Flexible Electrodes for Brain–Computer Interface System
Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 35; číslo 47; s. e2211012 - n/a |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
The brain projects around the world, the classification of electrical neural signals, the applications of brain–computer interface, drawbacks of rigid electrodes, and the necessity to switch to flexible electrodes, are briefly introduced in this article. Then the classification of different type of electrodes, electrode materials, fabrication methods, flexible substrates, and extra requirements for flexible electrodes have been systematically reviewed. |
|---|---|
| AbstractList | Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. The brain projects around the world, the classification of electrical neural signals, the applications of brain–computer interface, drawbacks of rigid electrodes, and the necessity to switch to flexible electrodes, are briefly introduced in this article. Then the classification of different type of electrodes, electrode materials, fabrication methods, flexible substrates, and extra requirements for flexible electrodes have been systematically reviewed. Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. This article is protected by copyright. All rights reserved. |
| Author | Liu, Haoyan Moses, Kumi Huang, Wei Feng, Zhuoya Li, Peng Wang, Tengjiao Wang, Kun Wang, Junjie |
| Author_xml | – sequence: 1 givenname: Junjie surname: Wang fullname: Wang, Junjie organization: Northwestern Polytechnical University (NPU) – sequence: 2 givenname: Tengjiao orcidid: 0000-0001-5100-9601 surname: Wang fullname: Wang, Tengjiao email: iamtjwang@nwpu.edu.cn organization: Northwestern Polytechnical University (NPU) – sequence: 3 givenname: Haoyan surname: Liu fullname: Liu, Haoyan organization: University of Arkansas – sequence: 4 givenname: Kun surname: Wang fullname: Wang, Kun organization: Northwestern Polytechnical University (NPU) – sequence: 5 givenname: Kumi surname: Moses fullname: Moses, Kumi organization: Northwestern Polytechnical University (NPU) – sequence: 6 givenname: Zhuoya surname: Feng fullname: Feng, Zhuoya organization: Northwestern Polytechnical University (NPU) – sequence: 7 givenname: Peng orcidid: 0000-0002-5876-2177 surname: Li fullname: Li, Peng email: iampli@nwpu.edu.cn organization: Northwestern Polytechnical University (NPU) – sequence: 8 givenname: Wei orcidid: 0000-0001-7004-6408 surname: Huang fullname: Huang, Wei email: vc@nwpu.edu.cn organization: Northwestern Polytechnical University (NPU) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37143288$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEFP2zAUgK2paJSOK0cUicsuKc92nNrH0rUbEogD7Gw57rMUlMTFTrT1tv-wf8gvwaiFSZUmLrYP3_f89J2QUec7JOSMwpQCsEuzbs2UAWOUAmWfyJgKRvMClBiRMSguclUW8picxPgIAKqE8jM55jNacCblmKhVg7_rqsFs2aDtg19jzJwP2VUwdff85-_Ct5uhx5Bdd-l0xmJ2v409tl_IkTNNxNP9PSE_V8uHxY_85u779WJ-k1s-4yy3IGHGhS2oTX-KKj2FK40RTBgupSqkc04Ct1KUTlJVSUERUDBFSyGqNZ-Qr7u5m-CfBoy9butosWlMh36ImkkKisqCQUIvDtBHP4QubZcoxQQvC0ETdb6nhqrFtd6EujVhq9-iJKDYATb4GAM6beve9LXv-hSl0RT0a3v92l6_t0_a9EB7m_xfQe2EX3WD2w9oPf92O__nvgDxTZQa |
| CitedBy_id | crossref_primary_10_1021_acsnano_5c07150 crossref_primary_10_1021_acs_nanolett_4c02474 crossref_primary_10_1002_adfm_202509085 crossref_primary_10_1002_EXP_70040 crossref_primary_10_1002_smsc_202400362 crossref_primary_10_1186_s12984_025_01617_9 crossref_primary_10_1038_s41528_025_00410_x crossref_primary_10_1002_EXP_20230146 crossref_primary_10_1002_smtd_202301341 crossref_primary_10_3390_bios15070424 crossref_primary_10_1007_s40820_025_01780_7 crossref_primary_10_1002_adfm_202314575 crossref_primary_10_1002_brx2_70023 crossref_primary_10_1038_s41528_023_00273_0 crossref_primary_10_3390_bios13100930 crossref_primary_10_1038_s41378_024_00805_2 crossref_primary_10_1364_OE_565105 crossref_primary_10_1002_adma_202410007 crossref_primary_10_1002_advs_202513259 crossref_primary_10_1111_ejn_70183 crossref_primary_10_1109_JSEN_2024_3377920 crossref_primary_10_3390_bios14090432 crossref_primary_10_1002_smtd_202501471 crossref_primary_10_1021_acs_langmuir_5c03081 crossref_primary_10_1088_2058_8585_adc1dc crossref_primary_10_1002_adma_202409071 crossref_primary_10_3390_s25072274 crossref_primary_10_1002_adfm_202422869 crossref_primary_10_1002_adma_202413938 crossref_primary_10_1002_admt_202501171 crossref_primary_10_1002_adfm_202510446 crossref_primary_10_3390_app14198774 crossref_primary_10_1002_bmm2_12138 crossref_primary_10_1039_D5CC01385B crossref_primary_10_26599_NR_2025_94907377 crossref_primary_10_1016_j_compbiomed_2025_110937 crossref_primary_10_1002_adma_202401035 crossref_primary_10_1038_s44385_025_00029_7 crossref_primary_10_1109_JIOT_2025_3582795 crossref_primary_10_1002_bmm2_12130 crossref_primary_10_1002_cjoc_202300652 crossref_primary_10_1021_acsomega_5c03258 crossref_primary_10_1021_acsabm_5c01269 crossref_primary_10_1021_acsami_5c05377 |
| Cites_doi | 10.1016/S1388-2457(00)00533-2 10.1016/j.biomaterials.2014.01.038 10.1016/j.biomaterials.2013.07.016 10.1109/EDTM50988.2021.9420850 10.1002/advs.201900813 10.1007/s12264-012-1250-6 10.1038/s41586-018-0649-2 10.1007/s10544-013-9742-3 10.1002/adma.201706520 10.1038/s41467-019-10581-7 10.1007/s10544-009-9357-x 10.1016/j.jneumeth.2016.04.009 10.1002/adfm.202112045 10.1002/jbm.a.31047 10.1038/s41563-020-0679-7 10.1002/adfm.202105857 10.1016/j.sna.2019.05.017 10.1088/2058-8585/abc3ca 10.1016/j.clinph.2004.10.001 10.3389/fnhum.2014.00156 10.1056/NEJMoa2027540 10.1016/j.neuron.2021.06.012 10.1097/PHM.0000000000001836 10.1136/jnnp.74.1.9 10.1016/j.mattod.2019.12.026 10.1016/j.tics.2021.04.003 10.1088/1741-2552/ac1984 10.1016/j.sna.2015.10.041 10.1016/j.pneurobio.2020.101790 10.1038/s42003-021-01768-0 10.1038/s41378-021-00248-z 10.1016/j.snb.2018.08.155 10.1073/pnas.1424875112 10.1016/j.neuron.2016.10.018 10.1016/j.sna.2013.06.013 10.1227/01.NEU.0000180810.16964.3E 10.1038/s41528 10.1002/adhm.201900234 10.1002/advs.201801617 10.1081/DDC-120003853 10.1109/JMEMS.2013.2262591 10.1016/j.mtcomm.2021.102853 10.1002/adfm.201700232 10.1126/science.1102896 10.1038/s42003-021-02891-8 10.1038/s41928-021-00631-8 10.1038/s41598-017-07823-3 10.1109/BIOCAS.2018.8584672 10.1038/srep16743 10.1016/j.sna.2011.12.017 10.1002/adfm.202200457 10.1016/j.jneumeth.2013.06.001 10.1088/1741-2552/aaf594 10.1016/j.sna.2021.112727 10.1089/soro.2018.0116 10.3389/fnins.2019.00893 10.1038/s41583-019-0140-6 10.1088/1741-2552/aa66dd 10.1088/1741-2552/abc742 10.3390/s150923459 10.1109/TBME.1970.4502738 10.1126/sciadv.abm3785 10.1002/adma.201602083 10.3390/mi10080518 10.1088/1741-2560/2/4/008 10.1016/j.vacuum.2016.12.024 10.1016/j.eml.2019.100510 10.1088/1741-2560/6/3/036003 10.1109/TNSRE.2018.2811752 10.1109/T-AFFC.2011.15 10.3389/fnins.2018.00239 10.1038/s41598-019-49772-z 10.1038/ncomms4329 10.3390/s16111826 10.1021/acsanm.1c00533 10.1038/s41551-018-0321-z 10.1039/b912102a 10.1038/s41598-017-06925-2 10.1016/j.neuron.2014.12.035 10.1517/17425241003602259 10.1038/d41586-022-01047-w 10.1038/s41467-019-10638-7 10.1088/1741-2552/abe245 10.1002/adfm.202105568 10.3390/mi7100180 10.5220/0004738700120022 10.1109/THMS.2018.2830647 10.1002/adma.202100221 10.1016/S0304-3940(97)00889-6 10.1101/578542 10.1002/adhm.201700994 10.3389/fnins.2018.00300 10.1002/app.47296 10.1021/acsami.8b06484 10.1016/j.sna.2017.12.048 10.1038/s41928-022-00913-9 10.3390/s141223758 10.1088/0960-1317/24/6/065015 10.1021/acsabm.1c00923 10.1016/0013-4694(88)90149-6 10.1113/jphysiol.2012.228114 10.1016/j.wneu.2016.05.010 10.1016/S1388-2457(02)00057-3 10.1109/TBME.2020.3022615 10.1126/sciadv.abe7432 10.3390/medicina57030215 10.1038/nnano.2008.174 10.1109/FLEPS49123.2020.9239488 10.1002/macp.201800561 10.1039/C9RA07391D 10.1002/hbm.25721 10.1109/TNSRE.2018.2790359 10.1088/1741-2560/8/2/025008 10.1038/s41591-020-01175-8 10.1016/j.addr.2013.07.002 10.1016/j.nanoen.2021.106735 10.1016/j.snb.2017.02.164 10.1016/j.clinph.2017.02.025 10.1109/JPROC.2003.820544 10.1021/acsmaterialslett.0c00203 10.1006/nimg.2000.0680 10.1007/s11431-020-1644-6 10.1016/S0361-9230(99)00231-2 10.1212/01.wnl.0000168899.11598.00 10.1016/j.neuron.2016.10.050 10.2196/16194 10.1080/2326263X.2014.912881 10.1021/acsaelm.0c00653 10.1016/j.neuron.2016.10.046 10.1016/j.matt.2022.01.012 10.1088/0960-1317/25/12/125003 10.21014/acta_imeko.v3i3.94 10.1038/s41591-021-01480-w 10.1039/C8SM00337H 10.1088/1741-2552/ac41ab 10.1039/D1TC00625H 10.1088/1741-2560/13/4/046020 10.1038/s41551-020-00615-7 10.1002/adfm.200600669 10.1002/adhm.202100646 10.1109/10.83588 10.1088/0960-1317/20/6/064014 10.1007/s10483-020-2689-9 10.1038/s41598-018-33083-w 10.1002/adfm.201503316 10.1109/MEMS51782.2021.9375131 10.1016/j.biomaterials.2021.121352 10.1109/JSEN.2019.2912667 10.1186/1743-0003-2-23 10.1088/1741-2552/abbd50 10.1016/j.carbon.2021.12.056 10.1126/science.abh3551 10.1126/science.aac5082 10.1002/adma.201702181 10.1002/advs.202201059 10.1126/sciadv.abh0040 10.1038/s41586-021-03506-2 10.1021/acsnano.0c00672 10.1038/s41587-020-0662-5 10.1002/adfm.201500110 10.1038/s41467-021-23802-9 10.1109/TBME.2005.855712 10.1016/j.copbio.2021.07.027 10.1021/jp111498e 10.1038/s41551-021-00736-7 10.1016/j.snb.2017.01.052 10.1007/s12274-018-2005-0 10.1093/brain/awz114 10.1016/S0006-8993(03)03023-3 10.1016/B978-0-444-63934-9.00002-0 10.1021/acs.nanolett.8b04895 10.1016/j.eml.2014.12.010 10.1126/science.1260318 10.1016/j.neuron.2018.11.002 10.1088/1741-2560/8/3/034001 10.1002/adma.201201386 10.1016/S0924-4247(97)01494-5 10.1016/j.sna.2014.03.029 10.1126/scitranslmed.abf8629 10.1088/1741-2552/abeeab 10.1109/TNSRE.2014.2342880 10.1002/adma.202108203 10.1021/am502454t 10.1016/j.snb.2016.10.005 10.1088/1741-2560/8/3/036023 10.1073/pnas.1810827115 10.1126/sciadv.1700015 10.1126/scitranslmed.abj1441 10.1016/j.neuroimage.2018.09.012 10.1038/s41598-019-50834-5 10.1002/adhm.201300311 10.3390/s19184014 10.1126/scitranslmed.3007801 10.1016/j.physbeh.2019.04.025 10.1098/rsif.2008.0071 10.1038/s41467-019-09003-5 10.1039/C9CC04239C 10.1038/s41467-022-28859-8 10.1111/psyp.12536 10.1038/185117a0 10.1109/MPUL.2012.2216717 10.1038/s41467-019-10994-4 10.1088/1741-2560/10/3/036006 10.1038/s41928-018-0071-7 10.1126/sciadv.1600955 10.7554/eLife.18554 10.3390/s19051069 10.1016/j.jneumeth.2005.08.015 10.1126/science.abj7564 10.1016/j.snb.2015.11.141 10.1038/nature11076 10.1039/D1LC00117E 10.1038/nn1233 10.1038/nmat2745 10.1039/c3bm00166k 10.1016/j.sna.2017.10.042 10.1109/10.914800 10.1109/MEMS46641.2020.9056310 10.3390/s19204572 10.1038/s41582-020-00426-z 10.1038/nn.3905 10.1533/9780857096289.1.150 10.1109/TBME.2012.2196274 10.1038/nature20118 10.1088/1741-2560/13/4/046021 10.1016/j.snb.2016.12.131 10.1016/j.sna.2018.09.045 10.1109/JSEN.2018.2880833 10.1038/nmeth.3620 10.1109/BCI48061.2020.9061646 10.1007/s10544-020-00517-0 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202211012 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 37143288 10_1002_adma_202211012 ADMA202211012 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Natural Science Basic Research Program of Shaanxi Province funderid: 2023‐JC‐JQ‐32; 2019JQ‐157 – fundername: National Natural Science Foundation of China funderid: 52003224; 52073230; 62288102 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3732-c080735c41c1435b35c5f6aa525a388948fff803c856f819b851e0e5291655bd3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001083018500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Oct 02 05:36:28 EDT 2025 Sat Jul 26 01:24:37 EDT 2025 Mon Jul 21 06:05:22 EDT 2025 Sat Nov 29 07:22:51 EST 2025 Tue Nov 18 22:20:40 EST 2025 Sun Jul 06 04:45:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 47 |
| Keywords | brain disorders diagnosis hydrogels electrophysiological technique flexible bioelectronics human-machine interface |
| Language | English |
| License | This article is protected by copyright. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3732-c080735c41c1435b35c5f6aa525a388948fff803c856f819b851e0e5291655bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5100-9601 0000-0001-7004-6408 0000-0002-5876-2177 |
| PMID | 37143288 |
| PQID | 2892536451 |
| PQPubID | 2045203 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_2810918420 proquest_journals_2892536451 pubmed_primary_37143288 crossref_citationtrail_10_1002_adma_202211012 crossref_primary_10_1002_adma_202211012 wiley_primary_10_1002_adma_202211012_ADMA202211012 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 12 2021; 68 2018; 165 2012; 485 2013; 1 2019 2014; 8 213 2019; 10 2004; 7 2018; 563 2020; 17 2016; 267 2019; 19 2020; 14 2014; 24 2019 2022; 6 32 2020; 168 2021; 72 2021 2021 2022; 373 4 8 1988; 70 2018; 48 2020; 19 2018; 8 2018; 2 2022; 281 2019; 20 2018 2017; 1 3 2016 2015 2015; 7 5 112 2022; 34 2013; 199 2014; 14 2012; 28 2022; 32 2014; 18 2012; 24 2010; 7 2010; 9 2019; 9 2021; 43 2019; 6 2022; 92 2018 2018 2005 2021 2022 2012; 12 12 65 268 101 3 2019; 30 2021 2019 2018 2018; 326 19 7 283 2005; 116 2020; 36 2004 2022; 306 189 2016; 92 2021; 385 2007 2015; 81 37 2016; 16 2011 2000 2020; 8 51 1970; 17 2011; 8 2018; 26 2016; 13 2019; 101 2019; 220 2021; 57 2013; 218 2020 2022 2017 2017 2018; 2020 5 3 29 115 2004 1991; 92 38 2021 2016; 10 26 2022; 9 2022; 13 2017; 140 2020; 22 2005; 2 2019; 294 2018; 11 2016; 28 2003; 983 2022 2021; 14 18 2016; 26 2018; 16 2018; 14 2019 2021; 19 2021; 25 2022; 375 2021; 27 2021; 21 1997; 239 2010; 59 2020; 64 2015; 347 2023; 6 2023; 7 2019 2018; 19 10 2002; 113 2021; 29 2011 2010; 115 17 2017 2019 2019 2005 2017 2017; 128 207 13 2 14 7 2008; 5 2016; 226 2013 2008; 65 3 1973 1995; 2 2014; 1 2012; 174 2020; 4 2014; 5 2013; 15 2021; 31 2018 2015; 19 23 2020; 2 2014; 2 2021; 33 2019 2019; 10 55 2019 2020; 10 41 2021; 39 2005; 148 2020 2019; 17 10 2019 2019; 21 2019 2016; 6 351 2021; 593 2017; 241 2014; 8 2001; 13 2014; 6 2017; 247 2021; 9 2015; 12 2021; 109 2021; 7 2021; 4 1997; 60 2022 2017; 604 6 2017; 28 2020; 189 2015 2018; 86 30 2003; 74 2019; 142 2009 2013; 5 1 2021; 13 2002; 28 1960; 185 2001; 112 2015; 25 2017 2020; 11 2018; 270 2012 2014; 590 35 2012; 3 2021; 12 2016; 539 2017 2015; 244 236 2021 2013; 34 2020 2017 2015 2014 2013 2011 2017; 268 15 3 10 8 244 2021; 18 2018; 277 2021; 17 2017 2014 2019; 54 3 184 2005; 52 2019; 136 2020 2018; 5 2010 2013 2012; 20253 22 59 2009; 6 2014 2013 2010; 90 2001 2016; 48 7 2005; 57 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_168_1 e_1_2_9_183_2 e_1_2_9_18_2 e_1_2_9_18_1 e_1_2_9_183_1 e_1_2_9_160_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_134_2 e_1_2_9_157_1 e_1_2_9_172_1 e_1_2_9_72_2 e_1_2_9_72_1 e_1_2_9_11_1 Vidal J. J. (e_1_2_9_13_1) 1973; 2 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_95_2 e_1_2_9_95_3 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_167_1 e_1_2_9_106_1 e_1_2_9_167_2 e_1_2_9_57_3 e_1_2_9_57_2 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_182_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_2 e_1_2_9_23_1 e_1_2_9_5_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_156_1 e_1_2_9_179_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_171_1 e_1_2_9_31_1 e_1_2_9_77_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_92_2 e_1_2_9_101_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_162_1 e_1_2_9_16_1 e_1_2_9_185_1 e_1_2_9_20_1 e_1_2_9_89_1 e_1_2_9_89_2 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 Ivanovskaya A. N. (e_1_2_9_136_1) 2018; 165 e_1_2_9_81_1 e_1_2_9_81_2 e_1_2_9_113_2 e_1_2_9_113_1 e_1_2_9_159_1 e_1_2_9_151_1 e_1_2_9_28_1 e_1_2_9_174_1 e_1_2_9_89_3 e_1_2_9_93_2 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_169_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_161_1 e_1_2_9_67_2 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_82_1 Oliveira A. (e_1_2_9_150_2) 2016; 26 e_1_2_9_112_2 e_1_2_9_112_1 e_1_2_9_135_1 e_1_2_9_158_1 e_1_2_9_173_1 e_1_2_9_29_1 e_1_2_9_150_1 e_1_2_9_52_2 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_98_2 e_1_2_9_98_3 e_1_2_9_98_4 Omidian H. (e_1_2_9_105_1) 2010; 59 e_1_2_9_90_1 Wang Z. (e_1_2_9_116_1) 2020; 2020 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_149_1 e_1_2_9_126_2 e_1_2_9_37_2 e_1_2_9_14_1 e_1_2_9_37_3 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_164_1 e_1_2_9_37_6 e_1_2_9_98_5 e_1_2_9_98_6 e_1_2_9_37_5 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_41_2 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_153_3 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_176_1 e_1_2_9_130_2 e_1_2_9_153_2 e_1_2_9_153_1 e_1_2_9_30_1 e_1_2_9_53_1 Domen N. (e_1_2_9_84_1) 2017; 11 e_1_2_9_99_1 e_1_2_9_76_2 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_91_2 e_1_2_9_102_2 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_163_1 e_1_2_9_186_1 e_1_2_9_38_2 e_1_2_9_38_5 e_1_2_9_38_6 e_1_2_9_38_3 e_1_2_9_38_4 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_42_2 e_1_2_9_42_3 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_80_2 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_9_1 e_1_2_9_152_1 e_1_2_9_175_1 e_1_2_9_27_1 e_1_2_9_73_2 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_50_2 e_1_2_9_35_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_96_2 e_1_2_9_128_1 Sun Y. (e_1_2_9_155_1) 2010; 90 e_1_2_9_166_1 e_1_2_9_120_1 e_1_2_9_58_1 e_1_2_9_143_1 Noh G. T. (e_1_2_9_132_2) 2015; 37 e_1_2_9_181_1 e_1_2_9_62_1 Morgan D. (e_1_2_9_37_4) 2021; 268 e_1_2_9_24_1 e_1_2_9_85_1 e_1_2_9_4_1 Yu Y. H. (e_1_2_9_124_1) 2014; 2 e_1_2_9_117_1 e_1_2_9_178_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_170_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_97_1 Sathi K. A. (e_1_2_9_184_1) 2020; 36 e_1_2_9_127_1 e_1_2_9_127_2 e_1_2_9_104_1 e_1_2_9_13_2 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_165_1 e_1_2_9_180_1 e_1_2_9_86_2 e_1_2_9_63_1 e_1_2_9_86_3 e_1_2_9_86_4 Bargmann C. I. (e_1_2_9_1_1) 2013; 1 e_1_2_9_40_1 e_1_2_9_86_1 e_1_2_9_116_5 e_1_2_9_116_4 e_1_2_9_3_1 e_1_2_9_139_1 e_1_2_9_116_3 e_1_2_9_116_2 e_1_2_9_177_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_154_1 e_1_2_9_48_1 |
| References_xml | – volume: 26 start-page: 1004 year: 2016 publication-title: Adv. Funct. Mater. – volume: 174 start-page: 96 year: 2012 publication-title: Sens. Actuators, A – volume: 60 start-page: 240 year: 1997 publication-title: Sens. Actuators, A – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 16 start-page: 1826 year: 2016 publication-title: Sensors – volume: 2 year: 2014 publication-title: IEEE J. Transl. Eng. Health Med. – volume: 19 23 start-page: 820 342 year: 2018 2015 publication-title: IEEE Sens. J. IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 10 start-page: 3096 year: 2019 publication-title: Nat. Commun. – volume: 28 start-page: 423 year: 2012 publication-title: Neurosci. Bull. – volume: 2 start-page: 3390 year: 2020 publication-title: ACS Appl. Electron. Mater. – volume: 983 start-page: 23 year: 2003 publication-title: Brain Res. – volume: 8 213 start-page: 19 year: 2019 2014 publication-title: Adv. Healthcare Mater. Sens. Actuators, A – volume: 36 start-page: 147 year: 2020 publication-title: Biomed. Eng. – volume: 17 10 start-page: 518 year: 2020 2019 publication-title: J. Neural Eng. Micromachines – volume: 2 start-page: 157 693 year: 1973 1995 publication-title: Annu. Rev. Biophys. – volume: 239 start-page: 65 year: 1997 publication-title: Neurosci. Lett. – volume: 375 start-page: 1411 year: 2022 publication-title: Science – volume: 34 start-page: 8061 year: 2013 publication-title: Biomaterials – volume: 101 start-page: 21 year: 2019 publication-title: Neuron – volume: 7 5 112 start-page: 6948 3920 year: 2016 2015 2015 publication-title: Sci. Rep. Sci. Rep. Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 32 year: 2012 publication-title: IEEE Pulse – volume: 6 year: 2014 publication-title: Sci. Transl. Med. – volume: 92 start-page: 582 year: 2016 publication-title: Neuron – volume: 72 start-page: 13 year: 2021 publication-title: Curr. Opin. Biotechnol. – volume: 14 start-page: 3296 year: 2018 publication-title: Soft Matter – volume: 1 start-page: 120 year: 2014 publication-title: Extreme Mech. Lett. – volume: 57 year: 2005 publication-title: Neurosurgery – volume: 2 start-page: 999 year: 2020 publication-title: ACS Mater. Lett. – volume: 9 year: 2019 publication-title: RSC Adv. – volume: 11 start-page: 756 1 year: 2017 2020 publication-title: Front. Neurosci. – volume: 14 year: 2014 publication-title: Sensors – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 4 start-page: 604 year: 2021 publication-title: Nat. Electron. – volume: 70 start-page: 510 year: 1988 publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 43 start-page: 1295 year: 2021 publication-title: Hum. Brain Mapp. – volume: 10 41 start-page: 2573 1747 year: 2019 2020 publication-title: Nat. Commun. J. Appl. Math. Mech. (Engl. Transl.) – volume: 373 4 8 start-page: 88 429 year: 2021 2021 2022 publication-title: Science Commun. Biol. Sci. Adv. – volume: 17 year: 2020 publication-title: J. Neural Eng. – volume: 17 start-page: 75 year: 2021 publication-title: Nat. Rev. Neurol. – volume: 277 start-page: 250 year: 2018 publication-title: Sens. Actuators, B – volume: 11 start-page: 5604 year: 2018 publication-title: Nano Res. – volume: 165 year: 2018 publication-title: J. Visualized Exp. – volume: 65 3 start-page: 2034 434 year: 2013 2008 publication-title: Adv. Drug Delivery Rev. Nat. Nanotechnol. – volume: 9 start-page: 511 year: 2010 publication-title: Nat. Mater. – volume: 5 1 start-page: 3831 460 year: 2009 2013 publication-title: Soft Matter Biomater. Sci. – volume: 4 start-page: 8013 year: 2021 publication-title: ACS Appl. Bio Mater. – volume: 22 start-page: 57 year: 2020 publication-title: Biomed. Microdevices – volume: 59 start-page: 317 year: 2010 publication-title: J. Pharm. Sci. – volume: 136 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 27 start-page: 229 year: 2021 publication-title: Nat. Med. – volume: 8 start-page: 156 year: 2014 publication-title: Front. Hum. Neurosci. – volume: 4 start-page: 1010 year: 2020 publication-title: Nat. Biomed. Eng. – volume: 6 351 start-page: 368 1071 year: 2019 2016 publication-title: Soft Rob. Science – volume: 90 start-page: 648 year: 2010 publication-title: J. Biomed. Mater. Res. – volume: 268 15 3 10 8 244 start-page: 38 490 750 year: 2017 2015 2014 2013 2011 2017 publication-title: Sens. Actuators, A Sensors Adv. Healthcare Mater. J. Neural Eng. J. Neural Eng. Sens. Actuators B Chem. – volume: 52 start-page: 1748 year: 2005 publication-title: IEEE Trans. Biomed. Eng. – volume: 2 start-page: 123 year: 2005 publication-title: J. Neural Eng. – volume: 14 start-page: 8059 year: 2020 publication-title: ACS Nano – volume: 68 start-page: 1820 year: 2021 publication-title: IEEE Trans. Biomed. Eng. – volume: 24 start-page: 5284 year: 2012 publication-title: Adv. Mater. – volume: 13 start-page: 1236 year: 2022 publication-title: Nat. Commun. – volume: 81 37 start-page: 135 2649 year: 2007 2015 publication-title: J. Biomed. Mater. Res. Polym. Compos. – volume: 5 start-page: 957 year: 2008 publication-title: J. R. Soc. Interface – volume: 26 start-page: 750 year: 2018 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 5 start-page: 3329 year: 2014 publication-title: Nat. Commun. – volume: 281 year: 2022 publication-title: Biomaterials – volume: 189 year: 2020 publication-title: Prog. Neurobiol. – volume: 347 start-page: 159 year: 2015 publication-title: Science – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 6 start-page: 109 year: 2023 publication-title: Nat. Electron. – volume: 7 start-page: 429 year: 2010 publication-title: Expert Opin. Drug Delivery – volume: 24 year: 2014 publication-title: J. Micromech. Microeng. – volume: 247 start-page: 273 year: 2017 publication-title: Sens. Actuators, B – volume: 74 start-page: 9 year: 2003 publication-title: J. Neurol., Neurosurg. Psychiatry – volume: 6 32 year: 2019 2022 publication-title: Adv. Sci. Adv. Funct. Mater. – volume: 6 year: 2009 publication-title: J. Neural Eng. – volume: 14 18 year: 2022 2021 publication-title: Sci. Transl. Med. J. Neural Eng. – volume: 28 start-page: 621 year: 2002 publication-title: Drug Dev. Ind. Pharm. – volume: 604 6 start-page: 416 year: 2022 2017 publication-title: Nature Elife – volume: 140 start-page: 96 year: 2017 publication-title: Vacuum – volume: 244 236 start-page: 750 164 year: 2017 2015 publication-title: Sens. Actuators, B Sens. Actuators, A – volume: 539 start-page: 284 year: 2016 publication-title: Nature – volume: 29 year: 2021 publication-title: Mater. Today Commun. – volume: 590 35 start-page: 2955 3919 year: 2012 2014 publication-title: J. Physiol. Biomaterials – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 64 start-page: 273 year: 2020 publication-title: Sci. China: Technol. Sci. – volume: 12 12 65 268 101 3 start-page: 300 239 317 6 2 18 year: 2018 2018 2005 2021 2022 2012 publication-title: Front. Neurosci. Front. Neurosci. Neurology Clin. Neurophysiol. Am. J. Phys. Med. Rehabil. IEEE Trans. Affective Comput. – volume: 48 7 start-page: 361 180 year: 2001 2016 publication-title: IEEE Trans. Biomed. Eng. Micromachines – volume: 593 start-page: 249 year: 2021 publication-title: Nature – volume: 12 start-page: 49 year: 2010 publication-title: Biomed. Microdevices – year: 2013 – volume: 27 start-page: 1696 year: 2021 publication-title: Nat. Med. – volume: 142 start-page: 1827 year: 2019 publication-title: Brain – volume: 385 start-page: 217 year: 2021 publication-title: N. Engl. J. Med. – volume: 39 start-page: 326 year: 2021 publication-title: Nat. Biotechnol. – volume: 563 start-page: 65 year: 2018 publication-title: Nature – volume: 20253 22 59 start-page: 1199 2085 year: 2010 2013 2012 publication-title: J. Micromech. Microeng. J. Microelectromech. Syst. IEEE Trans. Biomed. Eng. – start-page: 416 year: 2021 – volume: 86 30 start-page: 175 year: 2015 2018 publication-title: Neuron Adv. Mater. – volume: 1 start-page: 111 year: 2013 publication-title: Science – volume: 10 start-page: 2642 year: 2019 publication-title: Nat. Commun. – volume: 25 year: 2015 publication-title: J. Micromech. Microeng. – start-page: 5 year: 2021 publication-title: npj Flexible Electron. – volume: 92 38 start-page: 76 758 year: 2004 1991 publication-title: Proc. IEEE IEEE Trans. Biomed. Eng. – volume: 1 3 start-page: 314 year: 2018 2017 publication-title: Nat. Electron. Sci. Adv. – volume: 306 189 start-page: 666 71 year: 2004 2022 publication-title: Science Carbon – start-page: 1 year: 2021 – volume: 218 start-page: 121 year: 2013 publication-title: J. Neurosci. Methods – volume: 7 start-page: 25 year: 2021 publication-title: Microsyst. Nanoeng. – volume: 168 start-page: 15 year: 2020 publication-title: Handb. Clin. Neurol. – volume: 13 year: 2021 publication-title: Sci. Transl. Med. – volume: 9 start-page: 7243 year: 2021 publication-title: J. Mater. Chem. C – volume: 92 start-page: 574 year: 2016 publication-title: Neuron – volume: 12 start-page: 3435 year: 2021 publication-title: Nat. Commun. – volume: 28 year: 2017 publication-title: Adv. Funct. Mater. – volume: 18 start-page: 310 year: 2014 publication-title: Nat. Neurosci. – volume: 18 year: 2021 publication-title: J. Neural Eng. – volume: 128 207 13 2 14 7 start-page: 1100 90 893 23 7808 year: 2017 2019 2019 2005 2017 2017 publication-title: Clin. Neurophysiol. Physiol. Behav. Front. Neurosci. J. Neuroeng. Rehabil. J. Neural Eng. Sci. Rep. – volume: 54 3 184 start-page: 74 33 119 year: 2017 2014 2019 publication-title: Psychophysiology Acta IMEKO NeuroImage – start-page: 1 year: 2020 – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 19 start-page: 5995 year: 2019 2021 publication-title: IEEE Sens. J. – volume: 26 start-page: 400 year: 2018 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 4 start-page: 5737 year: 2021 publication-title: ACS Appl. Nano Mater. – volume: 25 start-page: 3551 year: 2015 publication-title: Adv. Funct. Mater. – volume: 220 year: 2019 publication-title: Macromol. Chem. Phys. – volume: 148 start-page: 1 year: 2005 publication-title: J. Neurosci. Methods – volume: 109 start-page: 2573 year: 2021 publication-title: Neuron – volume: 2020 5 3 29 115 start-page: 1204 year: 2020 2022 2017 2017 2018 publication-title: Research Matter Sci. Adv. Adv. Mater. Proc. Natl. Acad. Sci. U. S. A. – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 48 start-page: 337 year: 2018 publication-title: IEEE Trans. Hum. Mach. Syst. – volume: 36 start-page: 102 year: 2020 publication-title: Mater. Today – volume: 7 start-page: 446 year: 2004 publication-title: Nat. Neurosci. – volume: 13 year: 2016 publication-title: J. Neural Eng. – volume: 10 55 start-page: 1043 8422 year: 2019 2019 publication-title: Nat. Commun. Chem. Commun. – volume: 226 start-page: 349 year: 2016 publication-title: Sens. Actuators, B – volume: 21 start-page: 2383 year: 2021 publication-title: Lab Chip – start-page: 12 year: 2014 – volume: 10 26 start-page: 6062 year: 2021 2016 publication-title: Adv. Healthcare Mater. Eur. J. Soil Biol. – volume: 19 start-page: 2741 year: 2019 publication-title: Nano Lett. – volume: 270 start-page: 262 year: 2018 publication-title: Sens. Actuators, A – volume: 8 51 start-page: 293 416 year: 2011 2000 2020 publication-title: J. Neural Eng. Brain Res. Bull. – volume: 5 start-page: 1 year: 2020 2018 publication-title: Flexible Printed Electron. – volume: 30 year: 2019 publication-title: Extreme Mech. Lett. – volume: 326 19 7 283 start-page: 4572 348 year: 2021 2019 2018 2018 publication-title: Sens. Actuators, A Sensors Adv. Healthcare Mater. Sens. Actuators, A – volume: 112 start-page: 536 year: 2001 publication-title: Clin. Neurophysiol. – volume: 19 10 start-page: 4014 year: 2019 2018 publication-title: Sensors ACS Appl. Mater. Interfaces – volume: 199 start-page: 310 year: 2013 publication-title: Sens. Actuators, A – volume: 294 start-page: 73 year: 2019 publication-title: Sens. Actuators, A – volume: 115 17 start-page: 5492 1645 year: 2011 2010 publication-title: J. Phys. Chem. C Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv.Mater. – volume: 17 start-page: 238 year: 1970 publication-title: IEEE Trans. Biomed. Eng. – volume: 8 year: 2011 publication-title: J. Neural Eng. – volume: 19 start-page: 590 year: 2020 publication-title: Nat. Mater. – volume: 12 start-page: 1157 year: 2015 publication-title: Nat. Methods – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 4 start-page: 1406 year: 2021 publication-title: Commun. Biol. – volume: 2 start-page: 907 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 92 start-page: 591 year: 2016 publication-title: Neuron – volume: 20 start-page: 330 year: 2019 publication-title: Nat. Rev. Neurosci. – volume: 92 start-page: 454 year: 2016 publication-title: World Neurosurg. – volume: 16 year: 2018 publication-title: J. Neural Eng. – volume: 28 start-page: 7200 year: 2016 publication-title: Adv. Mater. – volume: 19 start-page: 1069 year: 2019 publication-title: Sensors – volume: 57 start-page: 215 year: 2021 publication-title: Medicina – volume: 113 start-page: 767 year: 2002 publication-title: Clin. Neurophysiol. – volume: 116 start-page: 799 year: 2005 publication-title: Clin. Neurophysiol. – volume: 241 start-page: 1244 year: 2017 publication-title: Sens. Actuators, B – volume: 92 year: 2022 publication-title: Nano Energy – volume: 25 start-page: 671 year: 2021 publication-title: Trends Cognit. Sci. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 15 start-page: 353 year: 2013 publication-title: Biomed. Microdevices – volume: 7 start-page: 533 year: 2023 publication-title: Nat. Biomed. Eng. – volume: 21 year: 2019 2019 publication-title: J. Med. Internet Res. bioRxiv – volume: 267 start-page: 126 year: 2016 publication-title: J. Neurosci. Methods – volume: 13 start-page: 15 year: 2001 publication-title: NeuroImage – volume: 185 start-page: 117 year: 1960 publication-title: Nature – volume: 6 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 485 start-page: 372 year: 2012 publication-title: Nature – volume: 1 start-page: 66 year: 2014 publication-title: Brain‐Comput. Interfaces – ident: e_1_2_9_83_1 doi: 10.1016/S1388-2457(00)00533-2 – ident: e_1_2_9_52_2 doi: 10.1016/j.biomaterials.2014.01.038 – ident: e_1_2_9_44_1 doi: 10.1016/j.biomaterials.2013.07.016 – ident: e_1_2_9_129_1 doi: 10.1109/EDTM50988.2021.9420850 – ident: e_1_2_9_134_1 doi: 10.1002/advs.201900813 – ident: e_1_2_9_28_1 doi: 10.1007/s12264-012-1250-6 – ident: e_1_2_9_61_1 doi: 10.1038/s41586-018-0649-2 – ident: e_1_2_9_123_1 doi: 10.1007/s10544-013-9742-3 – ident: e_1_2_9_80_2 doi: 10.1002/adma.201706520 – ident: e_1_2_9_183_1 doi: 10.1038/s41467-019-10581-7 – ident: e_1_2_9_154_1 doi: 10.1007/s10544-009-9357-x – ident: e_1_2_9_104_1 doi: 10.1016/j.jneumeth.2016.04.009 – ident: e_1_2_9_60_1 doi: 10.1002/adfm.202112045 – ident: e_1_2_9_132_1 doi: 10.1002/jbm.a.31047 – ident: e_1_2_9_186_1 doi: 10.1038/s41563-020-0679-7 – ident: e_1_2_9_55_1 doi: 10.1002/adfm.202105857 – ident: e_1_2_9_88_1 doi: 10.1016/j.sna.2019.05.017 – ident: e_1_2_9_81_1 doi: 10.1088/2058-8585/abc3ca – ident: e_1_2_9_107_1 doi: 10.1016/j.clinph.2004.10.001 – volume: 36 start-page: 147 year: 2020 ident: e_1_2_9_184_1 publication-title: Biomed. Eng. – ident: e_1_2_9_56_1 doi: 10.3389/fnhum.2014.00156 – ident: e_1_2_9_23_1 doi: 10.1056/NEJMoa2027540 – ident: e_1_2_9_30_1 doi: 10.1016/j.neuron.2021.06.012 – ident: e_1_2_9_37_5 doi: 10.1097/PHM.0000000000001836 – ident: e_1_2_9_6_1 doi: 10.1136/jnnp.74.1.9 – ident: e_1_2_9_64_1 doi: 10.1016/j.mattod.2019.12.026 – ident: e_1_2_9_5_1 doi: 10.1016/j.tics.2021.04.003 – ident: e_1_2_9_120_1 doi: 10.1088/1741-2552/ac1984 – ident: e_1_2_9_96_2 doi: 10.1016/j.sna.2015.10.041 – ident: e_1_2_9_33_1 doi: 10.1016/j.pneurobio.2020.101790 – ident: e_1_2_9_57_2 doi: 10.1038/s42003-021-01768-0 – volume: 11 start-page: 756 year: 2017 ident: e_1_2_9_84_1 publication-title: Front. Neurosci. – ident: e_1_2_9_181_1 doi: 10.1038/s41378-021-00248-z – ident: e_1_2_9_48_1 doi: 10.1016/j.snb.2018.08.155 – ident: e_1_2_9_89_3 doi: 10.1073/pnas.1424875112 – ident: e_1_2_9_3_1 doi: 10.1016/j.neuron.2016.10.018 – ident: e_1_2_9_101_1 doi: 10.1016/j.sna.2013.06.013 – ident: e_1_2_9_177_1 doi: 10.1227/01.NEU.0000180810.16964.3E – ident: e_1_2_9_66_1 doi: 10.1038/s41528 – ident: e_1_2_9_92_1 doi: 10.1002/adhm.201900234 – ident: e_1_2_9_157_1 doi: 10.1002/advs.201801617 – ident: e_1_2_9_170_1 doi: 10.1081/DDC-120003853 – ident: e_1_2_9_153_2 doi: 10.1109/JMEMS.2013.2262591 – ident: e_1_2_9_172_1 doi: 10.1016/j.mtcomm.2021.102853 – ident: e_1_2_9_75_1 doi: 10.1002/adfm.201700232 – ident: e_1_2_9_126_1 doi: 10.1126/science.1102896 – ident: e_1_2_9_26_1 doi: 10.1038/s42003-021-02891-8 – ident: e_1_2_9_71_1 doi: 10.1038/s41928-021-00631-8 – ident: e_1_2_9_38_6 doi: 10.1038/s41598-017-07823-3 – ident: e_1_2_9_81_2 doi: 10.1109/BIOCAS.2018.8584672 – ident: e_1_2_9_89_2 doi: 10.1038/srep16743 – ident: e_1_2_9_149_1 doi: 10.1016/j.sna.2011.12.017 – ident: e_1_2_9_165_1 doi: 10.1002/adfm.202200457 – ident: e_1_2_9_161_1 doi: 10.1016/j.jneumeth.2013.06.001 – ident: e_1_2_9_25_1 doi: 10.1088/1741-2552/aaf594 – ident: e_1_2_9_86_1 doi: 10.1016/j.sna.2021.112727 – ident: e_1_2_9_113_1 doi: 10.1089/soro.2018.0116 – ident: e_1_2_9_38_3 doi: 10.3389/fnins.2019.00893 – ident: e_1_2_9_10_1 doi: 10.1038/s41583-019-0140-6 – ident: e_1_2_9_38_5 doi: 10.1088/1741-2552/aa66dd – ident: e_1_2_9_21_1 doi: 10.1088/1741-2552/abc742 – ident: e_1_2_9_98_2 doi: 10.3390/s150923459 – ident: e_1_2_9_139_1 doi: 10.1109/TBME.1970.4502738 – ident: e_1_2_9_57_3 doi: 10.1126/sciadv.abm3785 – ident: e_1_2_9_142_1 doi: 10.1002/adma.201602083 – ident: e_1_2_9_102_2 doi: 10.3390/mi10080518 – ident: e_1_2_9_14_1 doi: 10.1088/1741-2560/2/4/008 – ident: e_1_2_9_45_1 doi: 10.1016/j.vacuum.2016.12.024 – ident: e_1_2_9_69_1 doi: 10.1016/j.eml.2019.100510 – ident: e_1_2_9_138_1 doi: 10.1088/1741-2560/6/3/036003 – ident: e_1_2_9_99_1 doi: 10.1109/TNSRE.2018.2811752 – ident: e_1_2_9_37_6 doi: 10.1109/T-AFFC.2011.15 – ident: e_1_2_9_37_2 doi: 10.3389/fnins.2018.00239 – ident: e_1_2_9_46_1 doi: 10.1038/s41598-019-49772-z – ident: e_1_2_9_118_1 doi: 10.1038/ncomms4329 – ident: e_1_2_9_125_1 doi: 10.3390/s16111826 – ident: e_1_2_9_119_1 doi: 10.1021/acsanm.1c00533 – ident: e_1_2_9_63_1 doi: 10.1038/s41551-018-0321-z – ident: e_1_2_9_67_1 doi: 10.1039/b912102a – ident: e_1_2_9_89_1 doi: 10.1038/s41598-017-06925-2 – ident: e_1_2_9_80_1 doi: 10.1016/j.neuron.2014.12.035 – ident: e_1_2_9_171_1 doi: 10.1517/17425241003602259 – ident: e_1_2_9_18_1 doi: 10.1038/d41586-022-01047-w – ident: e_1_2_9_27_1 doi: 10.1038/s41467-019-10638-7 – ident: e_1_2_9_76_2 doi: 10.1088/1741-2552/abe245 – ident: e_1_2_9_134_2 doi: 10.1002/adfm.202105568 – ident: e_1_2_9_13_2 – ident: e_1_2_9_50_2 doi: 10.3390/mi7100180 – volume: 165 year: 2018 ident: e_1_2_9_136_1 publication-title: J. Visualized Exp. – ident: e_1_2_9_109_1 doi: 10.5220/0004738700120022 – ident: e_1_2_9_40_1 doi: 10.1109/THMS.2018.2830647 – ident: e_1_2_9_176_1 doi: 10.1002/adma.202100221 – ident: e_1_2_9_15_1 doi: 10.1016/S0304-3940(97)00889-6 – ident: e_1_2_9_73_2 doi: 10.1101/578542 – ident: e_1_2_9_86_3 doi: 10.1002/adhm.201700994 – ident: e_1_2_9_37_1 doi: 10.3389/fnins.2018.00300 – ident: e_1_2_9_166_1 doi: 10.1002/app.47296 – volume: 268 start-page: 6 year: 2021 ident: e_1_2_9_37_4 publication-title: Clin. Neurophysiol. – ident: e_1_2_9_91_2 doi: 10.1021/acsami.8b06484 – ident: e_1_2_9_103_1 doi: 10.1016/j.sna.2017.12.048 – ident: e_1_2_9_185_1 doi: 10.1038/s41928-022-00913-9 – ident: e_1_2_9_97_1 doi: 10.3390/s141223758 – ident: e_1_2_9_158_1 doi: 10.1088/0960-1317/24/6/065015 – ident: e_1_2_9_135_1 doi: 10.1021/acsabm.1c00923 – ident: e_1_2_9_12_1 doi: 10.1016/0013-4694(88)90149-6 – ident: e_1_2_9_52_1 doi: 10.1113/jphysiol.2012.228114 – ident: e_1_2_9_182_1 doi: 10.1016/j.wneu.2016.05.010 – ident: e_1_2_9_11_1 doi: 10.1016/S1388-2457(02)00057-3 – ident: e_1_2_9_47_1 doi: 10.1109/TBME.2020.3022615 – ident: e_1_2_9_94_1 doi: 10.1126/sciadv.abe7432 – ident: e_1_2_9_29_1 doi: 10.3390/medicina57030215 – ident: e_1_2_9_127_2 doi: 10.1038/nnano.2008.174 – ident: e_1_2_9_147_1 doi: 10.1109/FLEPS49123.2020.9239488 – ident: e_1_2_9_131_1 doi: 10.1002/macp.201800561 – ident: e_1_2_9_156_1 doi: 10.1039/C9RA07391D – ident: e_1_2_9_85_1 doi: 10.1002/hbm.25721 – ident: e_1_2_9_39_1 doi: 10.1109/TNSRE.2018.2790359 – ident: e_1_2_9_98_5 doi: 10.1088/1741-2560/8/2/025008 – ident: e_1_2_9_32_1 doi: 10.1038/s41591-020-01175-8 – ident: e_1_2_9_127_1 doi: 10.1016/j.addr.2013.07.002 – ident: e_1_2_9_115_1 doi: 10.1016/j.nanoen.2021.106735 – ident: e_1_2_9_117_1 doi: 10.1016/j.snb.2017.02.164 – ident: e_1_2_9_38_1 doi: 10.1016/j.clinph.2017.02.025 – ident: e_1_2_9_41_1 doi: 10.1109/JPROC.2003.820544 – ident: e_1_2_9_128_1 doi: 10.1021/acsmaterialslett.0c00203 – ident: e_1_2_9_74_1 doi: 10.1006/nimg.2000.0680 – ident: e_1_2_9_114_1 doi: 10.1007/s11431-020-1644-6 – ident: e_1_2_9_42_2 doi: 10.1016/S0361-9230(99)00231-2 – ident: e_1_2_9_37_3 doi: 10.1212/01.wnl.0000168899.11598.00 – volume: 1 start-page: 111 year: 2013 ident: e_1_2_9_1_1 publication-title: Science – ident: e_1_2_9_4_1 doi: 10.1016/j.neuron.2016.10.050 – ident: e_1_2_9_73_1 doi: 10.2196/16194 – ident: e_1_2_9_16_1 doi: 10.1080/2326263X.2014.912881 – ident: e_1_2_9_111_1 doi: 10.1021/acsaelm.0c00653 – ident: e_1_2_9_2_1 doi: 10.1016/j.neuron.2016.10.046 – ident: e_1_2_9_116_2 doi: 10.1016/j.matt.2022.01.012 – ident: e_1_2_9_159_1 doi: 10.1088/0960-1317/25/12/125003 – volume: 2 year: 2014 ident: e_1_2_9_124_1 publication-title: IEEE J. Transl. Eng. Health Med. – ident: e_1_2_9_95_2 doi: 10.21014/acta_imeko.v3i3.94 – ident: e_1_2_9_31_1 doi: 10.1038/s41591-021-01480-w – ident: e_1_2_9_49_1 doi: 10.1039/C8SM00337H – ident: e_1_2_9_110_1 doi: 10.1088/1741-2552/ac41ab – ident: e_1_2_9_133_1 doi: 10.1039/D1TC00625H – ident: e_1_2_9_78_1 doi: 10.1088/1741-2560/13/4/046020 – ident: e_1_2_9_58_1 doi: 10.1038/s41551-020-00615-7 – ident: e_1_2_9_167_2 doi: 10.1002/adfm.200600669 – ident: e_1_2_9_150_1 doi: 10.1002/adhm.202100646 – ident: e_1_2_9_41_2 doi: 10.1109/10.83588 – ident: e_1_2_9_153_1 doi: 10.1088/0960-1317/20/6/064014 – ident: e_1_2_9_183_2 doi: 10.1007/s10483-020-2689-9 – ident: e_1_2_9_151_1 doi: 10.1038/s41598-018-33083-w – ident: e_1_2_9_121_1 doi: 10.1002/adfm.201503316 – ident: e_1_2_9_141_1 doi: 10.1109/MEMS51782.2021.9375131 – ident: e_1_2_9_168_1 doi: 10.1016/j.biomaterials.2021.121352 – ident: e_1_2_9_93_1 doi: 10.1109/JSEN.2019.2912667 – ident: e_1_2_9_38_4 doi: 10.1186/1743-0003-2-23 – ident: e_1_2_9_102_1 doi: 10.1088/1741-2552/abbd50 – ident: e_1_2_9_126_2 doi: 10.1016/j.carbon.2021.12.056 – ident: e_1_2_9_57_1 doi: 10.1126/science.abh3551 – ident: e_1_2_9_113_2 doi: 10.1126/science.aac5082 – ident: e_1_2_9_116_4 doi: 10.1002/adma.201702181 – ident: e_1_2_9_164_1 doi: 10.1002/advs.202201059 – ident: e_1_2_9_148_1 doi: 10.1126/sciadv.abh0040 – ident: e_1_2_9_20_1 doi: 10.1038/s41586-021-03506-2 – ident: e_1_2_9_54_1 doi: 10.1021/acsnano.0c00672 – ident: e_1_2_9_35_1 doi: 10.1038/s41587-020-0662-5 – ident: e_1_2_9_152_1 doi: 10.1002/adfm.201500110 – ident: e_1_2_9_70_1 doi: 10.1038/s41467-021-23802-9 – ident: e_1_2_9_140_1 doi: 10.1109/TBME.2005.855712 – ident: e_1_2_9_173_1 doi: 10.1016/j.copbio.2021.07.027 – ident: e_1_2_9_167_1 doi: 10.1021/jp111498e – ident: e_1_2_9_34_1 doi: 10.1038/s41551-021-00736-7 – ident: e_1_2_9_98_6 doi: 10.1016/j.snb.2017.01.052 – ident: e_1_2_9_59_1 doi: 10.1007/s12274-018-2005-0 – ident: e_1_2_9_36_1 doi: 10.1093/brain/awz114 – ident: e_1_2_9_169_1 doi: 10.1016/S0006-8993(03)03023-3 – ident: e_1_2_9_17_1 doi: 10.1016/B978-0-444-63934-9.00002-0 – ident: e_1_2_9_62_1 doi: 10.1021/acs.nanolett.8b04895 – ident: e_1_2_9_162_1 doi: 10.1016/j.eml.2014.12.010 – ident: e_1_2_9_160_1 doi: 10.1126/science.1260318 – ident: e_1_2_9_82_1 doi: 10.1016/j.neuron.2018.11.002 – ident: e_1_2_9_144_1 doi: 10.1088/1741-2560/8/3/034001 – ident: e_1_2_9_137_1 doi: 10.1002/adma.201201386 – ident: e_1_2_9_51_1 doi: 10.1016/S0924-4247(97)01494-5 – ident: e_1_2_9_92_2 doi: 10.1016/j.sna.2014.03.029 – ident: e_1_2_9_122_1 doi: 10.1126/scitranslmed.abf8629 – ident: e_1_2_9_106_1 doi: 10.1088/1741-2552/abeeab – ident: e_1_2_9_130_2 doi: 10.1109/TNSRE.2014.2342880 – ident: e_1_2_9_179_1 doi: 10.1002/adma.202108203 – ident: e_1_2_9_146_1 doi: 10.1021/am502454t – volume: 2020 year: 2020 ident: e_1_2_9_116_1 publication-title: Research – ident: e_1_2_9_93_2 – ident: e_1_2_9_108_1 doi: 10.1016/j.snb.2016.10.005 – ident: e_1_2_9_42_1 doi: 10.1088/1741-2560/8/3/036023 – ident: e_1_2_9_116_5 doi: 10.1073/pnas.1810827115 – ident: e_1_2_9_116_3 doi: 10.1126/sciadv.1700015 – ident: e_1_2_9_76_1 doi: 10.1126/scitranslmed.abj1441 – ident: e_1_2_9_95_3 doi: 10.1016/j.neuroimage.2018.09.012 – ident: e_1_2_9_79_1 doi: 10.1038/s41598-019-50834-5 – ident: e_1_2_9_98_3 doi: 10.1002/adhm.201300311 – ident: e_1_2_9_91_1 doi: 10.3390/s19184014 – ident: e_1_2_9_19_1 doi: 10.1126/scitranslmed.3007801 – ident: e_1_2_9_38_2 doi: 10.1016/j.physbeh.2019.04.025 – ident: e_1_2_9_53_1 doi: 10.1098/rsif.2008.0071 – ident: e_1_2_9_112_1 doi: 10.1038/s41467-019-09003-5 – ident: e_1_2_9_112_2 doi: 10.1039/C9CC04239C – ident: e_1_2_9_24_1 doi: 10.1038/s41467-022-28859-8 – ident: e_1_2_9_95_1 doi: 10.1111/psyp.12536 – ident: e_1_2_9_65_1 doi: 10.1038/185117a0 – volume: 90 start-page: 648 year: 2010 ident: e_1_2_9_155_1 publication-title: J. Biomed. Mater. Res. – ident: e_1_2_9_90_1 doi: 10.1109/MPUL.2012.2216717 – ident: e_1_2_9_22_1 doi: 10.1038/s41467-019-10994-4 – ident: e_1_2_9_98_4 doi: 10.1088/1741-2560/10/3/036006 – ident: e_1_2_9_72_1 doi: 10.1038/s41928-018-0071-7 – ident: e_1_2_9_72_2 doi: 10.1126/sciadv.1600955 – ident: e_1_2_9_18_2 doi: 10.7554/eLife.18554 – ident: e_1_2_9_143_1 doi: 10.3390/s19051069 – ident: e_1_2_9_43_1 doi: 10.1016/j.jneumeth.2005.08.015 – ident: e_1_2_9_163_1 doi: 10.1126/science.abj7564 – ident: e_1_2_9_100_1 doi: 10.1016/j.snb.2015.11.141 – volume: 37 start-page: 2649 year: 2015 ident: e_1_2_9_132_2 publication-title: Polym. Compos. – ident: e_1_2_9_8_1 doi: 10.1038/nature11076 – ident: e_1_2_9_174_1 doi: 10.1039/D1LC00117E – ident: e_1_2_9_7_1 doi: 10.1038/nn1233 – ident: e_1_2_9_175_1 doi: 10.1038/nmat2745 – ident: e_1_2_9_67_2 doi: 10.1039/c3bm00166k – ident: e_1_2_9_98_1 doi: 10.1016/j.sna.2017.10.042 – ident: e_1_2_9_50_1 doi: 10.1109/10.914800 – ident: e_1_2_9_42_3 doi: 10.1109/MEMS46641.2020.9056310 – volume: 59 start-page: 317 year: 2010 ident: e_1_2_9_105_1 publication-title: J. Pharm. Sci. – ident: e_1_2_9_86_2 doi: 10.3390/s19204572 – volume: 2 start-page: 157 year: 1973 ident: e_1_2_9_13_1 publication-title: Annu. Rev. Biophys. – ident: e_1_2_9_180_1 doi: 10.1038/s41582-020-00426-z – ident: e_1_2_9_77_1 doi: 10.1038/nn.3905 – ident: e_1_2_9_145_1 doi: 10.1533/9780857096289.1.150 – ident: e_1_2_9_153_3 doi: 10.1109/TBME.2012.2196274 – ident: e_1_2_9_68_1 doi: 10.1038/nature20118 – ident: e_1_2_9_87_1 doi: 10.1088/1741-2560/13/4/046021 – ident: e_1_2_9_96_1 doi: 10.1016/j.snb.2016.12.131 – ident: e_1_2_9_86_4 doi: 10.1016/j.sna.2018.09.045 – ident: e_1_2_9_130_1 doi: 10.1109/JSEN.2018.2880833 – volume: 26 start-page: 6062 year: 2016 ident: e_1_2_9_150_2 publication-title: Eur. J. Soil Biol. – ident: e_1_2_9_9_1 doi: 10.1038/nmeth.3620 – ident: e_1_2_9_84_2 doi: 10.1109/BCI48061.2020.9061646 – ident: e_1_2_9_178_1 doi: 10.1007/s10544-020-00517-0 |
| SSID | ssj0009606 |
| Score | 2.6259537 |
| SecondaryResourceType | review_article |
| Snippet | Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research... Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2211012 |
| SubjectTerms | brain disorders diagnosis Brain research Electrodes electrophysiological technique flexible bioelectronics Human-computer interface human–machine interface hydrogels Materials science Mental disorders Modulus of elasticity Signal quality |
| Title | Flexible Electrodes for Brain–Computer Interface System |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211012 https://www.ncbi.nlm.nih.gov/pubmed/37143288 https://www.proquest.com/docview/2892536451 https://www.proquest.com/docview/2810918420 |
| Volume | 35 |
| WOSCitedRecordID | wos001083018500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMcfdPOgB99fqnNUEDyVpWnTpsfpHB50iDjYrSRpAsLoZC-e_Q5-Qz-Jfdqu2xAR9NbSpA1JnuafhPz-AJehZCoJA-H4LhE4QQmciPHA0VppV6hA-crPzSbCXo8PBtHj0in-gg9RLbhhZOT_awxwISetBTRUJDk3iOIMBm2G6zTrvKwG9c5Tt3-_AO8Gub8m7vc5UeDzObiR0NbqG1YHpm9qc1W85qNPd-f_5d6F7VJ52u2iq-zBmk73YWuJR3gAURfxmHKo7dvCHSfREztTtfY1Gkl8vn_MPSDsfCHRCKXtAnl-CP3u7fPNnVN6KzjKCz3qIGA89JjyXYWKSWaXzARCMMqEx3nkc2MMJ57iLDCZapCZMtNEM5rJScZk4h1BLR2l-gRso1wpI-ESE7o-82SUJCQ0lGtFNCVKWODMKzZWJXgc_S-GcYFMpjFWSVxViQVXVfrXArnxY8rGvJ3iMvQmcTaDpAw3V10LLqrHWdDgTohI9WiGaZCHyn1KLDgu2rf6FCIMPcq5BTRvxl_KELc7D-3q7vQvmc5gE03sixOODahNxzN9DhvqbfoyGTdhPRzwZtmtvwBmAvRE |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bS8MwGIY_ZBPUC8-HeqwgeFVM06RNL6duTJxDZAPvSpomIIwpbvPa_-A_9JeYr-2qQ0QQ71qatiH50rxJmucFOIlSrrIolB7zicQBSujFXISe1kr7UoWKKZabTUTdrri_j2_LvwlxL0zBh6gm3LBl5N9rbOA4IX32SQ2VWQ4OojiEQZ_hOrOxZIO8fnnX6nc-ybthbrCJC35eHDIxJTcSejb7hNme6ZvcnFWveffTWvmHjK_Ccqk93UYRLGswp4frsPSFSLgBcQsBmelAu83CHyfTI9fqWvccrSTeX9-mLhBuPpVopNJuAT3fhH6r2btoe6W7gqeCKKAeIsajgCvmK9RMqT3kJpSSUy4DIWImjDGCBErw0FjdkFptponm1ApKztMs2ILa8HGod8A1yk_TWPrERD7jQRpnGYkMFVoRTYmSDnjTkk1UiR5HB4xBUkCTaYJFklRF4sBplf6pgG78mHJ_WlFJ2fhGiR1DUo7Lq74Dx9Vl22xwLUQO9eME0yARVTBKHNguKrh6FUIMAyqEAzSvx1_ykDQubxrV2e5fbjqChXbvppN0rrrXe7CIlvbFfsd9qI2fJ_oA5tXL-GH0fFhG9wdXBfdM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bS8MwGIY_ZBPRC8-H6tQKglfFNE3a9HK6FUUdIg52V9I0AUHm2MFr_4P_0F9iv7brHCKCeNfStA1JvuZN0jwvwGmQcJUGvnSYSyQOUHwn5MJ3tFbalcpXTLHcbCLodESvF96XfxPiXpiCD1FNuGFk5N9rDHA9SM35jBoq0xwcRHEIgz7DdYZOMjWotx6i7u2MvOvnBpu44OeEPhNTciOh5_NPmO-ZvsnNefWadz_R2j9kfB1WS-1pN4vGsgELur8JK1-IhFsQRgjITJ613S78cVI9sjNda1-glcTH2_vUBcLOpxKNVNouoOfb0I3aj5dXTumu4Cgv8KiDiPHA44q5CjVTkh1y40vJKZeeECETxhhBPCW4bzLdkGTaTBPNaSYoOU9Sbwdq_Ze-3gPbKDdJQukSE7iMe0mYpiQwVGhFNCVKWuBMSzZWJXocHTCe4wKaTGMskrgqEgvOqvSDArrxY8rGtKLiMvhGcTaGpByXV10LTqrLWdjgWojs65cJpkEiqmCUWLBbVHD1KoQYelQIC2hej7_kIW627prV2f5fbjqGpftWFN9ed24OYBkd7Yvtjg2ojYcTfQiL6nX8NBoelY37E-yX9sc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Electrodes+for+Brain%E2%80%93Computer+Interface+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Junjie&rft.au=Wang%2C+Tengjiao&rft.au=Liu%2C+Haoyan&rft.au=Wang%2C+Kun&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202211012&rft.externalDBID=10.1002%252Fadma.202211012&rft.externalDocID=ADMA202211012 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |