Flexible Carbon Nanotube‐Epitaxially Grown Nanocrystals for Micro‐Thermoelectric Modules
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication pro...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 35; H. 46; S. e2304751 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.11.2023
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2.
This work presents an unconventional heteroepitaxial growth strategy to prepare high‐performance flexible and freestanding thermoelectric film with ordered and uniform microstructures. The integrated micro‐thermoelectric module based on the above films exhibits excellent energy harvesting and cooling performance, validating the potential of freestanding thermoelectric films for thermal energy efficient harvesting and management. |
|---|---|
| AbstractList | Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2. Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb) Te nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m K in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm . Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2. This work presents an unconventional heteroepitaxial growth strategy to prepare high‐performance flexible and freestanding thermoelectric film with ordered and uniform microstructures. The integrated micro‐thermoelectric module based on the above films exhibits excellent energy harvesting and cooling performance, validating the potential of freestanding thermoelectric films for thermal energy efficient harvesting and management. Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb) 2 Te 3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m −1 K −2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm −2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm −2 . Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb)2 Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m-1 K-2 in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm-2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm-2 .Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb)2 Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m-1 K-2 in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm-2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm-2 . |
| Author | Yu, Hailong Gao, Ning Tan, Jun Wan, Ye Wang, Ziqiang Yu, Zhi Song, Yujie He, Juan Jiang, Song Jin, Qun Li, Xiaoqi Zhao, Yang Qian, Cheng Cheng, Hui‐Ming Ding, Feng Tai, Kaiping Long, Xuehao Liu, Chang |
| Author_xml | – sequence: 1 givenname: Qun orcidid: 0000-0002-8710-7737 surname: Jin fullname: Jin, Qun organization: Leibniz Institute for Solid State and Materials Research – sequence: 2 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: University of Science and Technology of China – sequence: 3 givenname: Xuehao surname: Long fullname: Long, Xuehao organization: Hunan University of Technology – sequence: 4 givenname: Song surname: Jiang fullname: Jiang, Song organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Cheng surname: Qian fullname: Qian, Cheng organization: Ulsan National Institute of Science and Technology – sequence: 6 givenname: Feng surname: Ding fullname: Ding, Feng organization: Chinese Academy of Science – sequence: 7 givenname: Ziqiang surname: Wang fullname: Wang, Ziqiang organization: Jilin University – sequence: 8 givenname: Xiaoqi surname: Li fullname: Li, Xiaoqi organization: University of Science and Technology of China – sequence: 9 givenname: Zhi surname: Yu fullname: Yu, Zhi organization: Chinese Academy of Sciences – sequence: 10 givenname: Juan surname: He fullname: He, Juan organization: University of Science and Technology of China – sequence: 11 givenname: Yujie surname: Song fullname: Song, Yujie organization: University of Science and Technology of China – sequence: 12 givenname: Hailong surname: Yu fullname: Yu, Hailong organization: University of Science and Technology of China – sequence: 13 givenname: Ye surname: Wan fullname: Wan, Ye organization: Shenyang Jianzhu University – sequence: 14 givenname: Kaiping orcidid: 0000-0002-2756-1348 surname: Tai fullname: Tai, Kaiping email: kptai@imr.ac.cn organization: Advanced Manufacturing Science and Technology Guangdong Laboratory – sequence: 15 givenname: Ning surname: Gao fullname: Gao, Ning email: ning.gao@sdu.edu.cn organization: Chinese Academy of Sciences – sequence: 16 givenname: Jun surname: Tan fullname: Tan, Jun email: tanjun@jihualab.com organization: Foshan Univerisity – sequence: 17 givenname: Chang surname: Liu fullname: Liu, Chang email: cliu@imr.ac.cn organization: University of Science and Technology of China – sequence: 18 givenname: Hui‐Ming surname: Cheng fullname: Cheng, Hui‐Ming organization: Chinese Academy of Science |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37533116$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkTtPHDEUhS0ECgtJSxmNlCbNLH6MZzzlankEiYUGukiW7b1WjDzjxZ4RbJefwG_kl8Sr5SEhoVS3uN85uvecA7Tbhx4QOiJ4SjCmx2rZqSnFlOGq4WQHTQinpKxwy3fRBLeMl21diX10kNIdxritcf0F7bOGM0ZIPUG_zzw8Ou2hmKuoQ19cqT4Mo4bnv0-nKzeoR6e8XxfnMTxslyau06B8KmyIxcKZGDJ68wdiF8CDGaIzxSIsRw_pK9qzmYRvL_MQ3Z6d3sx_lZfX5xfz2WVpWMNIaSoArDUXxBJFCW6EhcZqi7XRtK0MJQ1g2gCzvFGbn4gQgi6NYILbitXsEP3c-q5iuB8hDbJzyYD3qocwJklFxetsj0VGf3xA78IY-3xdptqco-AtzdT3F2rUHSzlKrpOxbV8zS0D1RbI76cUwUqTsxpc6IeonJcEy009clOPfKsny6YfZK_OnwrareDBeVj_h5azk8XsXfsPLu2juA |
| CitedBy_id | crossref_primary_10_1016_j_enconman_2025_119621 crossref_primary_10_1007_s40820_024_01342_3 crossref_primary_10_1016_j_joule_2024_08_009 crossref_primary_10_1016_j_ijbiomac_2024_134248 crossref_primary_10_1021_acs_chemrev_5c00060 crossref_primary_10_1126_sciadv_adz1019 crossref_primary_10_1002_smtd_202400589 crossref_primary_10_1007_s12598_024_03011_1 crossref_primary_10_1016_j_cej_2024_154263 crossref_primary_10_1016_j_jpowsour_2024_234260 crossref_primary_10_1016_j_cej_2024_152599 crossref_primary_10_1016_j_carbon_2023_118670 crossref_primary_10_1016_j_carbon_2025_120215 |
| Cites_doi | 10.1038/s41467-018-07882-8 10.1039/C9EE01609K 10.1126/science.abo6997 10.1126/science.abq0682 10.1002/adfm.202111373 10.1126/sciadv.aaz8423 10.1007/s002140050523 10.1039/C9EE01777A 10.1103/PhysRevLett.78.1396 10.1126/science.aaq1479 10.35848/1882-0786/aba5c4 10.1016/j.joule.2021.03.017 10.1038/s41928-021-00622-9 10.1016/j.scriptamat.2016.03.014 10.1021/nl101156v 10.1002/adfm.202010695 10.1038/ncomms14886 10.1039/C7EE03617E 10.1016/j.nanoen.2018.06.020 10.1038/s41467-019-09707-8 10.1126/science.aba9778 10.1016/j.mtener.2022.101075 10.1126/science.1156446 10.1115/1.1454111 10.1038/s41928-018-0148-3 10.1016/j.joule.2021.11.008 10.1021/acsenergylett.1c00801 10.1038/nmat943 10.1109/TADVP.2003.818062 10.1038/s41563-018-0217-z 10.1002/adma.201807916 10.1063/1.4905294 10.1038/s41560-017-0071-2 10.1126/sciadv.abe0586 10.1002/adma.202104786 10.3390/challe6010117 10.1063/1.3382344 10.1126/science.aax7792 10.1038/nnano.2008.417 10.1016/j.jallcom.2020.154239 10.1002/adfm.201900304 10.1021/acs.nanolett.1c02847 10.1038/s41928-022-00776-0 10.1103/PhysRevB.58.3641 10.1002/aenm.201401391 10.1002/adma.201604899 10.1063/1.3078025 10.1021/acs.chemrev.0c00026 10.3390/mi5041219 10.1016/j.nanoen.2017.01.013 10.1038/s41928-022-00860-5 10.1039/D1TA02206G 10.1063/1.3457902 10.1038/s41893-022-01003-6 10.1038/s41467-018-05999-4 10.1103/PhysRevB.78.115322 10.1016/j.apenergy.2014.11.040 10.1038/nmat4251 10.1038/nature13184 10.4028/www.scientific.net/MSF.787.198 10.1002/adma.201802016 10.1039/c3nr01499a 10.1126/sciadv.aap9264 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202304751 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 37533116 10_1002_adma_202304751 ADMA202304751 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 52073290; 51927803; 51571193; 12075141; 52130209; 52188101 – fundername: Science Fund for Distinguished Young Scholars of Liaoning Province funderid: 2023JH6/100500004 – fundername: Science Foundation of Shenyang National Laboratory – fundername: Ministry of Science and Technology of China funderid: 2017YFA0700705; 2017YFA0700702; 2022YFA1203303; 2019QY(Y)0501 – fundername: Materials Science and the Science Foundation – fundername: National Natural Science Foundation of China grantid: 52073290 – fundername: National Natural Science Foundation of China grantid: 51927803 – fundername: National Natural Science Foundation of China grantid: 51571193 – fundername: Ministry of Science and Technology of China grantid: 2017YFA0700705 – fundername: National Natural Science Foundation of China grantid: 12075141 – fundername: Ministry of Science and Technology of China grantid: 2017YFA0700702 – fundername: Ministry of Science and Technology of China grantid: 2019QY(Y)0501 – fundername: National Natural Science Foundation of China grantid: 52130209 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADNMO AETEA AFFNX AGQPQ AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3731-c4ee0bb581f1a21078fe7fbf0bcb294c217e027e3f57a093518882dc8385f4363 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084865600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Oct 02 10:25:24 EDT 2025 Sun Nov 30 04:23:34 EST 2025 Mon Jul 21 05:14:55 EDT 2025 Sat Nov 29 07:22:07 EST 2025 Tue Nov 18 22:01:36 EST 2025 Sun Jul 06 04:45:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 46 |
| Keywords | flexible freestanding thermoelectric films carbon nanotube-(Bi,Sb)2Te3 hybrid 1D van der Waals-coupling guided epitaxial growth micro-thermoelectric cooler micro-thermoelectric generator |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-c4ee0bb581f1a21078fe7fbf0bcb294c217e027e3f57a093518882dc8385f4363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8710-7737 0000-0002-2756-1348 |
| PMID | 37533116 |
| PQID | 2890238592 |
| PQPubID | 2045203 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2845658108 proquest_journals_2890238592 pubmed_primary_37533116 crossref_citationtrail_10_1002_adma_202304751 crossref_primary_10_1002_adma_202304751 wiley_primary_10_1002_adma_202304751_ADMA202304751 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2010; 10 2017; 8 2021; 21 2018; 360 2010; 108 2020; 120 2023; 6 2019; 10 2019; 12 2020; 369 2008; 78 2019; 18 2020; 13 2013; 5 2019; 365 2022; 28 2022; 377 2022; 378 2020; 6 2018; 9 2020; 4 2018; 3 2014; 5 2021; 31 2018; 4 2018; 1 2016; 119 2017; 33 2003; 2 2022; 34 2019; 29 2018; 30 2022; 32 2015; 139 1998; 58 2021; 9 2021; 7 2021; 6 2015; 14 2015; 6 2021; 5 2015; 5 2021; 4 2019; 31 2006 2017; 29 1999; 103 2020; 828 2008; 320 2014; 787 2014; 508 2022; 5 2022; 6 2002; 124 1997; 78 2010; 132 2003; 26 2018; 50 2015; 117 2009; 4 2018; 11 2009; 105 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Rowe D. M. (e_1_2_8_47_1) 2006 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 Mao J. (e_1_2_8_10_1) 2020; 4 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 21 start-page: 9093 year: 2021 publication-title: Nano Lett. – volume: 78 start-page: 1396 year: 1997 publication-title: Phys. Rev. Lett. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 360 start-page: 778 year: 2018 publication-title: Science – volume: 6 start-page: 193 year: 2022 publication-title: Joule – volume: 33 start-page: 55 year: 2017 publication-title: Nano Energy – volume: 369 start-page: 542 year: 2020 publication-title: Science – volume: 10 start-page: 1756 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 333 year: 2022 publication-title: Nat. Electron. – volume: 4 start-page: 454 year: 2020 publication-title: Nat. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 50 start-page: 766 year: 2018 publication-title: Nano Energy – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 4 start-page: 579 year: 2021 publication-title: Nat. Electron. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 828 year: 2020 publication-title: J. Alloys Compd. – volume: 108 year: 2010 publication-title: J. Appl. Phys. – volume: 2 start-page: 528 year: 2003 publication-title: Nat. Mater. – volume: 6 start-page: 2378 year: 2021 publication-title: ACS Energy Lett. – volume: 58 start-page: 3641 year: 1998 publication-title: Phys. Rev. B – volume: 119 start-page: 33 year: 2016 publication-title: Scr. Mater. – volume: 787 start-page: 198 year: 2014 publication-title: Mater. Sci. Forum – volume: 508 start-page: 373 year: 2014 publication-title: Nature – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 28 year: 2022 publication-title: Mater. Today Energy – volume: 105 year: 2009 publication-title: J. Appl. Phys. – volume: 320 start-page: 634 year: 2008 publication-title: Science – volume: 103 start-page: 124 year: 1999 publication-title: Theor. Chem. Acc. – volume: 365 start-page: 495 year: 2019 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 78 year: 2008 publication-title: Phys. Rev. B – volume: 139 start-page: 205 year: 2015 publication-title: Appl. Energy – volume: 18 start-page: 62 year: 2019 publication-title: Nat. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 9 start-page: 3586 year: 2018 publication-title: Nat. Commun. – volume: 26 start-page: 227 year: 2003 publication-title: IEEE Trans. Adv. Packag. – volume: 12 start-page: 2983 year: 2019 publication-title: Energy Environ. Sci. – volume: 13 year: 2020 publication-title: Appl. Phys. Express – volume: 6 start-page: 117 year: 2015 publication-title: Challenges – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 14 start-page: 622 year: 2015 publication-title: Nat. Mater. – volume: 377 start-page: 854 year: 2022 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 117 year: 2015 publication-title: J. Appl. Phys. – volume: 5 start-page: 723 year: 2022 publication-title: Nat. Electron. – volume: 378 start-page: 768 year: 2022 publication-title: Science – volume: 5 start-page: 1196 year: 2021 publication-title: Joule – volume: 5 start-page: 1219 year: 2014 publication-title: Micromachines – volume: 13 start-page: 1240 year: 2020 publication-title: Energy Environ. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 180 year: 2023 publication-title: Nat. Sustain. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 124 start-page: 223 year: 2002 publication-title: J. Heat Transfer – volume: 3 start-page: 301 year: 2018 publication-title: Nat. Energy – volume: 5 start-page: 7017 year: 2013 publication-title: Nanoscale – volume: 4 start-page: 235 year: 2009 publication-title: Nat. Nanotechnol. – year: 2006 – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 555 year: 2018 publication-title: Nat. Electron. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 10 start-page: 1 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 1307 year: 2018 publication-title: Energy Environ. Sci. – volume: 120 start-page: 7399 year: 2020 publication-title: Chem. Rev. – volume: 10 start-page: 3373 year: 2010 publication-title: Nano Lett. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_16_1 doi: 10.1038/s41467-018-07882-8 – ident: e_1_2_8_17_1 doi: 10.1039/C9EE01609K – ident: e_1_2_8_57_1 doi: 10.1126/science.abo6997 – ident: e_1_2_8_25_1 doi: 10.1126/science.abq0682 – ident: e_1_2_8_27_1 doi: 10.1002/adfm.202111373 – ident: e_1_2_8_24_1 doi: 10.1126/sciadv.aaz8423 – ident: e_1_2_8_62_1 doi: 10.1007/s002140050523 – ident: e_1_2_8_23_1 doi: 10.1039/C9EE01777A – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevLett.78.1396 – ident: e_1_2_8_40_1 doi: 10.1126/science.aaq1479 – ident: e_1_2_8_35_1 doi: 10.35848/1882-0786/aba5c4 – ident: e_1_2_8_13_1 doi: 10.1016/j.joule.2021.03.017 – ident: e_1_2_8_54_1 doi: 10.1038/s41928-021-00622-9 – ident: e_1_2_8_49_1 doi: 10.1016/j.scriptamat.2016.03.014 – ident: e_1_2_8_39_1 doi: 10.1021/nl101156v – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202010695 – ident: e_1_2_8_21_1 doi: 10.1038/ncomms14886 – ident: e_1_2_8_22_1 doi: 10.1039/C7EE03617E – ident: e_1_2_8_28_1 doi: 10.1016/j.nanoen.2018.06.020 – ident: e_1_2_8_32_1 doi: 10.1038/s41467-019-09707-8 – volume: 4 start-page: 454 year: 2020 ident: e_1_2_8_10_1 publication-title: Nat. Mater. – ident: e_1_2_8_37_1 doi: 10.1126/science.aba9778 – ident: e_1_2_8_36_1 doi: 10.1016/j.mtener.2022.101075 – ident: e_1_2_8_48_1 doi: 10.1126/science.1156446 – ident: e_1_2_8_5_1 doi: 10.1115/1.1454111 – ident: e_1_2_8_7_1 doi: 10.1038/s41928-018-0148-3 – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2021.11.008 – ident: e_1_2_8_15_1 doi: 10.1021/acsenergylett.1c00801 – ident: e_1_2_8_6_1 doi: 10.1038/nmat943 – ident: e_1_2_8_61_1 doi: 10.1109/TADVP.2003.818062 – ident: e_1_2_8_19_1 doi: 10.1038/s41563-018-0217-z – ident: e_1_2_8_3_1 doi: 10.1002/adma.201807916 – ident: e_1_2_8_45_1 doi: 10.1063/1.4905294 – ident: e_1_2_8_14_1 doi: 10.1038/s41560-017-0071-2 – ident: e_1_2_8_31_1 doi: 10.1126/sciadv.abe0586 – ident: e_1_2_8_20_1 doi: 10.1002/adma.202104786 – ident: e_1_2_8_2_1 doi: 10.3390/challe6010117 – ident: e_1_2_8_65_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_34_1 doi: 10.1126/science.aax7792 – ident: e_1_2_8_8_1 doi: 10.1038/nnano.2008.417 – ident: e_1_2_8_46_1 doi: 10.1016/j.jallcom.2020.154239 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.201900304 – ident: e_1_2_8_56_1 doi: 10.1021/acs.nanolett.1c02847 – ident: e_1_2_8_9_1 doi: 10.1038/s41928-022-00776-0 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevB.58.3641 – ident: e_1_2_8_52_1 doi: 10.1002/aenm.201401391 – ident: e_1_2_8_41_1 doi: 10.1002/adma.201604899 – ident: e_1_2_8_60_1 doi: 10.1063/1.3078025 – ident: e_1_2_8_12_1 doi: 10.1021/acs.chemrev.0c00026 – ident: e_1_2_8_58_1 doi: 10.3390/mi5041219 – ident: e_1_2_8_42_1 doi: 10.1016/j.nanoen.2017.01.013 – volume-title: Thermoelectrics Handbook: Macro to Nano year: 2006 ident: e_1_2_8_47_1 – ident: e_1_2_8_1_1 doi: 10.1038/s41928-022-00860-5 – ident: e_1_2_8_33_1 doi: 10.1039/D1TA02206G – ident: e_1_2_8_44_1 doi: 10.1063/1.3457902 – ident: e_1_2_8_26_1 doi: 10.1038/s41893-022-01003-6 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-018-05999-4 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.78.115322 – ident: e_1_2_8_55_1 doi: 10.1016/j.apenergy.2014.11.040 – ident: e_1_2_8_18_1 doi: 10.1038/nmat4251 – ident: e_1_2_8_38_1 doi: 10.1038/nature13184 – ident: e_1_2_8_43_1 doi: 10.4028/www.scientific.net/MSF.787.198 – ident: e_1_2_8_53_1 doi: 10.1002/adma.201802016 – ident: e_1_2_8_50_1 doi: 10.1039/c3nr01499a – ident: e_1_2_8_59_1 doi: 10.1126/sciadv.aap9264 |
| SSID | ssj0009606 |
| Score | 2.517284 |
| Snippet | Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution... Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2304751 |
| SubjectTerms | 1D van der Waals‐coupling guided epitaxial growth Antimony Bismuth Carbon nanotubes carbon nanotube‐(Bi,Sb)2Te3 hybrid Energy harvesting Epitaxial growth Figure of merit flexible freestanding thermoelectric films Materials science micro‐thermoelectric cooler micro‐thermoelectric generator Modules Nanocrystals Open circuit voltage Temperature gradients Thermal conductivity Thermal energy Thermal management Thermoelectric materials |
| Title | Flexible Carbon Nanotube‐Epitaxially Grown Nanocrystals for Micro‐Thermoelectric Modules |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304751 https://www.ncbi.nlm.nih.gov/pubmed/37533116 https://www.proquest.com/docview/2890238592 https://www.proquest.com/docview/2845658108 |
| Volume | 35 |
| WOSCitedRecordID | wos001084865600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aTQ_toU1_4_zhQKEnE0vySvJxSbLtIRtKSMIeCkaSZQg4drF3Q3PrI_QZ-yTVyF4nSymF9majsS1GM9I3GusbgPfWOVHCNYmUwhJmueCRtFRFQuWqMNIo6vd0r07F2Zmcz9PPD07xd_wQw4Ybeoafr9HBlW4P70lDVe55g3zeCM9Qb1BnvOMRbByfTy9P74l3ua-vifm-KOWJXBE3xvRw_Q3rC9NvaHMdvPrVZ_ri__u9Cc975BlOOlN5CY9s9QqePeAjfA1fpkiPqUsbHqlG11Xo5t56sdT25_cfJ1he5Juz1vIu_Iixu280zZ2Dl2UbOuwbzvDnPifqTK-5qbsCO9cmnNX5srTtG7icnlwcfYr68guRYYKRyCTWxlqPJSmIcpGhkIUVhS5ibTRNE-OCGeuCWsuKsVCoX-KiaZobyeS4SBhnb2FU1ZXdgpBxLSwpXHSUIILgSkvNc2N0bjmLUxFAtNJ9ZnpuciyRUWYdqzLNUGvZoLUAPgzyXztWjj9K7q6GMuu9s818ctX1MqUBHAzNzq8wWaIqWy9RBrGuJLEM4F1nAsOnmIvxGCE8AOpH-i99yCbHs8lwt_0vD-3AU7zuDkHuwmjRLO0ePDG3i-u22YfHYi73e8v_BU4bA-U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEB-kFbQP1r81tmoEwafQbDa3u3k82p4V7w6RVvoghN3NBgoxkdyd2Dc_gp_RT-LMJpd6iAjiY5JJsszO7M5vZ_c3AC8dOlEqDIu0phJmhRSRcomOpC50aZXViV_T_TCV87m6uMje9bsJ6SxMxw8xLLiRZ_jxmhycFqQPr1lDdeGJg3ziiA5Rb6doS2jk28fvJ-fTa-Zd4QtsUsIvykSq1syNcXK4-YXNmem3cHMzevXTz2T3PzT8LtzpY89w3BnLPbjh6vuw8wsj4QP4OCGCTFO58Ei3pqlDHH2b5cq4H9--n1CBka9or9VV-JrQu39o2ysMMKtFiNFvOKPtfSiKxtd-aroSO5c2nDXFqnKLh3A-OTk7Oo36AgyR5ZKzyKbOxcaMFCuZRmwoVelkacrYWJNkqUU44xDWOl6OpCYFM8TTSWEVV6My5YI_gq26qd1jCLkw0rES8VFKMYTQRhlRWGsKJ3icyQCitfJz27OTU5GMKu94lZOctJYPWgvg1SD_uePl-KPkwbov894_F7lPr2IrsySAF8Nj9CxKl-jaNSuSoWhXsVgFsNfZwPArjiiPMyYCSHxX_6UN-fh4Nh6unvzLS8_h1unZbJpP38zf7sNtut8diTyArWW7ck_hpv2yvFy0z3oH-AnA3Abt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEB9kT0QfPP9b79QKgk_lmqabpI_L7VXF3eUQT-5BKEmawEFtj-6ueG9-BD-jn-Qyabd3i4ggPradtmEyk8wvk_wG4LVxTpQyRSIpsYRZyVkkTCIjLktptdAy8Wu6n2d8sRCnp9lxv5sQz8J0_BDDght6hh-v0cHNeWkPrlhDZemJg3ziCA9R76RYSWYEO9OP-cnsinmX-QKbmPCLMpaKDXNjnBxsf2F7Zvot3NyOXv30k-_-h4bfg7t97BlOOmO5DzdM_QDuXGMkfAhfciTIVJUJD2Wrmjp0o2-zWivz68fPIyww8t3Za3URvkX07h_q9sIFmNUydNFvOMftfU7UGV_7telK7JzpcN6U68osH8FJfvTp8F3UF2CINOWURDo1JlZqLIgl0mFDLqzhVtlYaZVkqXZwxjhYa6gdc4kKJg5PJ6UWVIxtShl9DKO6qc1TCClT3BDr8FGKMQSTSihWaq1Kw2ic8QCijfIL3bOTY5GMquh4lZMCtVYMWgvgzSB_3vFy_FFyf9OXRe-fy8KnV10rsySAV8Nj51mYLpG1adYog9GuILEI4ElnA8OvqEN5lBAWQOK7-i9tKCbT-WS4evYvL72EW8fTvJi9X3zYg9t4uzsRuQ-jVbs2z-Gm_rY6W7Yvevu_BEFQBmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Carbon+Nanotube%E2%80%90Epitaxially+Grown+Nanocrystals+for+Micro%E2%80%90Thermoelectric+Modules&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Qun&rft.au=Zhao%2C+Yang&rft.au=Long%2C+Xuehao&rft.au=Jiang%2C+Song&rft.date=2023-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202304751&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |