Flexible Electrodes for Brain–Computer Interface System

Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 35; číslo 47; s. e2211012 - n/a
Hlavní autori: Wang, Junjie, Wang, Tengjiao, Liu, Haoyan, Wang, Kun, Moses, Kumi, Feng, Zhuoya, Li, Peng, Huang, Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.11.2023
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. The brain projects around the world, the classification of electrical neural signals, the applications of brain–computer interface, drawbacks of rigid electrodes, and the necessity to switch to flexible electrodes, are briefly introduced in this article. Then the classification of different type of electrodes, electrode materials, fabrication methods, flexible substrates, and extra requirements for flexible electrodes have been systematically reviewed.
AbstractList Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. The brain projects around the world, the classification of electrical neural signals, the applications of brain–computer interface, drawbacks of rigid electrodes, and the necessity to switch to flexible electrodes, are briefly introduced in this article. Then the classification of different type of electrodes, electrode materials, fabrication methods, flexible substrates, and extra requirements for flexible electrodes have been systematically reviewed.
Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal‐to‐noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided. This article is protected by copyright. All rights reserved.
Author Liu, Haoyan
Moses, Kumi
Huang, Wei
Feng, Zhuoya
Li, Peng
Wang, Tengjiao
Wang, Kun
Wang, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Wang
  fullname: Wang, Junjie
  organization: Northwestern Polytechnical University (NPU)
– sequence: 2
  givenname: Tengjiao
  orcidid: 0000-0001-5100-9601
  surname: Wang
  fullname: Wang, Tengjiao
  email: iamtjwang@nwpu.edu.cn
  organization: Northwestern Polytechnical University (NPU)
– sequence: 3
  givenname: Haoyan
  surname: Liu
  fullname: Liu, Haoyan
  organization: University of Arkansas
– sequence: 4
  givenname: Kun
  surname: Wang
  fullname: Wang, Kun
  organization: Northwestern Polytechnical University (NPU)
– sequence: 5
  givenname: Kumi
  surname: Moses
  fullname: Moses, Kumi
  organization: Northwestern Polytechnical University (NPU)
– sequence: 6
  givenname: Zhuoya
  surname: Feng
  fullname: Feng, Zhuoya
  organization: Northwestern Polytechnical University (NPU)
– sequence: 7
  givenname: Peng
  orcidid: 0000-0002-5876-2177
  surname: Li
  fullname: Li, Peng
  email: iampli@nwpu.edu.cn
  organization: Northwestern Polytechnical University (NPU)
– sequence: 8
  givenname: Wei
  orcidid: 0000-0001-7004-6408
  surname: Huang
  fullname: Huang, Wei
  email: vc@nwpu.edu.cn
  organization: Northwestern Polytechnical University (NPU)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37143288$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFP2zAUgK2paJSOK0cUicsuKc92nNrH0rUbEogD7Gw57rMUlMTFTrT1tv-wf8gvwaiFSZUmLrYP3_f89J2QUec7JOSMwpQCsEuzbs2UAWOUAmWfyJgKRvMClBiRMSguclUW8picxPgIAKqE8jM55jNacCblmKhVg7_rqsFs2aDtg19jzJwP2VUwdff85-_Ct5uhx5Bdd-l0xmJ2v409tl_IkTNNxNP9PSE_V8uHxY_85u779WJ-k1s-4yy3IGHGhS2oTX-KKj2FK40RTBgupSqkc04Ct1KUTlJVSUERUDBFSyGqNZ-Qr7u5m-CfBoy9butosWlMh36ImkkKisqCQUIvDtBHP4QubZcoxQQvC0ETdb6nhqrFtd6EujVhq9-iJKDYATb4GAM6beve9LXv-hSl0RT0a3v92l6_t0_a9EB7m_xfQe2EX3WD2w9oPf92O__nvgDxTZQa
CitedBy_id crossref_primary_10_1021_acsnano_5c07150
crossref_primary_10_1021_acs_nanolett_4c02474
crossref_primary_10_1002_adfm_202509085
crossref_primary_10_1002_EXP_70040
crossref_primary_10_1002_smsc_202400362
crossref_primary_10_1186_s12984_025_01617_9
crossref_primary_10_1038_s41528_025_00410_x
crossref_primary_10_1002_EXP_20230146
crossref_primary_10_1002_smtd_202301341
crossref_primary_10_3390_bios15070424
crossref_primary_10_1007_s40820_025_01780_7
crossref_primary_10_1002_adfm_202314575
crossref_primary_10_1002_brx2_70023
crossref_primary_10_1038_s41528_023_00273_0
crossref_primary_10_3390_bios13100930
crossref_primary_10_1038_s41378_024_00805_2
crossref_primary_10_1364_OE_565105
crossref_primary_10_1002_adma_202410007
crossref_primary_10_1002_advs_202513259
crossref_primary_10_1111_ejn_70183
crossref_primary_10_1109_JSEN_2024_3377920
crossref_primary_10_3390_bios14090432
crossref_primary_10_1002_smtd_202501471
crossref_primary_10_1021_acs_langmuir_5c03081
crossref_primary_10_1088_2058_8585_adc1dc
crossref_primary_10_1002_adma_202409071
crossref_primary_10_3390_s25072274
crossref_primary_10_1002_adfm_202422869
crossref_primary_10_1002_adma_202413938
crossref_primary_10_1002_admt_202501171
crossref_primary_10_1002_adfm_202510446
crossref_primary_10_3390_app14198774
crossref_primary_10_1002_bmm2_12138
crossref_primary_10_1039_D5CC01385B
crossref_primary_10_26599_NR_2025_94907377
crossref_primary_10_1016_j_compbiomed_2025_110937
crossref_primary_10_1002_adma_202401035
crossref_primary_10_1038_s44385_025_00029_7
crossref_primary_10_1109_JIOT_2025_3582795
crossref_primary_10_1002_bmm2_12130
crossref_primary_10_1002_cjoc_202300652
crossref_primary_10_1021_acsomega_5c03258
crossref_primary_10_1021_acsabm_5c01269
crossref_primary_10_1021_acsami_5c05377
Cites_doi 10.1016/S1388-2457(00)00533-2
10.1016/j.biomaterials.2014.01.038
10.1016/j.biomaterials.2013.07.016
10.1109/EDTM50988.2021.9420850
10.1002/advs.201900813
10.1007/s12264-012-1250-6
10.1038/s41586-018-0649-2
10.1007/s10544-013-9742-3
10.1002/adma.201706520
10.1038/s41467-019-10581-7
10.1007/s10544-009-9357-x
10.1016/j.jneumeth.2016.04.009
10.1002/adfm.202112045
10.1002/jbm.a.31047
10.1038/s41563-020-0679-7
10.1002/adfm.202105857
10.1016/j.sna.2019.05.017
10.1088/2058-8585/abc3ca
10.1016/j.clinph.2004.10.001
10.3389/fnhum.2014.00156
10.1056/NEJMoa2027540
10.1016/j.neuron.2021.06.012
10.1097/PHM.0000000000001836
10.1136/jnnp.74.1.9
10.1016/j.mattod.2019.12.026
10.1016/j.tics.2021.04.003
10.1088/1741-2552/ac1984
10.1016/j.sna.2015.10.041
10.1016/j.pneurobio.2020.101790
10.1038/s42003-021-01768-0
10.1038/s41378-021-00248-z
10.1016/j.snb.2018.08.155
10.1073/pnas.1424875112
10.1016/j.neuron.2016.10.018
10.1016/j.sna.2013.06.013
10.1227/01.NEU.0000180810.16964.3E
10.1038/s41528
10.1002/adhm.201900234
10.1002/advs.201801617
10.1081/DDC-120003853
10.1109/JMEMS.2013.2262591
10.1016/j.mtcomm.2021.102853
10.1002/adfm.201700232
10.1126/science.1102896
10.1038/s42003-021-02891-8
10.1038/s41928-021-00631-8
10.1038/s41598-017-07823-3
10.1109/BIOCAS.2018.8584672
10.1038/srep16743
10.1016/j.sna.2011.12.017
10.1002/adfm.202200457
10.1016/j.jneumeth.2013.06.001
10.1088/1741-2552/aaf594
10.1016/j.sna.2021.112727
10.1089/soro.2018.0116
10.3389/fnins.2019.00893
10.1038/s41583-019-0140-6
10.1088/1741-2552/aa66dd
10.1088/1741-2552/abc742
10.3390/s150923459
10.1109/TBME.1970.4502738
10.1126/sciadv.abm3785
10.1002/adma.201602083
10.3390/mi10080518
10.1088/1741-2560/2/4/008
10.1016/j.vacuum.2016.12.024
10.1016/j.eml.2019.100510
10.1088/1741-2560/6/3/036003
10.1109/TNSRE.2018.2811752
10.1109/T-AFFC.2011.15
10.3389/fnins.2018.00239
10.1038/s41598-019-49772-z
10.1038/ncomms4329
10.3390/s16111826
10.1021/acsanm.1c00533
10.1038/s41551-018-0321-z
10.1039/b912102a
10.1038/s41598-017-06925-2
10.1016/j.neuron.2014.12.035
10.1517/17425241003602259
10.1038/d41586-022-01047-w
10.1038/s41467-019-10638-7
10.1088/1741-2552/abe245
10.1002/adfm.202105568
10.3390/mi7100180
10.5220/0004738700120022
10.1109/THMS.2018.2830647
10.1002/adma.202100221
10.1016/S0304-3940(97)00889-6
10.1101/578542
10.1002/adhm.201700994
10.3389/fnins.2018.00300
10.1002/app.47296
10.1021/acsami.8b06484
10.1016/j.sna.2017.12.048
10.1038/s41928-022-00913-9
10.3390/s141223758
10.1088/0960-1317/24/6/065015
10.1021/acsabm.1c00923
10.1016/0013-4694(88)90149-6
10.1113/jphysiol.2012.228114
10.1016/j.wneu.2016.05.010
10.1016/S1388-2457(02)00057-3
10.1109/TBME.2020.3022615
10.1126/sciadv.abe7432
10.3390/medicina57030215
10.1038/nnano.2008.174
10.1109/FLEPS49123.2020.9239488
10.1002/macp.201800561
10.1039/C9RA07391D
10.1002/hbm.25721
10.1109/TNSRE.2018.2790359
10.1088/1741-2560/8/2/025008
10.1038/s41591-020-01175-8
10.1016/j.addr.2013.07.002
10.1016/j.nanoen.2021.106735
10.1016/j.snb.2017.02.164
10.1016/j.clinph.2017.02.025
10.1109/JPROC.2003.820544
10.1021/acsmaterialslett.0c00203
10.1006/nimg.2000.0680
10.1007/s11431-020-1644-6
10.1016/S0361-9230(99)00231-2
10.1212/01.wnl.0000168899.11598.00
10.1016/j.neuron.2016.10.050
10.2196/16194
10.1080/2326263X.2014.912881
10.1021/acsaelm.0c00653
10.1016/j.neuron.2016.10.046
10.1016/j.matt.2022.01.012
10.1088/0960-1317/25/12/125003
10.21014/acta_imeko.v3i3.94
10.1038/s41591-021-01480-w
10.1039/C8SM00337H
10.1088/1741-2552/ac41ab
10.1039/D1TC00625H
10.1088/1741-2560/13/4/046020
10.1038/s41551-020-00615-7
10.1002/adfm.200600669
10.1002/adhm.202100646
10.1109/10.83588
10.1088/0960-1317/20/6/064014
10.1007/s10483-020-2689-9
10.1038/s41598-018-33083-w
10.1002/adfm.201503316
10.1109/MEMS51782.2021.9375131
10.1016/j.biomaterials.2021.121352
10.1109/JSEN.2019.2912667
10.1186/1743-0003-2-23
10.1088/1741-2552/abbd50
10.1016/j.carbon.2021.12.056
10.1126/science.abh3551
10.1126/science.aac5082
10.1002/adma.201702181
10.1002/advs.202201059
10.1126/sciadv.abh0040
10.1038/s41586-021-03506-2
10.1021/acsnano.0c00672
10.1038/s41587-020-0662-5
10.1002/adfm.201500110
10.1038/s41467-021-23802-9
10.1109/TBME.2005.855712
10.1016/j.copbio.2021.07.027
10.1021/jp111498e
10.1038/s41551-021-00736-7
10.1016/j.snb.2017.01.052
10.1007/s12274-018-2005-0
10.1093/brain/awz114
10.1016/S0006-8993(03)03023-3
10.1016/B978-0-444-63934-9.00002-0
10.1021/acs.nanolett.8b04895
10.1016/j.eml.2014.12.010
10.1126/science.1260318
10.1016/j.neuron.2018.11.002
10.1088/1741-2560/8/3/034001
10.1002/adma.201201386
10.1016/S0924-4247(97)01494-5
10.1016/j.sna.2014.03.029
10.1126/scitranslmed.abf8629
10.1088/1741-2552/abeeab
10.1109/TNSRE.2014.2342880
10.1002/adma.202108203
10.1021/am502454t
10.1016/j.snb.2016.10.005
10.1088/1741-2560/8/3/036023
10.1073/pnas.1810827115
10.1126/sciadv.1700015
10.1126/scitranslmed.abj1441
10.1016/j.neuroimage.2018.09.012
10.1038/s41598-019-50834-5
10.1002/adhm.201300311
10.3390/s19184014
10.1126/scitranslmed.3007801
10.1016/j.physbeh.2019.04.025
10.1098/rsif.2008.0071
10.1038/s41467-019-09003-5
10.1039/C9CC04239C
10.1038/s41467-022-28859-8
10.1111/psyp.12536
10.1038/185117a0
10.1109/MPUL.2012.2216717
10.1038/s41467-019-10994-4
10.1088/1741-2560/10/3/036006
10.1038/s41928-018-0071-7
10.1126/sciadv.1600955
10.7554/eLife.18554
10.3390/s19051069
10.1016/j.jneumeth.2005.08.015
10.1126/science.abj7564
10.1016/j.snb.2015.11.141
10.1038/nature11076
10.1039/D1LC00117E
10.1038/nn1233
10.1038/nmat2745
10.1039/c3bm00166k
10.1016/j.sna.2017.10.042
10.1109/10.914800
10.1109/MEMS46641.2020.9056310
10.3390/s19204572
10.1038/s41582-020-00426-z
10.1038/nn.3905
10.1533/9780857096289.1.150
10.1109/TBME.2012.2196274
10.1038/nature20118
10.1088/1741-2560/13/4/046021
10.1016/j.snb.2016.12.131
10.1016/j.sna.2018.09.045
10.1109/JSEN.2018.2880833
10.1038/nmeth.3620
10.1109/BCI48061.2020.9061646
10.1007/s10544-020-00517-0
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202211012
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef

Materials Research Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37143288
10_1002_adma_202211012
ADMA202211012
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Natural Science Basic Research Program of Shaanxi Province
  funderid: 2023‐JC‐JQ‐32; 2019JQ‐157
– fundername: National Natural Science Foundation of China
  funderid: 52003224; 52073230; 62288102
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3732-c080735c41c1435b35c5f6aa525a388948fff803c856f819b851e0e5291655bd3
IEDL.DBID DRFUL
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001083018500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 05:36:28 EDT 2025
Sat Jul 26 01:24:37 EDT 2025
Mon Jul 21 06:05:22 EDT 2025
Sat Nov 29 07:22:51 EST 2025
Tue Nov 18 22:20:40 EST 2025
Sun Jul 06 04:45:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords brain disorders diagnosis
hydrogels
electrophysiological technique
flexible bioelectronics
human-machine interface
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3732-c080735c41c1435b35c5f6aa525a388948fff803c856f819b851e0e5291655bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5100-9601
0000-0001-7004-6408
0000-0002-5876-2177
PMID 37143288
PQID 2892536451
PQPubID 2045203
PageCount 26
ParticipantIDs proquest_miscellaneous_2810918420
proquest_journals_2892536451
pubmed_primary_37143288
crossref_citationtrail_10_1002_adma_202211012
crossref_primary_10_1002_adma_202211012
wiley_primary_10_1002_adma_202211012_ADMA202211012
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
2021; 68
2018; 165
2012; 485
2013; 1
2019 2014; 8 213
2019; 10
2004; 7
2018; 563
2020; 17
2016; 267
2019; 19
2020; 14
2014; 24
2019 2022; 6 32
2020; 168
2021; 72
2021 2021 2022; 373 4 8
1988; 70
2018; 48
2020; 19
2018; 8
2018; 2
2022; 281
2019; 20
2018 2017; 1 3
2016 2015 2015; 7 5 112
2022; 34
2013; 199
2014; 14
2012; 28
2022; 32
2014; 18
2012; 24
2010; 7
2010; 9
2019; 9
2021; 43
2019; 6
2022; 92
2018 2018 2005 2021 2022 2012; 12 12 65 268 101 3
2019; 30
2021 2019 2018 2018; 326 19 7 283
2005; 116
2020; 36
2004 2022; 306 189
2016; 92
2021; 385
2007 2015; 81 37
2016; 16
2011 2000 2020; 8 51
1970; 17
2011; 8
2018; 26
2016; 13
2019; 101
2019; 220
2021; 57
2013; 218
2020 2022 2017 2017 2018; 2020 5 3 29 115
2004 1991; 92 38
2021 2016; 10 26
2022; 9
2022; 13
2017; 140
2020; 22
2005; 2
2019; 294
2018; 11
2016; 28
2003; 983
2022 2021; 14 18
2016; 26
2018; 16
2018; 14
2019 2021; 19
2021; 25
2022; 375
2021; 27
2021; 21
1997; 239
2010; 59
2020; 64
2015; 347
2023; 6
2023; 7
2019 2018; 19 10
2002; 113
2021; 29
2011 2010; 115 17
2017 2019 2019 2005 2017 2017; 128 207 13 2 14 7
2008; 5
2016; 226
2013 2008; 65 3
1973 1995; 2
2014; 1
2012; 174
2020; 4
2014; 5
2013; 15
2021; 31
2018 2015; 19 23
2020; 2
2014; 2
2021; 33
2019 2019; 10 55
2019 2020; 10 41
2021; 39
2005; 148
2020 2019; 17 10
2019 2019; 21
2019 2016; 6 351
2021; 593
2017; 241
2014; 8
2001; 13
2014; 6
2017; 247
2021; 9
2015; 12
2021; 109
2021; 7
2021; 4
1997; 60
2022 2017; 604 6
2017; 28
2020; 189
2015 2018; 86 30
2003; 74
2019; 142
2009 2013; 5 1
2021; 13
2002; 28
1960; 185
2001; 112
2015; 25
2017 2020; 11
2018; 270
2012 2014; 590 35
2012; 3
2021; 12
2016; 539
2017 2015; 244 236
2021
2013; 34
2020
2017 2015 2014 2013 2011 2017; 268 15 3 10 8 244
2021; 18
2018; 277
2021; 17
2017 2014 2019; 54 3 184
2005; 52
2019; 136
2020 2018; 5
2010 2013 2012; 20253 22 59
2009; 6
2014
2013
2010; 90
2001 2016; 48 7
2005; 57
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_168_1
e_1_2_9_183_2
e_1_2_9_18_2
e_1_2_9_18_1
e_1_2_9_183_1
e_1_2_9_160_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_134_2
e_1_2_9_157_1
e_1_2_9_172_1
e_1_2_9_72_2
e_1_2_9_72_1
e_1_2_9_11_1
Vidal J. J. (e_1_2_9_13_1) 1973; 2
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_95_2
e_1_2_9_95_3
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_167_1
e_1_2_9_106_1
e_1_2_9_167_2
e_1_2_9_57_3
e_1_2_9_57_2
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_182_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_2
e_1_2_9_23_1
e_1_2_9_5_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_156_1
e_1_2_9_179_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_171_1
e_1_2_9_31_1
e_1_2_9_77_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_92_2
e_1_2_9_101_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_162_1
e_1_2_9_16_1
e_1_2_9_185_1
e_1_2_9_20_1
e_1_2_9_89_1
e_1_2_9_89_2
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
Ivanovskaya A. N. (e_1_2_9_136_1) 2018; 165
e_1_2_9_81_1
e_1_2_9_81_2
e_1_2_9_113_2
e_1_2_9_113_1
e_1_2_9_159_1
e_1_2_9_151_1
e_1_2_9_28_1
e_1_2_9_174_1
e_1_2_9_89_3
e_1_2_9_93_2
e_1_2_9_78_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_169_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_161_1
e_1_2_9_67_2
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_82_1
Oliveira A. (e_1_2_9_150_2) 2016; 26
e_1_2_9_112_2
e_1_2_9_112_1
e_1_2_9_135_1
e_1_2_9_158_1
e_1_2_9_173_1
e_1_2_9_29_1
e_1_2_9_150_1
e_1_2_9_52_2
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_98_2
e_1_2_9_98_3
e_1_2_9_98_4
Omidian H. (e_1_2_9_105_1) 2010; 59
e_1_2_9_90_1
Wang Z. (e_1_2_9_116_1) 2020; 2020
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_149_1
e_1_2_9_126_2
e_1_2_9_37_2
e_1_2_9_14_1
e_1_2_9_37_3
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_164_1
e_1_2_9_37_6
e_1_2_9_98_5
e_1_2_9_98_6
e_1_2_9_37_5
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_41_2
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_153_3
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_176_1
e_1_2_9_130_2
e_1_2_9_153_2
e_1_2_9_153_1
e_1_2_9_30_1
e_1_2_9_53_1
Domen N. (e_1_2_9_84_1) 2017; 11
e_1_2_9_99_1
e_1_2_9_76_2
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_91_2
e_1_2_9_102_2
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_163_1
e_1_2_9_186_1
e_1_2_9_38_2
e_1_2_9_38_5
e_1_2_9_38_6
e_1_2_9_38_3
e_1_2_9_38_4
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_42_2
e_1_2_9_42_3
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_80_2
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_9_1
e_1_2_9_152_1
e_1_2_9_175_1
e_1_2_9_27_1
e_1_2_9_73_2
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_50_2
e_1_2_9_35_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_96_2
e_1_2_9_128_1
Sun Y. (e_1_2_9_155_1) 2010; 90
e_1_2_9_166_1
e_1_2_9_120_1
e_1_2_9_58_1
e_1_2_9_143_1
Noh G. T. (e_1_2_9_132_2) 2015; 37
e_1_2_9_181_1
e_1_2_9_62_1
Morgan D. (e_1_2_9_37_4) 2021; 268
e_1_2_9_24_1
e_1_2_9_85_1
e_1_2_9_4_1
Yu Y. H. (e_1_2_9_124_1) 2014; 2
e_1_2_9_117_1
e_1_2_9_178_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_170_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_97_1
Sathi K. A. (e_1_2_9_184_1) 2020; 36
e_1_2_9_127_1
e_1_2_9_127_2
e_1_2_9_104_1
e_1_2_9_13_2
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_165_1
e_1_2_9_180_1
e_1_2_9_86_2
e_1_2_9_63_1
e_1_2_9_86_3
e_1_2_9_86_4
Bargmann C. I. (e_1_2_9_1_1) 2013; 1
e_1_2_9_40_1
e_1_2_9_86_1
e_1_2_9_116_5
e_1_2_9_116_4
e_1_2_9_3_1
e_1_2_9_139_1
e_1_2_9_116_3
e_1_2_9_116_2
e_1_2_9_177_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_154_1
e_1_2_9_48_1
References_xml – volume: 26
  start-page: 1004
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 174
  start-page: 96
  year: 2012
  publication-title: Sens. Actuators, A
– volume: 60
  start-page: 240
  year: 1997
  publication-title: Sens. Actuators, A
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 1826
  year: 2016
  publication-title: Sensors
– volume: 2
  year: 2014
  publication-title: IEEE J. Transl. Eng. Health Med.
– volume: 19 23
  start-page: 820 342
  year: 2018 2015
  publication-title: IEEE Sens. J. IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 10
  start-page: 3096
  year: 2019
  publication-title: Nat. Commun.
– volume: 28
  start-page: 423
  year: 2012
  publication-title: Neurosci. Bull.
– volume: 2
  start-page: 3390
  year: 2020
  publication-title: ACS Appl. Electron. Mater.
– volume: 983
  start-page: 23
  year: 2003
  publication-title: Brain Res.
– volume: 8 213
  start-page: 19
  year: 2019 2014
  publication-title: Adv. Healthcare Mater. Sens. Actuators, A
– volume: 36
  start-page: 147
  year: 2020
  publication-title: Biomed. Eng.
– volume: 17 10
  start-page: 518
  year: 2020 2019
  publication-title: J. Neural Eng. Micromachines
– volume: 2
  start-page: 157 693
  year: 1973 1995
  publication-title: Annu. Rev. Biophys.
– volume: 239
  start-page: 65
  year: 1997
  publication-title: Neurosci. Lett.
– volume: 375
  start-page: 1411
  year: 2022
  publication-title: Science
– volume: 34
  start-page: 8061
  year: 2013
  publication-title: Biomaterials
– volume: 101
  start-page: 21
  year: 2019
  publication-title: Neuron
– volume: 7 5 112
  start-page: 6948 3920
  year: 2016 2015 2015
  publication-title: Sci. Rep. Sci. Rep. Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 32
  year: 2012
  publication-title: IEEE Pulse
– volume: 6
  year: 2014
  publication-title: Sci. Transl. Med.
– volume: 92
  start-page: 582
  year: 2016
  publication-title: Neuron
– volume: 72
  start-page: 13
  year: 2021
  publication-title: Curr. Opin. Biotechnol.
– volume: 14
  start-page: 3296
  year: 2018
  publication-title: Soft Matter
– volume: 1
  start-page: 120
  year: 2014
  publication-title: Extreme Mech. Lett.
– volume: 57
  year: 2005
  publication-title: Neurosurgery
– volume: 2
  start-page: 999
  year: 2020
  publication-title: ACS Mater. Lett.
– volume: 9
  year: 2019
  publication-title: RSC Adv.
– volume: 11
  start-page: 756 1
  year: 2017 2020
  publication-title: Front. Neurosci.
– volume: 14
  year: 2014
  publication-title: Sensors
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 4
  start-page: 604
  year: 2021
  publication-title: Nat. Electron.
– volume: 70
  start-page: 510
  year: 1988
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 43
  start-page: 1295
  year: 2021
  publication-title: Hum. Brain Mapp.
– volume: 10 41
  start-page: 2573 1747
  year: 2019 2020
  publication-title: Nat. Commun. J. Appl. Math. Mech. (Engl. Transl.)
– volume: 373 4 8
  start-page: 88 429
  year: 2021 2021 2022
  publication-title: Science Commun. Biol. Sci. Adv.
– volume: 17
  year: 2020
  publication-title: J. Neural Eng.
– volume: 17
  start-page: 75
  year: 2021
  publication-title: Nat. Rev. Neurol.
– volume: 277
  start-page: 250
  year: 2018
  publication-title: Sens. Actuators, B
– volume: 11
  start-page: 5604
  year: 2018
  publication-title: Nano Res.
– volume: 165
  year: 2018
  publication-title: J. Visualized Exp.
– volume: 65 3
  start-page: 2034 434
  year: 2013 2008
  publication-title: Adv. Drug Delivery Rev. Nat. Nanotechnol.
– volume: 9
  start-page: 511
  year: 2010
  publication-title: Nat. Mater.
– volume: 5 1
  start-page: 3831 460
  year: 2009 2013
  publication-title: Soft Matter Biomater. Sci.
– volume: 4
  start-page: 8013
  year: 2021
  publication-title: ACS Appl. Bio Mater.
– volume: 22
  start-page: 57
  year: 2020
  publication-title: Biomed. Microdevices
– volume: 59
  start-page: 317
  year: 2010
  publication-title: J. Pharm. Sci.
– volume: 136
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 27
  start-page: 229
  year: 2021
  publication-title: Nat. Med.
– volume: 8
  start-page: 156
  year: 2014
  publication-title: Front. Hum. Neurosci.
– volume: 4
  start-page: 1010
  year: 2020
  publication-title: Nat. Biomed. Eng.
– volume: 6 351
  start-page: 368 1071
  year: 2019 2016
  publication-title: Soft Rob. Science
– volume: 90
  start-page: 648
  year: 2010
  publication-title: J. Biomed. Mater. Res.
– volume: 268 15 3 10 8 244
  start-page: 38 490 750
  year: 2017 2015 2014 2013 2011 2017
  publication-title: Sens. Actuators, A Sensors Adv. Healthcare Mater. J. Neural Eng. J. Neural Eng. Sens. Actuators B Chem.
– volume: 52
  start-page: 1748
  year: 2005
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 2
  start-page: 123
  year: 2005
  publication-title: J. Neural Eng.
– volume: 14
  start-page: 8059
  year: 2020
  publication-title: ACS Nano
– volume: 68
  start-page: 1820
  year: 2021
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 24
  start-page: 5284
  year: 2012
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1236
  year: 2022
  publication-title: Nat. Commun.
– volume: 81 37
  start-page: 135 2649
  year: 2007 2015
  publication-title: J. Biomed. Mater. Res. Polym. Compos.
– volume: 5
  start-page: 957
  year: 2008
  publication-title: J. R. Soc. Interface
– volume: 26
  start-page: 750
  year: 2018
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 5
  start-page: 3329
  year: 2014
  publication-title: Nat. Commun.
– volume: 281
  year: 2022
  publication-title: Biomaterials
– volume: 189
  year: 2020
  publication-title: Prog. Neurobiol.
– volume: 347
  start-page: 159
  year: 2015
  publication-title: Science
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 6
  start-page: 109
  year: 2023
  publication-title: Nat. Electron.
– volume: 7
  start-page: 429
  year: 2010
  publication-title: Expert Opin. Drug Delivery
– volume: 24
  year: 2014
  publication-title: J. Micromech. Microeng.
– volume: 247
  start-page: 273
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 74
  start-page: 9
  year: 2003
  publication-title: J. Neurol., Neurosurg. Psychiatry
– volume: 6 32
  year: 2019 2022
  publication-title: Adv. Sci. Adv. Funct. Mater.
– volume: 6
  year: 2009
  publication-title: J. Neural Eng.
– volume: 14 18
  year: 2022 2021
  publication-title: Sci. Transl. Med. J. Neural Eng.
– volume: 28
  start-page: 621
  year: 2002
  publication-title: Drug Dev. Ind. Pharm.
– volume: 604 6
  start-page: 416
  year: 2022 2017
  publication-title: Nature Elife
– volume: 140
  start-page: 96
  year: 2017
  publication-title: Vacuum
– volume: 244 236
  start-page: 750 164
  year: 2017 2015
  publication-title: Sens. Actuators, B Sens. Actuators, A
– volume: 539
  start-page: 284
  year: 2016
  publication-title: Nature
– volume: 29
  year: 2021
  publication-title: Mater. Today Commun.
– volume: 590 35
  start-page: 2955 3919
  year: 2012 2014
  publication-title: J. Physiol. Biomaterials
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 64
  start-page: 273
  year: 2020
  publication-title: Sci. China: Technol. Sci.
– volume: 12 12 65 268 101 3
  start-page: 300 239 317 6 2 18
  year: 2018 2018 2005 2021 2022 2012
  publication-title: Front. Neurosci. Front. Neurosci. Neurology Clin. Neurophysiol. Am. J. Phys. Med. Rehabil. IEEE Trans. Affective Comput.
– volume: 48 7
  start-page: 361 180
  year: 2001 2016
  publication-title: IEEE Trans. Biomed. Eng. Micromachines
– volume: 593
  start-page: 249
  year: 2021
  publication-title: Nature
– volume: 12
  start-page: 49
  year: 2010
  publication-title: Biomed. Microdevices
– year: 2013
– volume: 27
  start-page: 1696
  year: 2021
  publication-title: Nat. Med.
– volume: 142
  start-page: 1827
  year: 2019
  publication-title: Brain
– volume: 385
  start-page: 217
  year: 2021
  publication-title: N. Engl. J. Med.
– volume: 39
  start-page: 326
  year: 2021
  publication-title: Nat. Biotechnol.
– volume: 563
  start-page: 65
  year: 2018
  publication-title: Nature
– volume: 20253 22 59
  start-page: 1199 2085
  year: 2010 2013 2012
  publication-title: J. Micromech. Microeng. J. Microelectromech. Syst. IEEE Trans. Biomed. Eng.
– start-page: 416
  year: 2021
– volume: 86 30
  start-page: 175
  year: 2015 2018
  publication-title: Neuron Adv. Mater.
– volume: 1
  start-page: 111
  year: 2013
  publication-title: Science
– volume: 10
  start-page: 2642
  year: 2019
  publication-title: Nat. Commun.
– volume: 25
  year: 2015
  publication-title: J. Micromech. Microeng.
– start-page: 5
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 92 38
  start-page: 76 758
  year: 2004 1991
  publication-title: Proc. IEEE IEEE Trans. Biomed. Eng.
– volume: 1 3
  start-page: 314
  year: 2018 2017
  publication-title: Nat. Electron. Sci. Adv.
– volume: 306 189
  start-page: 666 71
  year: 2004 2022
  publication-title: Science Carbon
– start-page: 1
  year: 2021
– volume: 218
  start-page: 121
  year: 2013
  publication-title: J. Neurosci. Methods
– volume: 7
  start-page: 25
  year: 2021
  publication-title: Microsyst. Nanoeng.
– volume: 168
  start-page: 15
  year: 2020
  publication-title: Handb. Clin. Neurol.
– volume: 13
  year: 2021
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: 7243
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 92
  start-page: 574
  year: 2016
  publication-title: Neuron
– volume: 12
  start-page: 3435
  year: 2021
  publication-title: Nat. Commun.
– volume: 28
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 18
  start-page: 310
  year: 2014
  publication-title: Nat. Neurosci.
– volume: 18
  year: 2021
  publication-title: J. Neural Eng.
– volume: 128 207 13 2 14 7
  start-page: 1100 90 893 23 7808
  year: 2017 2019 2019 2005 2017 2017
  publication-title: Clin. Neurophysiol. Physiol. Behav. Front. Neurosci. J. Neuroeng. Rehabil. J. Neural Eng. Sci. Rep.
– volume: 54 3 184
  start-page: 74 33 119
  year: 2017 2014 2019
  publication-title: Psychophysiology Acta IMEKO NeuroImage
– start-page: 1
  year: 2020
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 19
  start-page: 5995
  year: 2019 2021
  publication-title: IEEE Sens. J.
– volume: 26
  start-page: 400
  year: 2018
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 4
  start-page: 5737
  year: 2021
  publication-title: ACS Appl. Nano Mater.
– volume: 25
  start-page: 3551
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 220
  year: 2019
  publication-title: Macromol. Chem. Phys.
– volume: 148
  start-page: 1
  year: 2005
  publication-title: J. Neurosci. Methods
– volume: 109
  start-page: 2573
  year: 2021
  publication-title: Neuron
– volume: 2020 5 3 29 115
  start-page: 1204
  year: 2020 2022 2017 2017 2018
  publication-title: Research Matter Sci. Adv. Adv. Mater. Proc. Natl. Acad. Sci. U. S. A.
– volume: 8
  year: 2018
  publication-title: Sci. Rep.
– volume: 48
  start-page: 337
  year: 2018
  publication-title: IEEE Trans. Hum. Mach. Syst.
– volume: 36
  start-page: 102
  year: 2020
  publication-title: Mater. Today
– volume: 7
  start-page: 446
  year: 2004
  publication-title: Nat. Neurosci.
– volume: 13
  year: 2016
  publication-title: J. Neural Eng.
– volume: 10 55
  start-page: 1043 8422
  year: 2019 2019
  publication-title: Nat. Commun. Chem. Commun.
– volume: 226
  start-page: 349
  year: 2016
  publication-title: Sens. Actuators, B
– volume: 21
  start-page: 2383
  year: 2021
  publication-title: Lab Chip
– start-page: 12
  year: 2014
– volume: 10 26
  start-page: 6062
  year: 2021 2016
  publication-title: Adv. Healthcare Mater. Eur. J. Soil Biol.
– volume: 19
  start-page: 2741
  year: 2019
  publication-title: Nano Lett.
– volume: 270
  start-page: 262
  year: 2018
  publication-title: Sens. Actuators, A
– volume: 8 51
  start-page: 293 416
  year: 2011 2000 2020
  publication-title: J. Neural Eng. Brain Res. Bull.
– volume: 5
  start-page: 1
  year: 2020 2018
  publication-title: Flexible Printed Electron.
– volume: 30
  year: 2019
  publication-title: Extreme Mech. Lett.
– volume: 326 19 7 283
  start-page: 4572 348
  year: 2021 2019 2018 2018
  publication-title: Sens. Actuators, A Sensors Adv. Healthcare Mater. Sens. Actuators, A
– volume: 112
  start-page: 536
  year: 2001
  publication-title: Clin. Neurophysiol.
– volume: 19 10
  start-page: 4014
  year: 2019 2018
  publication-title: Sensors ACS Appl. Mater. Interfaces
– volume: 199
  start-page: 310
  year: 2013
  publication-title: Sens. Actuators, A
– volume: 294
  start-page: 73
  year: 2019
  publication-title: Sens. Actuators, A
– volume: 115 17
  start-page: 5492 1645
  year: 2011 2010
  publication-title: J. Phys. Chem. C Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv.Mater.
– volume: 17
  start-page: 238
  year: 1970
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  year: 2011
  publication-title: J. Neural Eng.
– volume: 19
  start-page: 590
  year: 2020
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1157
  year: 2015
  publication-title: Nat. Methods
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 4
  start-page: 1406
  year: 2021
  publication-title: Commun. Biol.
– volume: 2
  start-page: 907
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 92
  start-page: 591
  year: 2016
  publication-title: Neuron
– volume: 20
  start-page: 330
  year: 2019
  publication-title: Nat. Rev. Neurosci.
– volume: 92
  start-page: 454
  year: 2016
  publication-title: World Neurosurg.
– volume: 16
  year: 2018
  publication-title: J. Neural Eng.
– volume: 28
  start-page: 7200
  year: 2016
  publication-title: Adv. Mater.
– volume: 19
  start-page: 1069
  year: 2019
  publication-title: Sensors
– volume: 57
  start-page: 215
  year: 2021
  publication-title: Medicina
– volume: 113
  start-page: 767
  year: 2002
  publication-title: Clin. Neurophysiol.
– volume: 116
  start-page: 799
  year: 2005
  publication-title: Clin. Neurophysiol.
– volume: 241
  start-page: 1244
  year: 2017
  publication-title: Sens. Actuators, B
– volume: 92
  year: 2022
  publication-title: Nano Energy
– volume: 25
  start-page: 671
  year: 2021
  publication-title: Trends Cognit. Sci.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 15
  start-page: 353
  year: 2013
  publication-title: Biomed. Microdevices
– volume: 7
  start-page: 533
  year: 2023
  publication-title: Nat. Biomed. Eng.
– volume: 21
  year: 2019 2019
  publication-title: J. Med. Internet Res. bioRxiv
– volume: 267
  start-page: 126
  year: 2016
  publication-title: J. Neurosci. Methods
– volume: 13
  start-page: 15
  year: 2001
  publication-title: NeuroImage
– volume: 185
  start-page: 117
  year: 1960
  publication-title: Nature
– volume: 6
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 485
  start-page: 372
  year: 2012
  publication-title: Nature
– volume: 1
  start-page: 66
  year: 2014
  publication-title: Brain‐Comput. Interfaces
– ident: e_1_2_9_83_1
  doi: 10.1016/S1388-2457(00)00533-2
– ident: e_1_2_9_52_2
  doi: 10.1016/j.biomaterials.2014.01.038
– ident: e_1_2_9_44_1
  doi: 10.1016/j.biomaterials.2013.07.016
– ident: e_1_2_9_129_1
  doi: 10.1109/EDTM50988.2021.9420850
– ident: e_1_2_9_134_1
  doi: 10.1002/advs.201900813
– ident: e_1_2_9_28_1
  doi: 10.1007/s12264-012-1250-6
– ident: e_1_2_9_61_1
  doi: 10.1038/s41586-018-0649-2
– ident: e_1_2_9_123_1
  doi: 10.1007/s10544-013-9742-3
– ident: e_1_2_9_80_2
  doi: 10.1002/adma.201706520
– ident: e_1_2_9_183_1
  doi: 10.1038/s41467-019-10581-7
– ident: e_1_2_9_154_1
  doi: 10.1007/s10544-009-9357-x
– ident: e_1_2_9_104_1
  doi: 10.1016/j.jneumeth.2016.04.009
– ident: e_1_2_9_60_1
  doi: 10.1002/adfm.202112045
– ident: e_1_2_9_132_1
  doi: 10.1002/jbm.a.31047
– ident: e_1_2_9_186_1
  doi: 10.1038/s41563-020-0679-7
– ident: e_1_2_9_55_1
  doi: 10.1002/adfm.202105857
– ident: e_1_2_9_88_1
  doi: 10.1016/j.sna.2019.05.017
– ident: e_1_2_9_81_1
  doi: 10.1088/2058-8585/abc3ca
– ident: e_1_2_9_107_1
  doi: 10.1016/j.clinph.2004.10.001
– volume: 36
  start-page: 147
  year: 2020
  ident: e_1_2_9_184_1
  publication-title: Biomed. Eng.
– ident: e_1_2_9_56_1
  doi: 10.3389/fnhum.2014.00156
– ident: e_1_2_9_23_1
  doi: 10.1056/NEJMoa2027540
– ident: e_1_2_9_30_1
  doi: 10.1016/j.neuron.2021.06.012
– ident: e_1_2_9_37_5
  doi: 10.1097/PHM.0000000000001836
– ident: e_1_2_9_6_1
  doi: 10.1136/jnnp.74.1.9
– ident: e_1_2_9_64_1
  doi: 10.1016/j.mattod.2019.12.026
– ident: e_1_2_9_5_1
  doi: 10.1016/j.tics.2021.04.003
– ident: e_1_2_9_120_1
  doi: 10.1088/1741-2552/ac1984
– ident: e_1_2_9_96_2
  doi: 10.1016/j.sna.2015.10.041
– ident: e_1_2_9_33_1
  doi: 10.1016/j.pneurobio.2020.101790
– ident: e_1_2_9_57_2
  doi: 10.1038/s42003-021-01768-0
– volume: 11
  start-page: 756
  year: 2017
  ident: e_1_2_9_84_1
  publication-title: Front. Neurosci.
– ident: e_1_2_9_181_1
  doi: 10.1038/s41378-021-00248-z
– ident: e_1_2_9_48_1
  doi: 10.1016/j.snb.2018.08.155
– ident: e_1_2_9_89_3
  doi: 10.1073/pnas.1424875112
– ident: e_1_2_9_3_1
  doi: 10.1016/j.neuron.2016.10.018
– ident: e_1_2_9_101_1
  doi: 10.1016/j.sna.2013.06.013
– ident: e_1_2_9_177_1
  doi: 10.1227/01.NEU.0000180810.16964.3E
– ident: e_1_2_9_66_1
  doi: 10.1038/s41528
– ident: e_1_2_9_92_1
  doi: 10.1002/adhm.201900234
– ident: e_1_2_9_157_1
  doi: 10.1002/advs.201801617
– ident: e_1_2_9_170_1
  doi: 10.1081/DDC-120003853
– ident: e_1_2_9_153_2
  doi: 10.1109/JMEMS.2013.2262591
– ident: e_1_2_9_172_1
  doi: 10.1016/j.mtcomm.2021.102853
– ident: e_1_2_9_75_1
  doi: 10.1002/adfm.201700232
– ident: e_1_2_9_126_1
  doi: 10.1126/science.1102896
– ident: e_1_2_9_26_1
  doi: 10.1038/s42003-021-02891-8
– ident: e_1_2_9_71_1
  doi: 10.1038/s41928-021-00631-8
– ident: e_1_2_9_38_6
  doi: 10.1038/s41598-017-07823-3
– ident: e_1_2_9_81_2
  doi: 10.1109/BIOCAS.2018.8584672
– ident: e_1_2_9_89_2
  doi: 10.1038/srep16743
– ident: e_1_2_9_149_1
  doi: 10.1016/j.sna.2011.12.017
– ident: e_1_2_9_165_1
  doi: 10.1002/adfm.202200457
– ident: e_1_2_9_161_1
  doi: 10.1016/j.jneumeth.2013.06.001
– ident: e_1_2_9_25_1
  doi: 10.1088/1741-2552/aaf594
– ident: e_1_2_9_86_1
  doi: 10.1016/j.sna.2021.112727
– ident: e_1_2_9_113_1
  doi: 10.1089/soro.2018.0116
– ident: e_1_2_9_38_3
  doi: 10.3389/fnins.2019.00893
– ident: e_1_2_9_10_1
  doi: 10.1038/s41583-019-0140-6
– ident: e_1_2_9_38_5
  doi: 10.1088/1741-2552/aa66dd
– ident: e_1_2_9_21_1
  doi: 10.1088/1741-2552/abc742
– ident: e_1_2_9_98_2
  doi: 10.3390/s150923459
– ident: e_1_2_9_139_1
  doi: 10.1109/TBME.1970.4502738
– ident: e_1_2_9_57_3
  doi: 10.1126/sciadv.abm3785
– ident: e_1_2_9_142_1
  doi: 10.1002/adma.201602083
– ident: e_1_2_9_102_2
  doi: 10.3390/mi10080518
– ident: e_1_2_9_14_1
  doi: 10.1088/1741-2560/2/4/008
– ident: e_1_2_9_45_1
  doi: 10.1016/j.vacuum.2016.12.024
– ident: e_1_2_9_69_1
  doi: 10.1016/j.eml.2019.100510
– ident: e_1_2_9_138_1
  doi: 10.1088/1741-2560/6/3/036003
– ident: e_1_2_9_99_1
  doi: 10.1109/TNSRE.2018.2811752
– ident: e_1_2_9_37_6
  doi: 10.1109/T-AFFC.2011.15
– ident: e_1_2_9_37_2
  doi: 10.3389/fnins.2018.00239
– ident: e_1_2_9_46_1
  doi: 10.1038/s41598-019-49772-z
– ident: e_1_2_9_118_1
  doi: 10.1038/ncomms4329
– ident: e_1_2_9_125_1
  doi: 10.3390/s16111826
– ident: e_1_2_9_119_1
  doi: 10.1021/acsanm.1c00533
– ident: e_1_2_9_63_1
  doi: 10.1038/s41551-018-0321-z
– ident: e_1_2_9_67_1
  doi: 10.1039/b912102a
– ident: e_1_2_9_89_1
  doi: 10.1038/s41598-017-06925-2
– ident: e_1_2_9_80_1
  doi: 10.1016/j.neuron.2014.12.035
– ident: e_1_2_9_171_1
  doi: 10.1517/17425241003602259
– ident: e_1_2_9_18_1
  doi: 10.1038/d41586-022-01047-w
– ident: e_1_2_9_27_1
  doi: 10.1038/s41467-019-10638-7
– ident: e_1_2_9_76_2
  doi: 10.1088/1741-2552/abe245
– ident: e_1_2_9_134_2
  doi: 10.1002/adfm.202105568
– ident: e_1_2_9_13_2
– ident: e_1_2_9_50_2
  doi: 10.3390/mi7100180
– volume: 165
  year: 2018
  ident: e_1_2_9_136_1
  publication-title: J. Visualized Exp.
– ident: e_1_2_9_109_1
  doi: 10.5220/0004738700120022
– ident: e_1_2_9_40_1
  doi: 10.1109/THMS.2018.2830647
– ident: e_1_2_9_176_1
  doi: 10.1002/adma.202100221
– ident: e_1_2_9_15_1
  doi: 10.1016/S0304-3940(97)00889-6
– ident: e_1_2_9_73_2
  doi: 10.1101/578542
– ident: e_1_2_9_86_3
  doi: 10.1002/adhm.201700994
– ident: e_1_2_9_37_1
  doi: 10.3389/fnins.2018.00300
– ident: e_1_2_9_166_1
  doi: 10.1002/app.47296
– volume: 268
  start-page: 6
  year: 2021
  ident: e_1_2_9_37_4
  publication-title: Clin. Neurophysiol.
– ident: e_1_2_9_91_2
  doi: 10.1021/acsami.8b06484
– ident: e_1_2_9_103_1
  doi: 10.1016/j.sna.2017.12.048
– ident: e_1_2_9_185_1
  doi: 10.1038/s41928-022-00913-9
– ident: e_1_2_9_97_1
  doi: 10.3390/s141223758
– ident: e_1_2_9_158_1
  doi: 10.1088/0960-1317/24/6/065015
– ident: e_1_2_9_135_1
  doi: 10.1021/acsabm.1c00923
– ident: e_1_2_9_12_1
  doi: 10.1016/0013-4694(88)90149-6
– ident: e_1_2_9_52_1
  doi: 10.1113/jphysiol.2012.228114
– ident: e_1_2_9_182_1
  doi: 10.1016/j.wneu.2016.05.010
– ident: e_1_2_9_11_1
  doi: 10.1016/S1388-2457(02)00057-3
– ident: e_1_2_9_47_1
  doi: 10.1109/TBME.2020.3022615
– ident: e_1_2_9_94_1
  doi: 10.1126/sciadv.abe7432
– ident: e_1_2_9_29_1
  doi: 10.3390/medicina57030215
– ident: e_1_2_9_127_2
  doi: 10.1038/nnano.2008.174
– ident: e_1_2_9_147_1
  doi: 10.1109/FLEPS49123.2020.9239488
– ident: e_1_2_9_131_1
  doi: 10.1002/macp.201800561
– ident: e_1_2_9_156_1
  doi: 10.1039/C9RA07391D
– ident: e_1_2_9_85_1
  doi: 10.1002/hbm.25721
– ident: e_1_2_9_39_1
  doi: 10.1109/TNSRE.2018.2790359
– ident: e_1_2_9_98_5
  doi: 10.1088/1741-2560/8/2/025008
– ident: e_1_2_9_32_1
  doi: 10.1038/s41591-020-01175-8
– ident: e_1_2_9_127_1
  doi: 10.1016/j.addr.2013.07.002
– ident: e_1_2_9_115_1
  doi: 10.1016/j.nanoen.2021.106735
– ident: e_1_2_9_117_1
  doi: 10.1016/j.snb.2017.02.164
– ident: e_1_2_9_38_1
  doi: 10.1016/j.clinph.2017.02.025
– ident: e_1_2_9_41_1
  doi: 10.1109/JPROC.2003.820544
– ident: e_1_2_9_128_1
  doi: 10.1021/acsmaterialslett.0c00203
– ident: e_1_2_9_74_1
  doi: 10.1006/nimg.2000.0680
– ident: e_1_2_9_114_1
  doi: 10.1007/s11431-020-1644-6
– ident: e_1_2_9_42_2
  doi: 10.1016/S0361-9230(99)00231-2
– ident: e_1_2_9_37_3
  doi: 10.1212/01.wnl.0000168899.11598.00
– volume: 1
  start-page: 111
  year: 2013
  ident: e_1_2_9_1_1
  publication-title: Science
– ident: e_1_2_9_4_1
  doi: 10.1016/j.neuron.2016.10.050
– ident: e_1_2_9_73_1
  doi: 10.2196/16194
– ident: e_1_2_9_16_1
  doi: 10.1080/2326263X.2014.912881
– ident: e_1_2_9_111_1
  doi: 10.1021/acsaelm.0c00653
– ident: e_1_2_9_2_1
  doi: 10.1016/j.neuron.2016.10.046
– ident: e_1_2_9_116_2
  doi: 10.1016/j.matt.2022.01.012
– ident: e_1_2_9_159_1
  doi: 10.1088/0960-1317/25/12/125003
– volume: 2
  year: 2014
  ident: e_1_2_9_124_1
  publication-title: IEEE J. Transl. Eng. Health Med.
– ident: e_1_2_9_95_2
  doi: 10.21014/acta_imeko.v3i3.94
– ident: e_1_2_9_31_1
  doi: 10.1038/s41591-021-01480-w
– ident: e_1_2_9_49_1
  doi: 10.1039/C8SM00337H
– ident: e_1_2_9_110_1
  doi: 10.1088/1741-2552/ac41ab
– ident: e_1_2_9_133_1
  doi: 10.1039/D1TC00625H
– ident: e_1_2_9_78_1
  doi: 10.1088/1741-2560/13/4/046020
– ident: e_1_2_9_58_1
  doi: 10.1038/s41551-020-00615-7
– ident: e_1_2_9_167_2
  doi: 10.1002/adfm.200600669
– ident: e_1_2_9_150_1
  doi: 10.1002/adhm.202100646
– ident: e_1_2_9_41_2
  doi: 10.1109/10.83588
– ident: e_1_2_9_153_1
  doi: 10.1088/0960-1317/20/6/064014
– ident: e_1_2_9_183_2
  doi: 10.1007/s10483-020-2689-9
– ident: e_1_2_9_151_1
  doi: 10.1038/s41598-018-33083-w
– ident: e_1_2_9_121_1
  doi: 10.1002/adfm.201503316
– ident: e_1_2_9_141_1
  doi: 10.1109/MEMS51782.2021.9375131
– ident: e_1_2_9_168_1
  doi: 10.1016/j.biomaterials.2021.121352
– ident: e_1_2_9_93_1
  doi: 10.1109/JSEN.2019.2912667
– ident: e_1_2_9_38_4
  doi: 10.1186/1743-0003-2-23
– ident: e_1_2_9_102_1
  doi: 10.1088/1741-2552/abbd50
– ident: e_1_2_9_126_2
  doi: 10.1016/j.carbon.2021.12.056
– ident: e_1_2_9_57_1
  doi: 10.1126/science.abh3551
– ident: e_1_2_9_113_2
  doi: 10.1126/science.aac5082
– ident: e_1_2_9_116_4
  doi: 10.1002/adma.201702181
– ident: e_1_2_9_164_1
  doi: 10.1002/advs.202201059
– ident: e_1_2_9_148_1
  doi: 10.1126/sciadv.abh0040
– ident: e_1_2_9_20_1
  doi: 10.1038/s41586-021-03506-2
– ident: e_1_2_9_54_1
  doi: 10.1021/acsnano.0c00672
– ident: e_1_2_9_35_1
  doi: 10.1038/s41587-020-0662-5
– ident: e_1_2_9_152_1
  doi: 10.1002/adfm.201500110
– ident: e_1_2_9_70_1
  doi: 10.1038/s41467-021-23802-9
– ident: e_1_2_9_140_1
  doi: 10.1109/TBME.2005.855712
– ident: e_1_2_9_173_1
  doi: 10.1016/j.copbio.2021.07.027
– ident: e_1_2_9_167_1
  doi: 10.1021/jp111498e
– ident: e_1_2_9_34_1
  doi: 10.1038/s41551-021-00736-7
– ident: e_1_2_9_98_6
  doi: 10.1016/j.snb.2017.01.052
– ident: e_1_2_9_59_1
  doi: 10.1007/s12274-018-2005-0
– ident: e_1_2_9_36_1
  doi: 10.1093/brain/awz114
– ident: e_1_2_9_169_1
  doi: 10.1016/S0006-8993(03)03023-3
– ident: e_1_2_9_17_1
  doi: 10.1016/B978-0-444-63934-9.00002-0
– ident: e_1_2_9_62_1
  doi: 10.1021/acs.nanolett.8b04895
– ident: e_1_2_9_162_1
  doi: 10.1016/j.eml.2014.12.010
– ident: e_1_2_9_160_1
  doi: 10.1126/science.1260318
– ident: e_1_2_9_82_1
  doi: 10.1016/j.neuron.2018.11.002
– ident: e_1_2_9_144_1
  doi: 10.1088/1741-2560/8/3/034001
– ident: e_1_2_9_137_1
  doi: 10.1002/adma.201201386
– ident: e_1_2_9_51_1
  doi: 10.1016/S0924-4247(97)01494-5
– ident: e_1_2_9_92_2
  doi: 10.1016/j.sna.2014.03.029
– ident: e_1_2_9_122_1
  doi: 10.1126/scitranslmed.abf8629
– ident: e_1_2_9_106_1
  doi: 10.1088/1741-2552/abeeab
– ident: e_1_2_9_130_2
  doi: 10.1109/TNSRE.2014.2342880
– ident: e_1_2_9_179_1
  doi: 10.1002/adma.202108203
– ident: e_1_2_9_146_1
  doi: 10.1021/am502454t
– volume: 2020
  year: 2020
  ident: e_1_2_9_116_1
  publication-title: Research
– ident: e_1_2_9_93_2
– ident: e_1_2_9_108_1
  doi: 10.1016/j.snb.2016.10.005
– ident: e_1_2_9_42_1
  doi: 10.1088/1741-2560/8/3/036023
– ident: e_1_2_9_116_5
  doi: 10.1073/pnas.1810827115
– ident: e_1_2_9_116_3
  doi: 10.1126/sciadv.1700015
– ident: e_1_2_9_76_1
  doi: 10.1126/scitranslmed.abj1441
– ident: e_1_2_9_95_3
  doi: 10.1016/j.neuroimage.2018.09.012
– ident: e_1_2_9_79_1
  doi: 10.1038/s41598-019-50834-5
– ident: e_1_2_9_98_3
  doi: 10.1002/adhm.201300311
– ident: e_1_2_9_91_1
  doi: 10.3390/s19184014
– ident: e_1_2_9_19_1
  doi: 10.1126/scitranslmed.3007801
– ident: e_1_2_9_38_2
  doi: 10.1016/j.physbeh.2019.04.025
– ident: e_1_2_9_53_1
  doi: 10.1098/rsif.2008.0071
– ident: e_1_2_9_112_1
  doi: 10.1038/s41467-019-09003-5
– ident: e_1_2_9_112_2
  doi: 10.1039/C9CC04239C
– ident: e_1_2_9_24_1
  doi: 10.1038/s41467-022-28859-8
– ident: e_1_2_9_95_1
  doi: 10.1111/psyp.12536
– ident: e_1_2_9_65_1
  doi: 10.1038/185117a0
– volume: 90
  start-page: 648
  year: 2010
  ident: e_1_2_9_155_1
  publication-title: J. Biomed. Mater. Res.
– ident: e_1_2_9_90_1
  doi: 10.1109/MPUL.2012.2216717
– ident: e_1_2_9_22_1
  doi: 10.1038/s41467-019-10994-4
– ident: e_1_2_9_98_4
  doi: 10.1088/1741-2560/10/3/036006
– ident: e_1_2_9_72_1
  doi: 10.1038/s41928-018-0071-7
– ident: e_1_2_9_72_2
  doi: 10.1126/sciadv.1600955
– ident: e_1_2_9_18_2
  doi: 10.7554/eLife.18554
– ident: e_1_2_9_143_1
  doi: 10.3390/s19051069
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jneumeth.2005.08.015
– ident: e_1_2_9_163_1
  doi: 10.1126/science.abj7564
– ident: e_1_2_9_100_1
  doi: 10.1016/j.snb.2015.11.141
– volume: 37
  start-page: 2649
  year: 2015
  ident: e_1_2_9_132_2
  publication-title: Polym. Compos.
– ident: e_1_2_9_8_1
  doi: 10.1038/nature11076
– ident: e_1_2_9_174_1
  doi: 10.1039/D1LC00117E
– ident: e_1_2_9_7_1
  doi: 10.1038/nn1233
– ident: e_1_2_9_175_1
  doi: 10.1038/nmat2745
– ident: e_1_2_9_67_2
  doi: 10.1039/c3bm00166k
– ident: e_1_2_9_98_1
  doi: 10.1016/j.sna.2017.10.042
– ident: e_1_2_9_50_1
  doi: 10.1109/10.914800
– ident: e_1_2_9_42_3
  doi: 10.1109/MEMS46641.2020.9056310
– volume: 59
  start-page: 317
  year: 2010
  ident: e_1_2_9_105_1
  publication-title: J. Pharm. Sci.
– ident: e_1_2_9_86_2
  doi: 10.3390/s19204572
– volume: 2
  start-page: 157
  year: 1973
  ident: e_1_2_9_13_1
  publication-title: Annu. Rev. Biophys.
– ident: e_1_2_9_180_1
  doi: 10.1038/s41582-020-00426-z
– ident: e_1_2_9_77_1
  doi: 10.1038/nn.3905
– ident: e_1_2_9_145_1
  doi: 10.1533/9780857096289.1.150
– ident: e_1_2_9_153_3
  doi: 10.1109/TBME.2012.2196274
– ident: e_1_2_9_68_1
  doi: 10.1038/nature20118
– ident: e_1_2_9_87_1
  doi: 10.1088/1741-2560/13/4/046021
– ident: e_1_2_9_96_1
  doi: 10.1016/j.snb.2016.12.131
– ident: e_1_2_9_86_4
  doi: 10.1016/j.sna.2018.09.045
– ident: e_1_2_9_130_1
  doi: 10.1109/JSEN.2018.2880833
– volume: 26
  start-page: 6062
  year: 2016
  ident: e_1_2_9_150_2
  publication-title: Eur. J. Soil Biol.
– ident: e_1_2_9_9_1
  doi: 10.1038/nmeth.3620
– ident: e_1_2_9_84_2
  doi: 10.1109/BCI48061.2020.9061646
– ident: e_1_2_9_178_1
  doi: 10.1007/s10544-020-00517-0
SSID ssj0009606
Score 2.6259537
SecondaryResourceType review_article
Snippet Brain–computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research...
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2211012
SubjectTerms brain disorders diagnosis
Brain research
Electrodes
electrophysiological technique
flexible bioelectronics
Human-computer interface
human–machine interface
hydrogels
Materials science
Mental disorders
Modulus of elasticity
Signal quality
Title Flexible Electrodes for Brain–Computer Interface System
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202211012
https://www.ncbi.nlm.nih.gov/pubmed/37143288
https://www.proquest.com/docview/2892536451
https://www.proquest.com/docview/2810918420
Volume 35
WOSCitedRecordID wos001083018500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NS8MwGMcfdPOgB99fqnNUEDyVpWnTpsfpHB50iDjYrSRpAsLoZC-e_Q5-Qz-Jfdqu2xAR9NbSpA1JnuafhPz-AJehZCoJA-H4LhE4QQmciPHA0VppV6hA-crPzSbCXo8PBtHj0in-gg9RLbhhZOT_awxwISetBTRUJDk3iOIMBm2G6zTrvKwG9c5Tt3-_AO8Gub8m7vc5UeDzObiR0NbqG1YHpm9qc1W85qNPd-f_5d6F7VJ52u2iq-zBmk73YWuJR3gAURfxmHKo7dvCHSfREztTtfY1Gkl8vn_MPSDsfCHRCKXtAnl-CP3u7fPNnVN6KzjKCz3qIGA89JjyXYWKSWaXzARCMMqEx3nkc2MMJ57iLDCZapCZMtNEM5rJScZk4h1BLR2l-gRso1wpI-ESE7o-82SUJCQ0lGtFNCVKWODMKzZWJXgc_S-GcYFMpjFWSVxViQVXVfrXArnxY8rGvJ3iMvQmcTaDpAw3V10LLqrHWdDgTohI9WiGaZCHyn1KLDgu2rf6FCIMPcq5BTRvxl_KELc7D-3q7vQvmc5gE03sixOODahNxzN9DhvqbfoyGTdhPRzwZtmtvwBmAvRE
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bS8MwGIY_ZBPUC8-HeqwgeFVM06RNL6duTJxDZAPvSpomIIwpbvPa_-A_9JeYr-2qQ0QQ71qatiH50rxJmucFOIlSrrIolB7zicQBSujFXISe1kr7UoWKKZabTUTdrri_j2_LvwlxL0zBh6gm3LBl5N9rbOA4IX32SQ2VWQ4OojiEQZ_hOrOxZIO8fnnX6nc-ybthbrCJC35eHDIxJTcSejb7hNme6ZvcnFWveffTWvmHjK_Ccqk93UYRLGswp4frsPSFSLgBcQsBmelAu83CHyfTI9fqWvccrSTeX9-mLhBuPpVopNJuAT3fhH6r2btoe6W7gqeCKKAeIsajgCvmK9RMqT3kJpSSUy4DIWImjDGCBErw0FjdkFptponm1ApKztMs2ILa8HGod8A1yk_TWPrERD7jQRpnGYkMFVoRTYmSDnjTkk1UiR5HB4xBUkCTaYJFklRF4sBplf6pgG78mHJ_WlFJ2fhGiR1DUo7Lq74Dx9Vl22xwLUQO9eME0yARVTBKHNguKrh6FUIMAyqEAzSvx1_ykDQubxrV2e5fbjqChXbvppN0rrrXe7CIlvbFfsd9qI2fJ_oA5tXL-GH0fFhG9wdXBfdM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1bS8MwGIY_ZBPRC8-H6tQKglfFNE3a9HK6FUUdIg52V9I0AUHm2MFr_4P_0F9iv7brHCKCeNfStA1JvuZN0jwvwGmQcJUGvnSYSyQOUHwn5MJ3tFbalcpXTLHcbCLodESvF96XfxPiXpiCD1FNuGFk5N9rDHA9SM35jBoq0xwcRHEIgz7DdYZOMjWotx6i7u2MvOvnBpu44OeEPhNTciOh5_NPmO-ZvsnNefWadz_R2j9kfB1WS-1pN4vGsgELur8JK1-IhFsQRgjITJ613S78cVI9sjNda1-glcTH2_vUBcLOpxKNVNouoOfb0I3aj5dXTumu4Cgv8KiDiPHA44q5CjVTkh1y40vJKZeeECETxhhBPCW4bzLdkGTaTBPNaSYoOU9Sbwdq_Ze-3gPbKDdJQukSE7iMe0mYpiQwVGhFNCVKWuBMSzZWJXocHTCe4wKaTGMskrgqEgvOqvSDArrxY8rGtKLiMvhGcTaGpByXV10LTqrLWdjgWojs65cJpkEiqmCUWLBbVHD1KoQYelQIC2hej7_kIW627prV2f5fbjqGpftWFN9ed24OYBkd7Yvtjg2ojYcTfQiL6nX8NBoelY37E-yX9sc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Electrodes+for+Brain%E2%80%93Computer+Interface+System&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Wang%2C+Junjie&rft.au=Wang%2C+Tengjiao&rft.au=Liu%2C+Haoyan&rft.au=Wang%2C+Kun&rft.date=2023-11-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=47&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.202211012&rft.externalDBID=10.1002%252Fadma.202211012&rft.externalDocID=ADMA202211012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon