatively higher energy density and longer cycling life.... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202104282 |
| SubjectTerms | Batteries Chemistry Electrochemical analysis Electrochemistry electrolysis Electrolytic cells Energy storage high energy density Lithium Lithium-ion batteries lithium-ion battery prelithiation Reagents SEI Solid electrolytes Storage batteries |
| Title | Prelithiation Reagents and Strategies on High Energy Lithium‐Ion Batteries |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202104282 https://www.ncbi.nlm.nih.gov/pubmed/35137468 https://www.proquest.com/docview/2721680816 https://www.proquest.com/docview/2627132491 |
| Volume | 28 |
| WOSCitedRecordID | wos000760181900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009633 issn: 0947-6539 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60FfTi-xGtJYLgaWky2byOUlsUSinFQm9hk25Q0FSa1rM_wd_oL3E2r1pEBD0mO7vZzCMzk2S-Abj0bXLqkUBmkPYyLsjSPT-0GZ1T3eO449lx1mzC7fe98dgffKniz_EhqhduyjKy57UycBGmrSVoKN2TqiSnlIUiaHoI15GUl9egfjPsjnpL4F2naCfPXaZgWEvgRgNbqyusOqZv0eZq8Jp5n-7O__e9C9tF5Klf56qyB2sy2YfNdtnw7QB6gxktPX_IhaUPpVBlV6kukolegtjKVKch9XOI3smqBvWemrF4_nh7v6ORHK6TyA5h1O3ct29Z0WyBRZZrIZOxGVEIG1tSoiV8istMBzFE4VMC51DQEprSnjiuNLgVZ6D05sSMfOkY0vDRldYR1JJpIk9Aj0PhkduPeWhzLjD0-URGjhBxpKql0NOAlZwOogKJXDXEeApyDGUMFI-CikcaXFX0LzkGx4-UjVJwQWGLaYAKnyhrMKLBRTVMvFWfRkQipwuicZCydUpFTQ2Oc4FXl7Js03JJaTXATK6_7CFQWBbV0elfJp3BFqoqC4MzxAbU5rOFPIeN6HX-mM6asO6OvWah55-6b_oq |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB5kFfTF-6iuWkHwKdhO0-tR1EWxLiIKvpW0m6KgXdnDZ3-Cv9Ff4kyvZRERxMc2kzSdo5lJM98AHIYuLeqpQmGR9gqpyNKDMHEF3ePqcdIL3KwoNuF3u8HDQ3hTnSbkXJgSH6LZcGPLKL7XbOC8IX08QQ2ll-JUcopZyIWmr_CsJF1yWzB7dtu5jybIu15VT176gnFYa-RGC4-nR5hemb65m9Pea7H8dJb-YeLLsFj5nuZJqSwrMKPzVZg_rUu-rUF0M6CxR4-luMxbrTjxamiqvGfWMLZ6aFITHw8xz4u8QTPiHuOXz_ePS2opATuJbB3uO-d3pxeiKrcgUsd3UOjMTsmJzRyt0VEheWa2h5igCimE88htSWzt9jxfW9LJClh6u2enofYsbYXoa2cDWnk_11tgZokKaOHPZOJKqTAJZU-nnlJZyvlSGBggalbHaYVFziUxnuMSRRlj5lHc8MiAo4b-tUTh-JGyXUsurqxxGCMjFBUlRgw4aJqJt_xzROW6PyYaDylep2DUNmCzlHjzKMe1HZ_U1gAsBPvLHGJGs2iutv_SaR_mL-6uozi67F7twAJyzoUlBWIbWqPBWO_CXPo2ehoO9ip1_wLeBv0y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB5ERX3xPupZQfAp2E7TtHmU1cXFZVlEwbeStikK2pU9fPYn-Bv9JU56ySIiiI9tJmk6RzLTZr4BOJE-beqJQuaQ9jKuyNJDGfuM7pnqcVyEflYUmwh6vfD-Xvar04QmF6bEh2g-uBnLKNZrY-D6Jc3OvlBD6aVMKjnFLORC0yo8x30pyDbnLm7ad90v5F1R1ZPnATM4rDVyo4Nn0yNM70zf3M1p77XYftor_zDxVViufE_7vFSWNZjR-TostuqSbxvQ7Q9p7PFDKS77RiuTeDWyVZ7aNYytHtnUZI6H2JdF3qDdNT0mzx9v7x1qKQE7iWwT7tqXt60rVpVbYIkXeMh05ibkxGae1ugpSZ6ZKxBjVJJCOEFuS-xqPxWBdriXFbD0buomUgtHOxID7W3BbD7I9Q7YWaxC2vgzHvucK4wlT3UilMoSky-FoQWsZnWUVFjkpiTGU1SiKGNkeBQ1PLLgtKF_KVE4fqTcryUXVdY4itAgFBUlRiw4bpqJt-bniMr1YEI0Ailep2DUtWC7lHjzKM93vYDU1gIsBPvLHCKDZtFc7f6l0xEs9C_aUbfTu96DJTQpFw5niPswOx5O9AHMJ6_jx9HwsNL2T2sM_K0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prelithiation+Reagents+and+Strategies+on+High+Energy+Lithium-Ion+Batteries&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Xin%2C+Chen&rft.au=Gao%2C+Jian&rft.au=Luo%2C+Rui&rft.au=Zhou%2C+Weidong&rft.date=2022-04-22&rft.eissn=1521-3765&rft.volume=28&rft.issue=23&rft.spage=e202104282&rft_id=info:doi/10.1002%2Fchem.202104282&rft_id=info%3Apmid%2F35137468&rft.externalDocID=35137468 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |