Self‐Activatable Photo‐Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy

Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 33; no. 7; pp. e2005562 - n/a
Main Authors: Ding, Jingjing, Lu, Guihong, Nie, Weidong, Huang, Li‐Li, Zhang, Yahui, Fan, Wenlin, Wu, Guanghao, Liu, Houli, Xie, Hai‐Yan
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.02.2021
Subjects:
ISSN:0935-9648, 1521-4095, 1521-4095
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Self‐activatable photo‐extracellular vesicles are constructed by loading M1‐macrophage‐derived EVs with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl)phenyl] oxalate, chlorin e6, and prodrug aldoxorubicin. These skillfully engineered extracellular vesicles can actively target tumors owing to their inherent tumor‐homing ability, wherein they exhibit potent trimodal therapy effects in an intersynergistic and self‐controllable way, attributed to the interaction between the engineered EV and the special tumor microenvironment.
AbstractList Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2O2. The reaction between H2O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1O2) for photodynamic therapy (PDT). Meanwhile, 1O2‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers. Self‐activatable photo‐extracellular vesicles are constructed by loading M1‐macrophage‐derived EVs with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl)phenyl] oxalate, chlorin e6, and prodrug aldoxorubicin. These skillfully engineered extracellular vesicles can actively target tumors owing to their inherent tumor‐homing ability, wherein they exhibit potent trimodal therapy effects in an intersynergistic and self‐controllable way, attributed to the interaction between the engineered EV and the special tumor microenvironment.
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H O . The reaction between H O and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen ( O ) for photodynamic therapy (PDT). Meanwhile, O -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self‐activatable photo‐EV for synergistic trimodal anticancer therapy is reported. M1 macrophage‐derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5‐trichloro‐6‐(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox‐EMCH). After administration, the as‐prepared system actively targets tumor cells because of the tumor‐homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H 2 O 2 . The reaction between H 2 O 2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen ( 1 O 2 ) for photodynamic therapy (PDT). Meanwhile, 1 O 2 ‐induced membrane rupture leads to the release of Dox‐EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the spontaneous treatment effect cooperation of EVs and drugs at target tissues, is still challenging. Here, an engineered self-activatable photo-EV for synergistic trimodal anticancer therapy is reported. M1 macrophage-derived EVs (M1 EVs) are simultaneously loaded with bis[2,4,5-trichloro-6-(pentyloxycarbonyl) phenyl] oxalate (CPPO), chlorin e6 (Ce6), and prodrug aldoxorubicin (Dox-EMCH). After administration, the as-prepared system actively targets tumor cells because of the tumor-homing capability of M1 EVs, wherein M1 EVs repolarize M2 to M1 macrophages, which not only display immunotherapy effects but also produce H2 O2 . The reaction between H2 O2 and CPPO generates chemical energy that activates Ce6, creating both chemiluminescence for imaging and singlet oxygen (1 O2 ) for photodynamic therapy (PDT). Meanwhile, 1 O2 -induced membrane rupture leads to the release of Dox-EMCH, which is then activated and penetrates the deep hypoxic areas of tumors. The synergism of immunotherapy, PDT, and chemotherapy results in potent anticancer efficacy, showing great promise to fight cancers.
Author Fan, Wenlin
Lu, Guihong
Zhang, Yahui
Ding, Jingjing
Huang, Li‐Li
Xie, Hai‐Yan
Nie, Weidong
Wu, Guanghao
Liu, Houli
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Ding
  fullname: Ding, Jingjing
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Guihong
  surname: Lu
  fullname: Lu, Guihong
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Weidong
  surname: Nie
  fullname: Nie, Weidong
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Li‐Li
  surname: Huang
  fullname: Huang, Li‐Li
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Yahui
  surname: Zhang
  fullname: Zhang, Yahui
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Wenlin
  surname: Fan
  fullname: Fan, Wenlin
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Guanghao
  surname: Wu
  fullname: Wu, Guanghao
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Houli
  surname: Liu
  fullname: Liu, Houli
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Hai‐Yan
  orcidid: 0000-0002-6330-7929
  surname: Xie
  fullname: Xie, Hai‐Yan
  email: hyanxie@bit.edu.cn
  organization: Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33432702$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1q3DAUhUVJaCZpt10WQzfdeHKtH9tamnTSFFJSyCSrgJA1142CxppKdpvZ9RHyjHmSaJj8QKB0I6Gr7xzOvXef7PS-R0I-FDAtAOihXiz1lAIFEKKkb8ikELTIOUixQyYgmchlyes9sh_jDQDIEsq3ZI8xzmgFdEKuztF193_vGjPY33rQrcPsx7UffKrNboegDTo3Oh2yS4zWpN_Oh-x83WP4aeNgTTYPdukX2mVNn566Nxiy-TUGvVq_I7uddhHfP94H5OJ4Nj86yU_Pvn47ak5zwypGc2TQyaqsKyFqU0nodGs4r9q2S3l56oWVgnU1L-pWAiBSwQyFgraiRuRaswPyeeu7Cv7XiHFQSxs3wXWPfoyK8qqiyUMWCf30Cr3xY-hTukTVUsh00ER9fKTGdokLtUo96rBWT3NLAN8CJvgYA3bK2EEP1vdpZNapAtRmPWqzHvW8niSbvpI9Of9TILeCP9bh-j-0ar58b160D3FQowc
CitedBy_id crossref_primary_10_1016_j_carbpol_2023_121192
crossref_primary_10_1007_s12274_021_4050_3
crossref_primary_10_1002_adfm_202207181
crossref_primary_10_1088_1748_605X_ac4c8b
crossref_primary_10_1007_s10238_025_01686_z
crossref_primary_10_1002_anie_202317431
crossref_primary_10_1016_j_biomaterials_2022_121875
crossref_primary_10_1016_j_cej_2024_158469
crossref_primary_10_1002_adma_202204034
crossref_primary_10_1016_j_biomaterials_2022_121635
crossref_primary_10_1016_j_biomaterials_2021_121234
crossref_primary_10_1002_adfm_202314278
crossref_primary_10_1080_1061186X_2022_2162059
crossref_primary_10_1016_j_addr_2021_113905
crossref_primary_10_1039_D3NR05195A
crossref_primary_10_1002_adma_202408941
crossref_primary_10_1016_j_bioactmat_2021_10_038
crossref_primary_10_1002_ange_202107231
crossref_primary_10_1016_j_jhazmat_2022_128948
crossref_primary_10_1021_jacs_3c12132
crossref_primary_10_1002_adma_202201054
crossref_primary_10_1016_j_jcis_2023_10_054
crossref_primary_10_1016_j_biomaterials_2023_122212
crossref_primary_10_1016_j_jconrel_2023_07_009
crossref_primary_10_1039_D1NR01619A
crossref_primary_10_1002_bmm2_12010
crossref_primary_10_1039_D2NR01175A
crossref_primary_10_1080_17425247_2021_1950685
crossref_primary_10_1002_adma_202411030
crossref_primary_10_1186_s12951_025_03440_9
crossref_primary_10_1039_D4QI01073F
crossref_primary_10_2147_IJN_S362759
crossref_primary_10_1016_j_biomaterials_2021_121061
crossref_primary_10_1126_sciadv_adr1299
crossref_primary_10_1002_anie_202107231
crossref_primary_10_3390_ijms241914960
crossref_primary_10_1038_s41467_023_41438_9
crossref_primary_10_1111_php_13925
crossref_primary_10_1039_D2BM01384C
crossref_primary_10_1002_anie_202303997
crossref_primary_10_1039_D2BM01291J
crossref_primary_10_1038_s41598_022_17645_7
crossref_primary_10_1186_s13046_025_03403_w
crossref_primary_10_1021_acsnano_4c16329
crossref_primary_10_2147_IJN_S355790
crossref_primary_10_1186_s12951_022_01330_y
crossref_primary_10_1016_j_jcis_2023_05_114
crossref_primary_10_1186_s12951_024_03051_w
crossref_primary_10_1186_s12951_025_03646_x
crossref_primary_10_1002_advs_202201135
crossref_primary_10_1002_adfm_202303240
crossref_primary_10_1016_j_carbpol_2023_121466
crossref_primary_10_1039_D4SC01214C
crossref_primary_10_1002_ange_202303997
crossref_primary_10_1002_adhm_202301326
crossref_primary_10_1038_s41467_025_61256_5
crossref_primary_10_1016_j_jcis_2024_05_091
crossref_primary_10_1016_j_nantod_2023_101892
crossref_primary_10_1002_EXP_20210166
crossref_primary_10_1080_10717544_2022_2104404
crossref_primary_10_3390_pharmaceutics15020330
crossref_primary_10_1002_adtp_202300195
crossref_primary_10_1002_adma_202303835
crossref_primary_10_1002_smll_202500553
crossref_primary_10_1007_s40843_024_2935_y
crossref_primary_10_1002_adfm_202408006
crossref_primary_10_1016_j_biopha_2024_117735
crossref_primary_10_1016_j_apsb_2024_10_015
crossref_primary_10_2147_IJN_S432854
crossref_primary_10_1016_j_cej_2024_155438
crossref_primary_10_1002_adma_202109920
crossref_primary_10_1002_adtp_202200236
crossref_primary_10_1039_D1SC03997K
crossref_primary_10_1186_s12951_024_02719_7
crossref_primary_10_1039_D3NR06131K
crossref_primary_10_3390_pharmaceutics17040481
crossref_primary_10_1007_s12274_022_4455_7
crossref_primary_10_3389_fimmu_2021_707784
crossref_primary_10_3390_pharmaceutics15071902
crossref_primary_10_1093_rb_rbad047
crossref_primary_10_1002_adma_202206654
crossref_primary_10_1002_adtp_202100176
crossref_primary_10_1016_j_ejmcr_2023_100107
crossref_primary_10_1002_adfm_202201666
crossref_primary_10_1080_17425247_2024_2318460
crossref_primary_10_1016_j_nantod_2023_101996
crossref_primary_10_1080_17435889_2025_2550233
crossref_primary_10_1021_acsami_5c10093
crossref_primary_10_1038_s44222_023_00074_0
crossref_primary_10_1021_jacs_5c06905
crossref_primary_10_1186_s12951_022_01429_2
crossref_primary_10_1002_btm2_10417
crossref_primary_10_1002_cmdc_202400186
crossref_primary_10_1002_adma_202505726
crossref_primary_10_1002_ange_202317431
crossref_primary_10_1016_j_biomaterials_2023_122396
crossref_primary_10_1038_s41467_022_31799_y
crossref_primary_10_1186_s12951_023_02064_1
crossref_primary_10_1016_j_jhazmat_2023_131171
crossref_primary_10_1039_D3RA05020C
crossref_primary_10_1016_j_biomaterials_2024_122620
crossref_primary_10_1016_j_cej_2025_163830
crossref_primary_10_1016_j_jconrel_2022_05_062
crossref_primary_10_1021_acs_chemrev_4c00882
crossref_primary_10_1016_j_cej_2024_150002
crossref_primary_10_1016_j_ccr_2021_214325
crossref_primary_10_3390_chemosensors10110471
crossref_primary_10_1016_j_colsurfb_2023_113157
crossref_primary_10_1016_j_bioactmat_2022_07_021
crossref_primary_10_1016_j_cej_2022_136428
crossref_primary_10_1016_j_jconrel_2025_113739
crossref_primary_10_1002_agt2_298
crossref_primary_10_1016_j_cej_2022_139939
crossref_primary_10_1016_j_bioactmat_2022_05_037
crossref_primary_10_1016_j_nantod_2022_101390
crossref_primary_10_1039_D5TB01154J
Cites_doi 10.1039/D0BM00088D
10.1002/smll.201903746
10.1021/acsnano.8b02446
10.3402/jev.v3.26913
10.1016/j.biomaterials.2013.11.083
10.1158/0008-5472.CAN-05-3410
10.1002/adfm.202006515
10.1126/science.aau6977
10.1038/s41467-018-07197-8
10.1016/j.jphotochem.2012.12.006
10.1038/nmat4718
10.1038/s41467-019-08989-2
10.1080/20013078.2019.1648167
10.7150/thno.28857
10.1021/acsnano.5b06779
10.1038/s41551-018-0236-8
10.1038/s41467-019-12321-3
10.1002/wnan.1583
10.1039/b822776d
10.1371/journal.pone.0063967
10.1002/path.1027
10.3390/ma6030817
10.1038/ncomms12499
10.1155/2012/948098
10.1038/nrd.2018.46
10.1158/0008-5472.CAN-09-4672
10.1002/anie.201913700
10.1038/aps.2017.12
10.1126/sciadv.aaw6081
10.7150/thno.30716
10.1158/1078-0432.CCR-11-3130
10.1038/nbt.2838
10.1016/j.nano.2015.10.012
10.1021/acs.molpharmaceut.8b00901
10.1038/nri855
10.1073/pnas.1308887110
10.1021/acsnano.9b01004
10.1038/nature22341
10.1038/nrc3803
10.1002/anie.201912524
10.1080/20013078.2018.1535750
10.1039/C5SC03583J
10.1634/theoncologist.11-9-1034
10.1016/S0014-5793(00)02197-9
10.1039/C6CS00592F
10.1021/acsnano.6b02908
10.1021/acsami.6b15444
10.1016/j.actbio.2017.09.009
10.1002/adma.201802896
10.1080/10717544.2018.1502839
10.1016/j.chempr.2017.10.002
10.1016/j.biomaterials.2016.04.034
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202005562
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 33432702
10_1002_adma_202005562
ADMA202005562
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 21874011; 91859213; 22025401
– fundername: National Science Foundation of China
  grantid: 22025401
– fundername: National Science Foundation of China
  grantid: 21874011
– fundername: National Science Foundation of China
  grantid: 91859213
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3732-e30f97687558c790fabc447bbf09644093653f8418b900ee253c2012b58ee4aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606809100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 13:57:05 EST 2025
Fri Jul 25 21:25:01 EDT 2025
Wed Feb 19 02:28:13 EST 2025
Sat Nov 29 07:22:10 EST 2025
Tue Nov 18 21:51:34 EST 2025
Wed Jan 22 16:31:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords tumor microenvironment
chemotherapy
extracellular vesicle
photodynamic therapy
immunotherapy
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-e30f97687558c790fabc447bbf09644093653f8418b900ee253c2012b58ee4aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6330-7929
PMID 33432702
PQID 2489594892
PQPubID 2045203
PageCount 12
ParticipantIDs proquest_miscellaneous_2477265391
proquest_journals_2489594892
pubmed_primary_33432702
crossref_citationtrail_10_1002_adma_202005562
crossref_primary_10_1002_adma_202005562
wiley_primary_10_1002_adma_202005562_ADMA202005562
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019 2000 2014; 9 486 14
2017; 63
2017; 3
2019; 31
2019; 10
2006; 11
2019; 13
2019; 12
2017; 46
2019; 15
2019; 16
2016; 97
2013 2016; 252 10
2020; 59
2006 2018; 66 17
2013; 8
2002 2014 2018 2019 2020; 2 3 7 8 367
2016; 15
2013; 6
2013 2018; 110 2
2017; 9
2019 2002 2010; 10 196 70
2016; 12
2018; 25
2019 2012; 5 18
2020; 8
2018; 9
2016; 7
2016 2012 2019; 10 2012 9
2017; 38
2020
2014; 35
2016 2009; 7
2018; 12
2007 2014; 6 32
2017; 546
e_1_2_5_27_1
e_1_2_5_27_2
e_1_2_5_25_1
e_1_2_5_23_1
Lee D. (e_1_2_5_18_1) 2007; 6
e_1_2_5_23_2
e_1_2_5_21_1
e_1_2_5_29_1
e_1_2_5_29_2
e_1_2_5_15_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_30_3
e_1_2_5_32_1
e_1_2_5_1_5
e_1_2_5_5_1
e_1_2_5_1_4
e_1_2_5_1_3
e_1_2_5_3_1
e_1_2_5_1_2
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_30_2
e_1_2_5_26_2
e_1_2_5_28_1
e_1_2_5_24_2
e_1_2_5_24_3
e_1_2_5_26_1
e_1_2_5_22_2
e_1_2_5_24_1
e_1_2_5_20_2
e_1_2_5_20_3
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_14_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_2
e_1_2_5_31_1
References_xml – volume: 2 3 7 8 367
  start-page: 569
  year: 2002 2014 2018 2019 2020
  publication-title: Nat. Rev. Immunol. J. Extracell. Vesicles J. Extracell. Vesicles J. Extracell. Vesicles Science
– volume: 10
  start-page: 4355
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1034
  year: 2006
  publication-title: Oncologist
– volume: 59
  start-page: 2018
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 66 17
  start-page: 4863 559
  year: 2006 2018
  publication-title: Cancer Res. Nat. Rev. Drug Discovery
– volume: 10 2012 9
  start-page: 633 1714
  year: 2016 2012 2019
  publication-title: ACS Nano Clin. Dev. Immunol. Theranostics
– volume: 59
  start-page: 4068
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 8977
  year: 2018
  publication-title: ACS Nano
– year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 38
  start-page: 754
  year: 2017
  publication-title: Acta Pharmacol. Sin.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  year: 2013
  publication-title: PLoS One
– volume: 15
  start-page: 1212
  year: 2016
  publication-title: Nat. Mater.
– volume: 6 32
  start-page: 765 373
  year: 2007 2014
  publication-title: Adv. Mater. Nat. Biotechnol.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2283
  year: 2020
  publication-title: Biomater. Sci.
– volume: 16
  start-page: 24
  year: 2019
  publication-title: Mol. Pharm.
– volume: 12
  start-page: 655
  year: 2016
  publication-title: Nanomedicine
– volume: 13
  start-page: 6670
  year: 2019
  publication-title: ACS Nano
– volume: 9
  start-page: 5855
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63
  start-page: 163
  year: 2017
  publication-title: Acta Biomater.
– volume: 97
  start-page: 1
  year: 2016
  publication-title: Biomaterials
– volume: 25
  start-page: 1922
  year: 2018
  publication-title: Drug Delivery
– volume: 10 196 70
  start-page: 1135 254 5728
  year: 2019 2002 2010
  publication-title: Nat. Commun. J. Pathol. Cancer Res.
– volume: 12
  year: 2019
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 6
  start-page: 817
  year: 2013
  publication-title: Materials
– volume: 546
  start-page: 498
  year: 2017
  publication-title: Nature
– volume: 3
  start-page: 991
  year: 2017
  publication-title: Chem
– volume: 5 18
  start-page: 3856
  year: 2019 2012
  publication-title: Sci. Adv. Clin. Cancer Res.
– volume: 9
  start-page: 5044
  year: 2018
  publication-title: Nat. Commun.
– volume: 35
  start-page: 2383
  year: 2014
  publication-title: Biomaterials
– volume: 7
  start-page: 1862 2920
  year: 2016 2009
  publication-title: Chem. Sci. Chem. Commun.
– volume: 46
  start-page: 3830
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 252 10
  start-page: 222 6400
  year: 2013 2016
  publication-title: J. Photochem. Photobiol., A ACS Nano
– volume: 9 486 14
  start-page: 20 10 709
  year: 2019 2000 2014
  publication-title: Theranostics FEBS Lett. Nat. Rev. Cancer
– volume: 110 2
  start-page: 578
  year: 2013 2018
  publication-title: Proc. Natl. Acad. Sci. USA Nat. Biomed. Eng.
– ident: e_1_2_5_34_1
  doi: 10.1039/D0BM00088D
– ident: e_1_2_5_36_1
  doi: 10.1002/smll.201903746
– ident: e_1_2_5_37_1
  doi: 10.1021/acsnano.8b02446
– ident: e_1_2_5_1_2
  doi: 10.3402/jev.v3.26913
– ident: e_1_2_5_6_1
  doi: 10.1016/j.biomaterials.2013.11.083
– ident: e_1_2_5_29_1
  doi: 10.1158/0008-5472.CAN-05-3410
– ident: e_1_2_5_33_1
  doi: 10.1002/adfm.202006515
– ident: e_1_2_5_1_5
  doi: 10.1126/science.aau6977
– ident: e_1_2_5_17_1
  doi: 10.1038/s41467-018-07197-8
– ident: e_1_2_5_22_1
  doi: 10.1016/j.jphotochem.2012.12.006
– ident: e_1_2_5_11_1
  doi: 10.1038/nmat4718
– ident: e_1_2_5_30_1
  doi: 10.1038/s41467-019-08989-2
– ident: e_1_2_5_1_4
  doi: 10.1080/20013078.2019.1648167
– ident: e_1_2_5_20_1
  doi: 10.7150/thno.28857
– ident: e_1_2_5_24_1
  doi: 10.1021/acsnano.5b06779
– ident: e_1_2_5_26_2
  doi: 10.1038/s41551-018-0236-8
– ident: e_1_2_5_4_1
  doi: 10.1038/s41467-019-12321-3
– ident: e_1_2_5_16_1
  doi: 10.1002/wnan.1583
– ident: e_1_2_5_23_2
  doi: 10.1039/b822776d
– ident: e_1_2_5_25_1
  doi: 10.1371/journal.pone.0063967
– ident: e_1_2_5_30_2
  doi: 10.1002/path.1027
– ident: e_1_2_5_13_1
  doi: 10.3390/ma6030817
– ident: e_1_2_5_15_1
  doi: 10.1038/ncomms12499
– ident: e_1_2_5_24_2
  doi: 10.1155/2012/948098
– ident: e_1_2_5_29_2
  doi: 10.1038/nrd.2018.46
– ident: e_1_2_5_30_3
  doi: 10.1158/0008-5472.CAN-09-4672
– ident: e_1_2_5_2_1
  doi: 10.1002/anie.201913700
– ident: e_1_2_5_21_1
  doi: 10.1038/aps.2017.12
– ident: e_1_2_5_27_1
  doi: 10.1126/sciadv.aaw6081
– ident: e_1_2_5_24_3
  doi: 10.7150/thno.30716
– ident: e_1_2_5_27_2
  doi: 10.1158/1078-0432.CCR-11-3130
– ident: e_1_2_5_18_2
  doi: 10.1038/nbt.2838
– ident: e_1_2_5_7_1
  doi: 10.1016/j.nano.2015.10.012
– ident: e_1_2_5_9_1
  doi: 10.1021/acs.molpharmaceut.8b00901
– ident: e_1_2_5_1_1
  doi: 10.1038/nri855
– ident: e_1_2_5_26_1
  doi: 10.1073/pnas.1308887110
– ident: e_1_2_5_8_1
  doi: 10.1021/acsnano.9b01004
– ident: e_1_2_5_10_1
  doi: 10.1038/nature22341
– ident: e_1_2_5_20_3
  doi: 10.1038/nrc3803
– ident: e_1_2_5_3_1
  doi: 10.1002/anie.201912524
– ident: e_1_2_5_1_3
  doi: 10.1080/20013078.2018.1535750
– volume: 6
  start-page: 765
  year: 2007
  ident: e_1_2_5_18_1
  publication-title: Adv. Mater.
– ident: e_1_2_5_23_1
  doi: 10.1039/C5SC03583J
– ident: e_1_2_5_12_1
  doi: 10.1634/theoncologist.11-9-1034
– ident: e_1_2_5_20_2
  doi: 10.1016/S0014-5793(00)02197-9
– ident: e_1_2_5_28_1
  doi: 10.1039/C6CS00592F
– ident: e_1_2_5_22_2
  doi: 10.1021/acsnano.6b02908
– ident: e_1_2_5_35_1
  doi: 10.1021/acsami.6b15444
– ident: e_1_2_5_31_1
  doi: 10.1016/j.actbio.2017.09.009
– ident: e_1_2_5_5_1
  doi: 10.1002/adma.201802896
– ident: e_1_2_5_32_1
  doi: 10.1080/10717544.2018.1502839
– ident: e_1_2_5_19_1
  doi: 10.1016/j.chempr.2017.10.002
– ident: e_1_2_5_14_1
  doi: 10.1016/j.biomaterials.2016.04.034
SSID ssj0009606
Score 2.6475723
Snippet Extracellular vesicles (EVs) hold great potential in both disease treatment and drug delivery. However, accurate drug release from EVs, as well as the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2005562
SubjectTerms Anticancer properties
Cancer
Chemical energy
Chemiluminescence
chemotherapy
extracellular vesicle
Hydrogen peroxide
Immunotherapy
Macrophages
Materials science
Photodynamic therapy
Singlet oxygen
tumor microenvironment
Tumors
Title Self‐Activatable Photo‐Extracellular Vesicle for Synergistic Trimodal Anticancer Therapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202005562
https://www.ncbi.nlm.nih.gov/pubmed/33432702
https://www.proquest.com/docview/2489594892
https://www.proquest.com/docview/2477265391
Volume 33
WOSCitedRecordID wos000606809100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB6VhQMc-gMUtqUoSEg9RXhtJ7aPq8KqB4pQWdAeKkV21hGVVlmUXRC99RH6jH2SzjjZwAqhSu0x8a9mxvbM2PMNwKE3znvnithqjwaKK8axTjyLC2GZIsCbIoRHX52qszM9GpnzR1H8NT5E63CjlRH2a1rg1s2OHkBD7TjgBpFXJKFNeJWj8MoOrB5_HVyePgDvpiG_Jt33xSaVegHcyPjRcg_LB9MTbXNZeQ2nz-DV_8_7NbxsNM-oX4vKG3jhy03YeIRHuAXfLvyk-P3zVz8PSc8oqio6v57Op_jv5H5eWXLz07vV6MrPqJcIVd7o4gfFDwbA52hYIe_HNExJTnKUqCoa1sAF23A5OBl--hw36RfiXCjBYy9YgcoKGjSJzpVhhXW5lAoZi0SVaBeKNBGFlj3tDGPe80TkqE5wl2jvpbXiLXTKael3IUp4qhhd0OJZKCm7uUnNWDnjRI-uXV0X4gXts7zBJqcUGZOsRlXmGVEta6nWhY9t_ZsalePZmnsLVmbN6pxlXGpDMDUGiw_aYlxXREVb-ukt1UG7g3B7e13YqUWgHUpQNK5i2JoHTv9lDln_-Eu__Xr3L43ewzqnxzThufgedObVrf8Aa_nd_Pus2ocVNdL7jeT_AQA1AkQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_KWVAftGqr52cKhT4F93Y3ye7joR4Wz0PqKT4UQja3ocKRk9wp-uaf0L-xf4kzm1z0ECkUH5P9ZD52Z2d3fgPwzWpjrTGZnyiLBxSTDXwVWOZnImERAd5kLjz6shv1eurqSp9VrwkpFqbEh6gdbqQZbr0mBSeH9P4zamgycMBB5BYJaBWekyhLQQPmDn92LrrPyLuhS7BJF36-DqWaIjcyvj_bw-zO9MrcnLVe3fbTWX6HiX-Cpcr29NqlsKzAB5uvwuILRMI1-HVuh9nfxz_t1KU9o7gq7-z3aDLCf0f3kyIhRz-9XPUu7Zh68dDo9c4fKILQQT57_QK5P6BhcnKTo0wVXr-ELvgMF52j_sGxXyVg8FMRCe5bwTI0V_BIE6g00ixLTCplhKxFqko8GYowEJmSLWU0Y9byQKRoUHATKGtlkogv0MhHud0AL-BhxOiKFndDSfnNdagHkdFGtOji1TTBnxI_Tit0ckqSMYxLXGUeE9XimmpN-F7XvylxOd6suT3lZVzp5zjmUmkCqtFY_LUuRs0iKia5Hd1SHTx5EHJvqwnrpQzUQwmKx40YtuaO1f-YQ9w-PG3XX5v_02gP5o_7p924-6N3sgULnJ7WuMfj29CYFLd2Bz6md5PrcbFbKcATah8FTA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBejHWV9aPfRj6zd5kFhT6aKJNvSY2gaNpaFsKalDwNj2Sc2KE5x0tK-9U_Y37i_ZHey4zaMMSh7tPXJ6U66O-l-x9gBGAtgrQszDWigWFeEOgIeOpnxhABvnA-PPhsmo5E-Pzfj5jUhxcLU-BCtw40kw-_XJOBwWbjDe9TQrPDAQeQWiWgXXlWRiVE2V_tfB6fDe-Td2CfYpAu_0MRKL5AbuThc7mH5ZPpD3VzWXv3xM9j8DxN_zjYa3TPo1czygj2B8iVbf4BI-Ip9O4EL9-vuZy_3ac8orioYf5_Op_jv-GZeZeTop5erwRnMqJcAld7g5JYiCD3kczCpcPULGqYkNznyVBVMauiCLXY6OJ4cfQybBAxhLhMpQpDcobqCJk2k88Rwl9lcqQSXFqmq0DKUcSSdVl1tDecAIpI5KhTCRhpAZZncZivltIRdFkQiTjhd0eJpqCi_uYlNkVhjZZcuXm2HhQvip3mDTk5JMi7SGldZpES1tKVah31o61_WuBx_rbm_WMu0kc9ZKpQ2BFRjsPh9W4ySRVTMSpheUR20PAi5t9thOzUPtENJisdNOLYWfqn_MYe01__Sa79eP6bRO7Y27g_S4afR5z32TNDLGv92fJ-tzKsreMOe5tfzH7PqbcP_vwHsIwTH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Activatable+Photo-Extracellular+Vesicle+for+Synergistic+Trimodal+Anticancer+Therapy&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ding%2C+Jingjing&rft.au=Lu%2C+Guihong&rft.au=Nie%2C+Weidong&rft.au=Huang%2C+Li-Li&rft.date=2021-02-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=7&rft.spage=e2005562&rft_id=info:doi/10.1002%2Fadma.202005562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon