Self‐Activatable Photo‐Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 33; číslo 7; s. e2005562 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.02.2021
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Self‐activatable photo‐extracellular vesicles are constructed by loading M1‐macrophage‐derived EVs with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl)phenyl] oxalate, chlorin e6, and prodrug aldoxorubicin. These skillfully engineered extracellular vesicles can actively target tumors owing to their inherent tumor‐homing ability, wherein they exhibit potent trimodal therapy effects in an intersynergistic and self‐controllable way, attributed to the interaction between the engineered EV and the special tumor microenvironment. |
|---|---|
| AbstractList | Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Self‐activatable photo‐extracellular vesicles are constructed by loading M1‐macrophage‐derived EVs with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl)phenyl] oxalate, chlorin e6, and prodrug aldoxorubicin. These skillfully engineered extracellular vesicles can actively target tumors owing to their inherent tumor‐homing ability, wherein they exhibit potent trimodal therapy effects in an intersynergistic and self‐controllable way, attributed to the interaction between the engineered EV and the special tumor microenvironment. Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H 2 O 2 . The reaction between H 2 O 2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen ( 1 O 2 ) for photodynamic therapy (PDT). Meanwhile, 1 O 2 ‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H O . The reaction between H O and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen ( O ) for photodynamic therapy (PDT). Meanwhile, O -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. |
| Author | Fan, Wenlin Lu, Guihong Zhang, Yahui Ding, Jingjing Huang, Li‐Li Xie, Hai‐Yan Nie, Weidong Wu, Guanghao Liu, Houli |
| Author_xml | – sequence: 1 givenname: Jingjing surname: Ding fullname: Ding, Jingjing organization: Beijing Institute of Technology – sequence: 2 givenname: Guihong surname: Lu fullname: Lu, Guihong organization: Chinese Academy of Sciences – sequence: 3 givenname: Weidong surname: Nie fullname: Nie, Weidong organization: Beijing Institute of Technology – sequence: 4 givenname: Li‐Li surname: Huang fullname: Huang, Li‐Li organization: Beijing Institute of Technology – sequence: 5 givenname: Yahui surname: Zhang fullname: Zhang, Yahui organization: Beijing Institute of Technology – sequence: 6 givenname: Wenlin surname: Fan fullname: Fan, Wenlin organization: Beijing Institute of Technology – sequence: 7 givenname: Guanghao surname: Wu fullname: Wu, Guanghao organization: Beijing Institute of Technology – sequence: 8 givenname: Houli surname: Liu fullname: Liu, Houli organization: Beijing Institute of Technology – sequence: 9 givenname: Hai‐Yan orcidid: 0000-0002-6330-7929 surname: Xie fullname: Xie, Hai‐Yan email: hyanxie@bit.edu.cn organization: Beijing Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33432702$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1q3DAUhUVJaCZpt10WQzfdeHKtH9tamnTSFFJSyCSrgJA1142CxppKdpvZ9RHyjHmSaJj8QKB0I6Gr7xzOvXef7PS-R0I-FDAtAOihXiz1lAIFEKKkb8ikELTIOUixQyYgmchlyes9sh_jDQDIEsq3ZI8xzmgFdEKuztF193_vGjPY33rQrcPsx7UffKrNboegDTo3Oh2yS4zWpN_Oh-x83WP4aeNgTTYPdukX2mVNn566Nxiy-TUGvVq_I7uddhHfP94H5OJ4Nj86yU_Pvn47ak5zwypGc2TQyaqsKyFqU0nodGs4r9q2S3l56oWVgnU1L-pWAiBSwQyFgraiRuRaswPyeeu7Cv7XiHFQSxs3wXWPfoyK8qqiyUMWCf30Cr3xY-hTukTVUsh00ER9fKTGdokLtUo96rBWT3NLAN8CJvgYA3bK2EEP1vdpZNapAtRmPWqzHvW8niSbvpI9Of9TILeCP9bh-j-0ar58b160D3FQowc |
| CitedBy_id | crossref_primary_10_1016_j_carbpol_2023_121192 crossref_primary_10_1007_s12274_021_4050_3 crossref_primary_10_1002_adfm_202207181 crossref_primary_10_1088_1748_605X_ac4c8b crossref_primary_10_1007_s10238_025_01686_z crossref_primary_10_1002_anie_202317431 crossref_primary_10_1016_j_biomaterials_2022_121875 crossref_primary_10_1016_j_cej_2024_158469 crossref_primary_10_1002_adma_202204034 crossref_primary_10_1016_j_biomaterials_2022_121635 crossref_primary_10_1016_j_biomaterials_2021_121234 crossref_primary_10_1002_adfm_202314278 crossref_primary_10_1080_1061186X_2022_2162059 crossref_primary_10_1016_j_addr_2021_113905 crossref_primary_10_1039_D3NR05195A crossref_primary_10_1002_adma_202408941 crossref_primary_10_1016_j_bioactmat_2021_10_038 crossref_primary_10_1002_ange_202107231 crossref_primary_10_1016_j_jhazmat_2022_128948 crossref_primary_10_1021_jacs_3c12132 crossref_primary_10_1002_adma_202201054 crossref_primary_10_1016_j_jcis_2023_10_054 crossref_primary_10_1016_j_biomaterials_2023_122212 crossref_primary_10_1016_j_jconrel_2023_07_009 crossref_primary_10_1039_D1NR01619A crossref_primary_10_1002_bmm2_12010 crossref_primary_10_1039_D2NR01175A crossref_primary_10_1080_17425247_2021_1950685 crossref_primary_10_1002_adma_202411030 crossref_primary_10_1186_s12951_025_03440_9 crossref_primary_10_1039_D4QI01073F crossref_primary_10_2147_IJN_S362759 crossref_primary_10_1016_j_biomaterials_2021_121061 crossref_primary_10_1126_sciadv_adr1299 crossref_primary_10_1002_anie_202107231 crossref_primary_10_3390_ijms241914960 crossref_primary_10_1038_s41467_023_41438_9 crossref_primary_10_1111_php_13925 crossref_primary_10_1039_D2BM01384C crossref_primary_10_1002_anie_202303997 crossref_primary_10_1039_D2BM01291J crossref_primary_10_1038_s41598_022_17645_7 crossref_primary_10_1186_s13046_025_03403_w crossref_primary_10_1021_acsnano_4c16329 crossref_primary_10_2147_IJN_S355790 crossref_primary_10_1186_s12951_022_01330_y crossref_primary_10_1016_j_jcis_2023_05_114 crossref_primary_10_1186_s12951_024_03051_w crossref_primary_10_1186_s12951_025_03646_x crossref_primary_10_1002_advs_202201135 crossref_primary_10_1002_adfm_202303240 crossref_primary_10_1016_j_carbpol_2023_121466 crossref_primary_10_1039_D4SC01214C crossref_primary_10_1002_ange_202303997 crossref_primary_10_1002_adhm_202301326 crossref_primary_10_1038_s41467_025_61256_5 crossref_primary_10_1016_j_jcis_2024_05_091 crossref_primary_10_1016_j_nantod_2023_101892 crossref_primary_10_1002_EXP_20210166 crossref_primary_10_1080_10717544_2022_2104404 crossref_primary_10_3390_pharmaceutics15020330 crossref_primary_10_1002_adtp_202300195 crossref_primary_10_1002_adma_202303835 crossref_primary_10_1002_smll_202500553 crossref_primary_10_1007_s40843_024_2935_y crossref_primary_10_1002_adfm_202408006 crossref_primary_10_1016_j_biopha_2024_117735 crossref_primary_10_1016_j_apsb_2024_10_015 crossref_primary_10_2147_IJN_S432854 crossref_primary_10_1016_j_cej_2024_155438 crossref_primary_10_1002_adma_202109920 crossref_primary_10_1002_adtp_202200236 crossref_primary_10_1039_D1SC03997K crossref_primary_10_1186_s12951_024_02719_7 crossref_primary_10_1039_D3NR06131K crossref_primary_10_3390_pharmaceutics17040481 crossref_primary_10_1007_s12274_022_4455_7 crossref_primary_10_3389_fimmu_2021_707784 crossref_primary_10_3390_pharmaceutics15071902 crossref_primary_10_1093_rb_rbad047 crossref_primary_10_1002_adma_202206654 crossref_primary_10_1002_adtp_202100176 crossref_primary_10_1016_j_ejmcr_2023_100107 crossref_primary_10_1002_adfm_202201666 crossref_primary_10_1080_17425247_2024_2318460 crossref_primary_10_1016_j_nantod_2023_101996 crossref_primary_10_1080_17435889_2025_2550233 crossref_primary_10_1021_acsami_5c10093 crossref_primary_10_1038_s44222_023_00074_0 crossref_primary_10_1021_jacs_5c06905 crossref_primary_10_1186_s12951_022_01429_2 crossref_primary_10_1002_btm2_10417 crossref_primary_10_1002_cmdc_202400186 crossref_primary_10_1002_adma_202505726 crossref_primary_10_1002_ange_202317431 crossref_primary_10_1016_j_biomaterials_2023_122396 crossref_primary_10_1038_s41467_022_31799_y crossref_primary_10_1186_s12951_023_02064_1 crossref_primary_10_1016_j_jhazmat_2023_131171 crossref_primary_10_1039_D3RA05020C crossref_primary_10_1016_j_biomaterials_2024_122620 crossref_primary_10_1016_j_cej_2025_163830 crossref_primary_10_1016_j_jconrel_2022_05_062 crossref_primary_10_1021_acs_chemrev_4c00882 crossref_primary_10_1016_j_cej_2024_150002 crossref_primary_10_1016_j_ccr_2021_214325 crossref_primary_10_3390_chemosensors10110471 crossref_primary_10_1016_j_colsurfb_2023_113157 crossref_primary_10_1016_j_bioactmat_2022_07_021 crossref_primary_10_1016_j_cej_2022_136428 crossref_primary_10_1016_j_jconrel_2025_113739 crossref_primary_10_1002_agt2_298 crossref_primary_10_1016_j_cej_2022_139939 crossref_primary_10_1016_j_bioactmat_2022_05_037 crossref_primary_10_1016_j_nantod_2022_101390 crossref_primary_10_1039_D5TB01154J |
| Cites_doi | 10.1039/D0BM00088D 10.1002/smll.201903746 10.1021/acsnano.8b02446 10.3402/jev.v3.26913 10.1016/j.biomaterials.2013.11.083 10.1158/0008-5472.CAN-05-3410 10.1002/adfm.202006515 10.1126/science.aau6977 10.1038/s41467-018-07197-8 10.1016/j.jphotochem.2012.12.006 10.1038/nmat4718 10.1038/s41467-019-08989-2 10.1080/20013078.2019.1648167 10.7150/thno.28857 10.1021/acsnano.5b06779 10.1038/s41551-018-0236-8 10.1038/s41467-019-12321-3 10.1002/wnan.1583 10.1039/b822776d 10.1371/journal.pone.0063967 10.1002/path.1027 10.3390/ma6030817 10.1038/ncomms12499 10.1155/2012/948098 10.1038/nrd.2018.46 10.1158/0008-5472.CAN-09-4672 10.1002/anie.201913700 10.1038/aps.2017.12 10.1126/sciadv.aaw6081 10.7150/thno.30716 10.1158/1078-0432.CCR-11-3130 10.1038/nbt.2838 10.1016/j.nano.2015.10.012 10.1021/acs.molpharmaceut.8b00901 10.1038/nri855 10.1073/pnas.1308887110 10.1021/acsnano.9b01004 10.1038/nature22341 10.1038/nrc3803 10.1002/anie.201912524 10.1080/20013078.2018.1535750 10.1039/C5SC03583J 10.1634/theoncologist.11-9-1034 10.1016/S0014-5793(00)02197-9 10.1039/C6CS00592F 10.1021/acsnano.6b02908 10.1021/acsami.6b15444 10.1016/j.actbio.2017.09.009 10.1002/adma.201802896 10.1080/10717544.2018.1502839 10.1016/j.chempr.2017.10.002 10.1016/j.biomaterials.2016.04.034 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202005562 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 33432702 10_1002_adma_202005562 ADMA202005562 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation of China funderid: 21874011; 91859213; 22025401 – fundername: National Science Foundation of China grantid: 22025401 – fundername: National Science Foundation of China grantid: 21874011 – fundername: National Science Foundation of China grantid: 91859213 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3732-e30f97687558c790fabc447bbf09644093653f8418b900ee253c2012b58ee4aa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606809100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 13:57:05 EST 2025 Fri Jul 25 21:25:01 EDT 2025 Wed Feb 19 02:28:13 EST 2025 Sat Nov 29 07:22:10 EST 2025 Tue Nov 18 21:51:34 EST 2025 Wed Jan 22 16:31:54 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | tumor microenvironment chemotherapy extracellular vesicle photodynamic therapy immunotherapy |
| Language | English |
| License | 2021 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3732-e30f97687558c790fabc447bbf09644093653f8418b900ee253c2012b58ee4aa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6330-7929 |
| PMID | 33432702 |
| PQID | 2489594892 |
| PQPubID | 2045203 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2477265391 proquest_journals_2489594892 pubmed_primary_33432702 crossref_citationtrail_10_1002_adma_202005562 crossref_primary_10_1002_adma_202005562 wiley_primary_10_1002_adma_202005562_ADMA202005562 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019 2000 2014; 9 486 14 2017; 63 2017; 3 2019; 31 2019; 10 2006; 11 2019; 13 2019; 12 2017; 46 2019; 15 2019; 16 2016; 97 2013 2016; 252 10 2020; 59 2006 2018; 66 17 2013; 8 2002 2014 2018 2019 2020; 2 3 7 8 367 2016; 15 2013; 6 2013 2018; 110 2 2017; 9 2019 2002 2010; 10 196 70 2016; 12 2018; 25 2019 2012; 5 18 2020; 8 2018; 9 2016; 7 2016 2012 2019; 10 2012 9 2017; 38 2020 2014; 35 2016 2009; 7 2018; 12 2007 2014; 6 32 2017; 546 e_1_2_5_27_1 e_1_2_5_27_2 e_1_2_5_25_1 e_1_2_5_23_1 Lee D. (e_1_2_5_18_1) 2007; 6 e_1_2_5_23_2 e_1_2_5_21_1 e_1_2_5_29_1 e_1_2_5_29_2 e_1_2_5_15_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_30_3 e_1_2_5_32_1 e_1_2_5_1_5 e_1_2_5_5_1 e_1_2_5_1_4 e_1_2_5_1_3 e_1_2_5_3_1 e_1_2_5_1_2 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_30_2 e_1_2_5_26_2 e_1_2_5_28_1 e_1_2_5_24_2 e_1_2_5_24_3 e_1_2_5_26_1 e_1_2_5_22_2 e_1_2_5_24_1 e_1_2_5_20_2 e_1_2_5_20_3 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_14_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_2 e_1_2_5_31_1 |
| References_xml | – volume: 2 3 7 8 367 start-page: 569 year: 2002 2014 2018 2019 2020 publication-title: Nat. Rev. Immunol. J. Extracell. Vesicles J. Extracell. Vesicles J. Extracell. Vesicles Science – volume: 10 start-page: 4355 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 1034 year: 2006 publication-title: Oncologist – volume: 59 start-page: 2018 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 66 17 start-page: 4863 559 year: 2006 2018 publication-title: Cancer Res. Nat. Rev. Drug Discovery – volume: 10 2012 9 start-page: 633 1714 year: 2016 2012 2019 publication-title: ACS Nano Clin. Dev. Immunol. Theranostics – volume: 59 start-page: 4068 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 8977 year: 2018 publication-title: ACS Nano – year: 2020 publication-title: Adv. Funct. Mater. – volume: 38 start-page: 754 year: 2017 publication-title: Acta Pharmacol. Sin. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 8 year: 2013 publication-title: PLoS One – volume: 15 start-page: 1212 year: 2016 publication-title: Nat. Mater. – volume: 6 32 start-page: 765 373 year: 2007 2014 publication-title: Adv. Mater. Nat. Biotechnol. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 8 start-page: 2283 year: 2020 publication-title: Biomater. Sci. – volume: 16 start-page: 24 year: 2019 publication-title: Mol. Pharm. – volume: 12 start-page: 655 year: 2016 publication-title: Nanomedicine – volume: 13 start-page: 6670 year: 2019 publication-title: ACS Nano – volume: 9 start-page: 5855 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 63 start-page: 163 year: 2017 publication-title: Acta Biomater. – volume: 97 start-page: 1 year: 2016 publication-title: Biomaterials – volume: 25 start-page: 1922 year: 2018 publication-title: Drug Delivery – volume: 10 196 70 start-page: 1135 254 5728 year: 2019 2002 2010 publication-title: Nat. Commun. J. Pathol. Cancer Res. – volume: 12 year: 2019 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 6 start-page: 817 year: 2013 publication-title: Materials – volume: 546 start-page: 498 year: 2017 publication-title: Nature – volume: 3 start-page: 991 year: 2017 publication-title: Chem – volume: 5 18 start-page: 3856 year: 2019 2012 publication-title: Sci. Adv. Clin. Cancer Res. – volume: 9 start-page: 5044 year: 2018 publication-title: Nat. Commun. – volume: 35 start-page: 2383 year: 2014 publication-title: Biomaterials – volume: 7 start-page: 1862 2920 year: 2016 2009 publication-title: Chem. Sci. Chem. Commun. – volume: 46 start-page: 3830 year: 2017 publication-title: Chem. Soc. Rev. – volume: 252 10 start-page: 222 6400 year: 2013 2016 publication-title: J. Photochem. Photobiol., A ACS Nano – volume: 9 486 14 start-page: 20 10 709 year: 2019 2000 2014 publication-title: Theranostics FEBS Lett. Nat. Rev. Cancer – volume: 110 2 start-page: 578 year: 2013 2018 publication-title: Proc. Natl. Acad. Sci. USA Nat. Biomed. Eng. – ident: e_1_2_5_34_1 doi: 10.1039/D0BM00088D – ident: e_1_2_5_36_1 doi: 10.1002/smll.201903746 – ident: e_1_2_5_37_1 doi: 10.1021/acsnano.8b02446 – ident: e_1_2_5_1_2 doi: 10.3402/jev.v3.26913 – ident: e_1_2_5_6_1 doi: 10.1016/j.biomaterials.2013.11.083 – ident: e_1_2_5_29_1 doi: 10.1158/0008-5472.CAN-05-3410 – ident: e_1_2_5_33_1 doi: 10.1002/adfm.202006515 – ident: e_1_2_5_1_5 doi: 10.1126/science.aau6977 – ident: e_1_2_5_17_1 doi: 10.1038/s41467-018-07197-8 – ident: e_1_2_5_22_1 doi: 10.1016/j.jphotochem.2012.12.006 – ident: e_1_2_5_11_1 doi: 10.1038/nmat4718 – ident: e_1_2_5_30_1 doi: 10.1038/s41467-019-08989-2 – ident: e_1_2_5_1_4 doi: 10.1080/20013078.2019.1648167 – ident: e_1_2_5_20_1 doi: 10.7150/thno.28857 – ident: e_1_2_5_24_1 doi: 10.1021/acsnano.5b06779 – ident: e_1_2_5_26_2 doi: 10.1038/s41551-018-0236-8 – ident: e_1_2_5_4_1 doi: 10.1038/s41467-019-12321-3 – ident: e_1_2_5_16_1 doi: 10.1002/wnan.1583 – ident: e_1_2_5_23_2 doi: 10.1039/b822776d – ident: e_1_2_5_25_1 doi: 10.1371/journal.pone.0063967 – ident: e_1_2_5_30_2 doi: 10.1002/path.1027 – ident: e_1_2_5_13_1 doi: 10.3390/ma6030817 – ident: e_1_2_5_15_1 doi: 10.1038/ncomms12499 – ident: e_1_2_5_24_2 doi: 10.1155/2012/948098 – ident: e_1_2_5_29_2 doi: 10.1038/nrd.2018.46 – ident: e_1_2_5_30_3 doi: 10.1158/0008-5472.CAN-09-4672 – ident: e_1_2_5_2_1 doi: 10.1002/anie.201913700 – ident: e_1_2_5_21_1 doi: 10.1038/aps.2017.12 – ident: e_1_2_5_27_1 doi: 10.1126/sciadv.aaw6081 – ident: e_1_2_5_24_3 doi: 10.7150/thno.30716 – ident: e_1_2_5_27_2 doi: 10.1158/1078-0432.CCR-11-3130 – ident: e_1_2_5_18_2 doi: 10.1038/nbt.2838 – ident: e_1_2_5_7_1 doi: 10.1016/j.nano.2015.10.012 – ident: e_1_2_5_9_1 doi: 10.1021/acs.molpharmaceut.8b00901 – ident: e_1_2_5_1_1 doi: 10.1038/nri855 – ident: e_1_2_5_26_1 doi: 10.1073/pnas.1308887110 – ident: e_1_2_5_8_1 doi: 10.1021/acsnano.9b01004 – ident: e_1_2_5_10_1 doi: 10.1038/nature22341 – ident: e_1_2_5_20_3 doi: 10.1038/nrc3803 – ident: e_1_2_5_3_1 doi: 10.1002/anie.201912524 – ident: e_1_2_5_1_3 doi: 10.1080/20013078.2018.1535750 – volume: 6 start-page: 765 year: 2007 ident: e_1_2_5_18_1 publication-title: Adv. Mater. – ident: e_1_2_5_23_1 doi: 10.1039/C5SC03583J – ident: e_1_2_5_12_1 doi: 10.1634/theoncologist.11-9-1034 – ident: e_1_2_5_20_2 doi: 10.1016/S0014-5793(00)02197-9 – ident: e_1_2_5_28_1 doi: 10.1039/C6CS00592F – ident: e_1_2_5_22_2 doi: 10.1021/acsnano.6b02908 – ident: e_1_2_5_35_1 doi: 10.1021/acsami.6b15444 – ident: e_1_2_5_31_1 doi: 10.1016/j.actbio.2017.09.009 – ident: e_1_2_5_5_1 doi: 10.1002/adma.201802896 – ident: e_1_2_5_32_1 doi: 10.1080/10717544.2018.1502839 – ident: e_1_2_5_19_1 doi: 10.1016/j.chempr.2017.10.002 – ident: e_1_2_5_14_1 doi: 10.1016/j.biomaterials.2016.04.034 |
| SSID | ssj0009606 |
| Score | 2.647621 |
| Snippet | Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2005562 |
| SubjectTerms | Anticancer properties Cancer Chemical energy Chemiluminescence chemotherapy extracellular vesicle Hydrogen peroxide Immunotherapy Macrophages Materials science Photodynamic therapy Singlet oxygen tumor microenvironment Tumors |
| Title | Self‐Activatable Photo‐Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005562 https://www.ncbi.nlm.nih.gov/pubmed/33432702 https://www.proquest.com/docview/2489594892 https://www.proquest.com/docview/2477265391 |
| Volume | 33 |
| WOSCitedRecordID | wos000606809100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED-NwgM8sA0YdGMoSEh7ikhtJ3Eeq5WKB4bQaKs-TIps1xGTqhSlLYI3PgKfkU_CnZMGKoSQtsfEf3W-s-_Ovt8BHMlI46EbGZ-wy9BAMS1fylD5YawinWnkEBe3NjiLz8_lcJhcvIjiL_EhaocbSYbbr0nAlZ4eP4OGqpHDDSKvSEib8CpD5hUNWO387vbPnoF3I5dfk-77_CQScgHcGLDj5R6WD6ZX2uay8upOn-7H_5_3J9isNE-vXbLKZ_hg8y3YeIFHuA1_Lu04e7x_aBuX9IyiqryLq8lsgv9ObmeFIjc_vVv1BnZKvXio8nqXdxQ_6ACfvV6Baz-iYXJykiNHFV6vBC7YgX73pPfz1K_SL_iGx5z5lgcZKito0ITSxEmQKW2EiLXOkKgC7UIehTyToiV1EgTWspAbVCeYDqW1Qin-BRr5JLd74OlIjaweaSlUQiqk5jwzIkZjEvkhi1gT_AXtU1Nhk1OKjHFaoiqzlKiW1lRrwo-6_nWJyvFmzf3FUqaVdE5TJmRCMDUJFh_WxShXREWV28mc6qDdQbi9rSbslixQD8UpGjcOsDVzK_3OHNJ251e7_vr6L42-wTqjxzTuufg-NGbF3H6HNXMz-zstDmAlHsqDivOfAFPIAqI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fS9xAEB_KWVAftGqr598UCn0K5nY3yebxUA-L5yH1FB8KYXdvQ4UjJ7lT9M2P0M_YT-LMJhc9RArFxyT7j9mZ3ZnJzG8AvslI46UbGZ-wy9BAMS1fylD5YawinWnkEJe3dtmNez15dZWcVdGElAtT4kPUDjeSDHdek4CTQ3r_GTVUDRxwELlFQjqF5wTyUtiAucOfnYvuM_Ju5Aps0g8_P4mEnCI3Bmx_doTZm-mVujmrvbrrp7P8Dgv_BEuV7um1S2ZZgQ82X4XFF4iEa_Dr3A6zv49_2saVPaO8Ku_s92gywndH95NCkaOfIle9SzumUTxUer3zB8ogdJDPXr_A3R_QNDm5yZGnCq9fQhd8hovOUf_g2K8KMPiGx5z5lgcZqito0oTSxEmQKW2EiLXOkKoCLUMehTyToiV1EgTWspAbVCiYDqW1Qin-BRr5KLcb4OlIDaweaClUQkqk5jwzIkZzEjkii1gT_CnxU1Ohk1ORjGFa4iqzlKiW1lRrwve6_U2Jy_Fmy-3pXqaVfI5TJmRCQDUJfv5af0bJIiqq3I5uqQ1aHoTc22rCeskD9VSc8nHjAHszt9X_WEPaPjxt10-b_9NpD-aP-6fdtPujd7IFC4xCa1zw-DY0JsWt3YGP5m5yPS52KwF4ArzYBao |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swEBelLWN9WLs_7bJ2mweDPZk6kizLj6FpWFkWwpqEPgyMJEu0EJzgpGN960foZ-wn2Z3suA1jDMYebesfpzvp7nz3O0I-SqHh0hUmROwyMFBMO5QyVmGcKKGdBg7xeWuTfjIYyIuLdFhHE2IuTIUP0TjcUDL8eY0Cbue5O35ADVW5Bw5Ct0iMp_AWj1MBsrnV_dYb9x-Qd4UvsIk__MJUcLlCbozo8foI6zfTb-rmuvbqr5_e7n9Y-B55VuueQadiludkwxYvyM4jRMKX5Pu5nbr727uO8WXPMK8qGF7OljN4d_pzWSp09GPkajCxCxwlAKU3OL_BDEIP-RyMStj9HKcp0E0OPFUGowq64BUZ905HJ5_DugBDaFjCaGhZ5EBdAZMmliZJI6e04TzR2gFVOViGTMTMSd6WOo0ia2nMDCgUVMfSWq4U2yebxaywr0mghcqtzrXkKkUlUjPmDE_AnASOcIK2SLgifmZqdHIskjHNKlxlmiHVsoZqLfKpaT-vcDn-2PJotZdZLZ-LjHKZIlBNCp8_NJ9BspCKqrCza2wDlgci97Zb5KDigWYqhvm4SQS9qd_qv6wh63S_dpqnN__S6T15Muz2sv7Z4MsheUoxssbHjh-RzWV5bd-SbfNjebUo39X8_ws-jQUl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Activatable+Photo%E2%80%90Extracellular+Vesicle+for+Synergistic+Trimodal+Anticancer+Therapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ding%2C+Jingjing&rft.au=Lu%2C+Guihong&rft.au=Nie%2C+Weidong&rft.au=Huang%2C+Li%E2%80%90Li&rft.date=2021-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202005562&rft.externalDBID=10.1002%252Fadma.202005562&rft.externalDocID=ADMA202005562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |