Flexible Carbon Nanotube‐Epitaxially Grown Nanocrystals for Micro‐Thermoelectric Modules

Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 35; H. 46; S. e2304751 - n/a
Hauptverfasser: Jin, Qun, Zhao, Yang, Long, Xuehao, Jiang, Song, Qian, Cheng, Ding, Feng, Wang, Ziqiang, Li, Xiaoqi, Yu, Zhi, He, Juan, Song, Yujie, Yu, Hailong, Wan, Ye, Tai, Kaiping, Gao, Ning, Tan, Jun, Liu, Chang, Cheng, Hui‐Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.11.2023
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2. This work presents an unconventional heteroepitaxial growth strategy to prepare high‐performance flexible and freestanding thermoelectric film with ordered and uniform microstructures. The integrated micro‐thermoelectric module based on the above films exhibits excellent energy harvesting and cooling performance, validating the potential of freestanding thermoelectric films for thermal energy efficient harvesting and management.
AbstractList Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2.
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb) Te nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m K in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm .
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb)2Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m−1 K−2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm−2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm−2. This work presents an unconventional heteroepitaxial growth strategy to prepare high‐performance flexible and freestanding thermoelectric film with ordered and uniform microstructures. The integrated micro‐thermoelectric module based on the above films exhibits excellent energy harvesting and cooling performance, validating the potential of freestanding thermoelectric films for thermal energy efficient harvesting and management.
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution thermal management. However, a high‐performance flexible micro‐thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals‐coupling, to fabricate freestanding and flexible hybrids comprised of single‐wall carbon nanotubes and ordered (Bi,Sb) 2 Te 3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m −1 K −2 in the temperature range of 300–480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro‐TED module consisting of two p–n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm −2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm −2 .
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb)2 Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m-1 K-2 in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm-2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm-2 .Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution thermal management. However, a high-performance flexible micro-thermoelectric device (TED) compatible with the microelectronics fabrication process has not yet been developed. Here a universal epitaxial growth strategy is reported guided by 1D van der Waals-coupling, to fabricate freestanding and flexible hybrids comprised of single-wall carbon nanotubes and ordered (Bi,Sb)2 Te3 nanocrystals. High power factors ranging from ≈1680 to ≈1020 µW m-1 K-2 in the temperature range of 300-480 K, combined with a low thermal conductivity yield a high average figure of merit of ≈0.81. The fabricated flexible micro-TED module consisting of two p-n couples of freestanding thermoelectric hybrids has an unprecedented open circuit voltage of ≈22.7 mV and a power density of ≈0.36 W cm-2 under ≈30 K temperature difference, and a net cooling temperature of ≈22.4 K and a heat absorption density of ≈92.5 W cm-2 .
Author Yu, Hailong
Gao, Ning
Tan, Jun
Wan, Ye
Wang, Ziqiang
Yu, Zhi
Song, Yujie
He, Juan
Jiang, Song
Jin, Qun
Li, Xiaoqi
Zhao, Yang
Qian, Cheng
Cheng, Hui‐Ming
Ding, Feng
Tai, Kaiping
Long, Xuehao
Liu, Chang
Author_xml – sequence: 1
  givenname: Qun
  orcidid: 0000-0002-8710-7737
  surname: Jin
  fullname: Jin, Qun
  organization: Leibniz Institute for Solid State and Materials Research
– sequence: 2
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Xuehao
  surname: Long
  fullname: Long, Xuehao
  organization: Hunan University of Technology
– sequence: 4
  givenname: Song
  surname: Jiang
  fullname: Jiang, Song
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Cheng
  surname: Qian
  fullname: Qian, Cheng
  organization: Ulsan National Institute of Science and Technology
– sequence: 6
  givenname: Feng
  surname: Ding
  fullname: Ding, Feng
  organization: Chinese Academy of Science
– sequence: 7
  givenname: Ziqiang
  surname: Wang
  fullname: Wang, Ziqiang
  organization: Jilin University
– sequence: 8
  givenname: Xiaoqi
  surname: Li
  fullname: Li, Xiaoqi
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Zhi
  surname: Yu
  fullname: Yu, Zhi
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: Juan
  surname: He
  fullname: He, Juan
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Yujie
  surname: Song
  fullname: Song, Yujie
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Hailong
  surname: Yu
  fullname: Yu, Hailong
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Ye
  surname: Wan
  fullname: Wan, Ye
  organization: Shenyang Jianzhu University
– sequence: 14
  givenname: Kaiping
  orcidid: 0000-0002-2756-1348
  surname: Tai
  fullname: Tai, Kaiping
  email: kptai@imr.ac.cn
  organization: Advanced Manufacturing Science and Technology Guangdong Laboratory
– sequence: 15
  givenname: Ning
  surname: Gao
  fullname: Gao, Ning
  email: ning.gao@sdu.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 16
  givenname: Jun
  surname: Tan
  fullname: Tan, Jun
  email: tanjun@jihualab.com
  organization: Foshan Univerisity
– sequence: 17
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu@imr.ac.cn
  organization: University of Science and Technology of China
– sequence: 18
  givenname: Hui‐Ming
  surname: Cheng
  fullname: Cheng, Hui‐Ming
  organization: Chinese Academy of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37533116$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPHDEUhS0ECgtJSxmNlCbNLH6MZzzlankEiYUGukiW7b1WjDzjxZ4RbJefwG_kl8Sr5SEhoVS3uN85uvecA7Tbhx4QOiJ4SjCmx2rZqSnFlOGq4WQHTQinpKxwy3fRBLeMl21diX10kNIdxritcf0F7bOGM0ZIPUG_zzw8Ou2hmKuoQ19cqT4Mo4bnv0-nKzeoR6e8XxfnMTxslyau06B8KmyIxcKZGDJ68wdiF8CDGaIzxSIsRw_pK9qzmYRvL_MQ3Z6d3sx_lZfX5xfz2WVpWMNIaSoArDUXxBJFCW6EhcZqi7XRtK0MJQ1g2gCzvFGbn4gQgi6NYILbitXsEP3c-q5iuB8hDbJzyYD3qocwJklFxetsj0VGf3xA78IY-3xdptqco-AtzdT3F2rUHSzlKrpOxbV8zS0D1RbI76cUwUqTsxpc6IeonJcEy009clOPfKsny6YfZK_OnwrareDBeVj_h5azk8XsXfsPLu2juA
CitedBy_id crossref_primary_10_1016_j_enconman_2025_119621
crossref_primary_10_1007_s40820_024_01342_3
crossref_primary_10_1016_j_joule_2024_08_009
crossref_primary_10_1016_j_ijbiomac_2024_134248
crossref_primary_10_1021_acs_chemrev_5c00060
crossref_primary_10_1126_sciadv_adz1019
crossref_primary_10_1002_smtd_202400589
crossref_primary_10_1007_s12598_024_03011_1
crossref_primary_10_1016_j_cej_2024_154263
crossref_primary_10_1016_j_jpowsour_2024_234260
crossref_primary_10_1016_j_cej_2024_152599
crossref_primary_10_1016_j_carbon_2023_118670
crossref_primary_10_1016_j_carbon_2025_120215
Cites_doi 10.1038/s41467-018-07882-8
10.1039/C9EE01609K
10.1126/science.abo6997
10.1126/science.abq0682
10.1002/adfm.202111373
10.1126/sciadv.aaz8423
10.1007/s002140050523
10.1039/C9EE01777A
10.1103/PhysRevLett.78.1396
10.1126/science.aaq1479
10.35848/1882-0786/aba5c4
10.1016/j.joule.2021.03.017
10.1038/s41928-021-00622-9
10.1016/j.scriptamat.2016.03.014
10.1021/nl101156v
10.1002/adfm.202010695
10.1038/ncomms14886
10.1039/C7EE03617E
10.1016/j.nanoen.2018.06.020
10.1038/s41467-019-09707-8
10.1126/science.aba9778
10.1016/j.mtener.2022.101075
10.1126/science.1156446
10.1115/1.1454111
10.1038/s41928-018-0148-3
10.1016/j.joule.2021.11.008
10.1021/acsenergylett.1c00801
10.1038/nmat943
10.1109/TADVP.2003.818062
10.1038/s41563-018-0217-z
10.1002/adma.201807916
10.1063/1.4905294
10.1038/s41560-017-0071-2
10.1126/sciadv.abe0586
10.1002/adma.202104786
10.3390/challe6010117
10.1063/1.3382344
10.1126/science.aax7792
10.1038/nnano.2008.417
10.1016/j.jallcom.2020.154239
10.1002/adfm.201900304
10.1021/acs.nanolett.1c02847
10.1038/s41928-022-00776-0
10.1103/PhysRevB.58.3641
10.1002/aenm.201401391
10.1002/adma.201604899
10.1063/1.3078025
10.1021/acs.chemrev.0c00026
10.3390/mi5041219
10.1016/j.nanoen.2017.01.013
10.1038/s41928-022-00860-5
10.1039/D1TA02206G
10.1063/1.3457902
10.1038/s41893-022-01003-6
10.1038/s41467-018-05999-4
10.1103/PhysRevB.78.115322
10.1016/j.apenergy.2014.11.040
10.1038/nmat4251
10.1038/nature13184
10.4028/www.scientific.net/MSF.787.198
10.1002/adma.201802016
10.1039/c3nr01499a
10.1126/sciadv.aap9264
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202304751
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37533116
10_1002_adma_202304751
ADMA202304751
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52073290; 51927803; 51571193; 12075141; 52130209; 52188101
– fundername: Science Fund for Distinguished Young Scholars of Liaoning Province
  funderid: 2023JH6/100500004
– fundername: Science Foundation of Shenyang National Laboratory
– fundername: Ministry of Science and Technology of China
  funderid: 2017YFA0700705; 2017YFA0700702; 2022YFA1203303; 2019QY(Y)0501
– fundername: Materials Science and the Science Foundation
– fundername: National Natural Science Foundation of China
  grantid: 52073290
– fundername: National Natural Science Foundation of China
  grantid: 51927803
– fundername: National Natural Science Foundation of China
  grantid: 51571193
– fundername: Ministry of Science and Technology of China
  grantid: 2017YFA0700705
– fundername: National Natural Science Foundation of China
  grantid: 12075141
– fundername: Ministry of Science and Technology of China
  grantid: 2017YFA0700702
– fundername: Ministry of Science and Technology of China
  grantid: 2019QY(Y)0501
– fundername: National Natural Science Foundation of China
  grantid: 52130209
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADNMO
AETEA
AFFNX
AGQPQ
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3731-c4ee0bb581f1a21078fe7fbf0bcb294c217e027e3f57a093518882dc8385f4363
IEDL.DBID DRFUL
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001084865600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Oct 02 10:25:24 EDT 2025
Sun Nov 30 04:23:34 EST 2025
Mon Jul 21 05:14:55 EDT 2025
Sat Nov 29 07:22:07 EST 2025
Tue Nov 18 22:01:36 EST 2025
Sun Jul 06 04:45:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords flexible freestanding thermoelectric films
carbon nanotube-(Bi,Sb)2Te3 hybrid
1D van der Waals-coupling guided epitaxial growth
micro-thermoelectric cooler
micro-thermoelectric generator
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-c4ee0bb581f1a21078fe7fbf0bcb294c217e027e3f57a093518882dc8385f4363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8710-7737
0000-0002-2756-1348
PMID 37533116
PQID 2890238592
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2845658108
proquest_journals_2890238592
pubmed_primary_37533116
crossref_citationtrail_10_1002_adma_202304751
crossref_primary_10_1002_adma_202304751
wiley_primary_10_1002_adma_202304751_ADMA202304751
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2017; 8
2021; 21
2018; 360
2010; 108
2020; 120
2023; 6
2019; 10
2019; 12
2020; 369
2008; 78
2019; 18
2020; 13
2013; 5
2019; 365
2022; 28
2022; 377
2022; 378
2020; 6
2018; 9
2020; 4
2018; 3
2014; 5
2021; 31
2018; 4
2018; 1
2016; 119
2017; 33
2003; 2
2022; 34
2019; 29
2018; 30
2022; 32
2015; 139
1998; 58
2021; 9
2021; 7
2021; 6
2015; 14
2015; 6
2021; 5
2015; 5
2021; 4
2019; 31
2006
2017; 29
1999; 103
2020; 828
2008; 320
2014; 787
2014; 508
2022; 5
2022; 6
2002; 124
1997; 78
2010; 132
2003; 26
2018; 50
2015; 117
2009; 4
2018; 11
2009; 105
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Rowe D. M. (e_1_2_8_47_1) 2006
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
Mao J. (e_1_2_8_10_1) 2020; 4
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 21
  start-page: 9093
  year: 2021
  publication-title: Nano Lett.
– volume: 78
  start-page: 1396
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 360
  start-page: 778
  year: 2018
  publication-title: Science
– volume: 6
  start-page: 193
  year: 2022
  publication-title: Joule
– volume: 33
  start-page: 55
  year: 2017
  publication-title: Nano Energy
– volume: 369
  start-page: 542
  year: 2020
  publication-title: Science
– volume: 10
  start-page: 1756
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 333
  year: 2022
  publication-title: Nat. Electron.
– volume: 4
  start-page: 454
  year: 2020
  publication-title: Nat. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 50
  start-page: 766
  year: 2018
  publication-title: Nano Energy
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  start-page: 579
  year: 2021
  publication-title: Nat. Electron.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 828
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 108
  year: 2010
  publication-title: J. Appl. Phys.
– volume: 2
  start-page: 528
  year: 2003
  publication-title: Nat. Mater.
– volume: 6
  start-page: 2378
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 3641
  year: 1998
  publication-title: Phys. Rev. B
– volume: 119
  start-page: 33
  year: 2016
  publication-title: Scr. Mater.
– volume: 787
  start-page: 198
  year: 2014
  publication-title: Mater. Sci. Forum
– volume: 508
  start-page: 373
  year: 2014
  publication-title: Nature
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2022
  publication-title: Mater. Today Energy
– volume: 105
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 320
  start-page: 634
  year: 2008
  publication-title: Science
– volume: 103
  start-page: 124
  year: 1999
  publication-title: Theor. Chem. Acc.
– volume: 365
  start-page: 495
  year: 2019
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. B
– volume: 139
  start-page: 205
  year: 2015
  publication-title: Appl. Energy
– volume: 18
  start-page: 62
  year: 2019
  publication-title: Nat. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 9
  start-page: 3586
  year: 2018
  publication-title: Nat. Commun.
– volume: 26
  start-page: 227
  year: 2003
  publication-title: IEEE Trans. Adv. Packag.
– volume: 12
  start-page: 2983
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2020
  publication-title: Appl. Phys. Express
– volume: 6
  start-page: 117
  year: 2015
  publication-title: Challenges
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 14
  start-page: 622
  year: 2015
  publication-title: Nat. Mater.
– volume: 377
  start-page: 854
  year: 2022
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 117
  year: 2015
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 723
  year: 2022
  publication-title: Nat. Electron.
– volume: 378
  start-page: 768
  year: 2022
  publication-title: Science
– volume: 5
  start-page: 1196
  year: 2021
  publication-title: Joule
– volume: 5
  start-page: 1219
  year: 2014
  publication-title: Micromachines
– volume: 13
  start-page: 1240
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 180
  year: 2023
  publication-title: Nat. Sustain.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 124
  start-page: 223
  year: 2002
  publication-title: J. Heat Transfer
– volume: 3
  start-page: 301
  year: 2018
  publication-title: Nat. Energy
– volume: 5
  start-page: 7017
  year: 2013
  publication-title: Nanoscale
– volume: 4
  start-page: 235
  year: 2009
  publication-title: Nat. Nanotechnol.
– year: 2006
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 555
  year: 2018
  publication-title: Nat. Electron.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1307
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 7399
  year: 2020
  publication-title: Chem. Rev.
– volume: 10
  start-page: 3373
  year: 2010
  publication-title: Nano Lett.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-018-07882-8
– ident: e_1_2_8_17_1
  doi: 10.1039/C9EE01609K
– ident: e_1_2_8_57_1
  doi: 10.1126/science.abo6997
– ident: e_1_2_8_25_1
  doi: 10.1126/science.abq0682
– ident: e_1_2_8_27_1
  doi: 10.1002/adfm.202111373
– ident: e_1_2_8_24_1
  doi: 10.1126/sciadv.aaz8423
– ident: e_1_2_8_62_1
  doi: 10.1007/s002140050523
– ident: e_1_2_8_23_1
  doi: 10.1039/C9EE01777A
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevLett.78.1396
– ident: e_1_2_8_40_1
  doi: 10.1126/science.aaq1479
– ident: e_1_2_8_35_1
  doi: 10.35848/1882-0786/aba5c4
– ident: e_1_2_8_13_1
  doi: 10.1016/j.joule.2021.03.017
– ident: e_1_2_8_54_1
  doi: 10.1038/s41928-021-00622-9
– ident: e_1_2_8_49_1
  doi: 10.1016/j.scriptamat.2016.03.014
– ident: e_1_2_8_39_1
  doi: 10.1021/nl101156v
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202010695
– ident: e_1_2_8_21_1
  doi: 10.1038/ncomms14886
– ident: e_1_2_8_22_1
  doi: 10.1039/C7EE03617E
– ident: e_1_2_8_28_1
  doi: 10.1016/j.nanoen.2018.06.020
– ident: e_1_2_8_32_1
  doi: 10.1038/s41467-019-09707-8
– volume: 4
  start-page: 454
  year: 2020
  ident: e_1_2_8_10_1
  publication-title: Nat. Mater.
– ident: e_1_2_8_37_1
  doi: 10.1126/science.aba9778
– ident: e_1_2_8_36_1
  doi: 10.1016/j.mtener.2022.101075
– ident: e_1_2_8_48_1
  doi: 10.1126/science.1156446
– ident: e_1_2_8_5_1
  doi: 10.1115/1.1454111
– ident: e_1_2_8_7_1
  doi: 10.1038/s41928-018-0148-3
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2021.11.008
– ident: e_1_2_8_15_1
  doi: 10.1021/acsenergylett.1c00801
– ident: e_1_2_8_6_1
  doi: 10.1038/nmat943
– ident: e_1_2_8_61_1
  doi: 10.1109/TADVP.2003.818062
– ident: e_1_2_8_19_1
  doi: 10.1038/s41563-018-0217-z
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.201807916
– ident: e_1_2_8_45_1
  doi: 10.1063/1.4905294
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-017-0071-2
– ident: e_1_2_8_31_1
  doi: 10.1126/sciadv.abe0586
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202104786
– ident: e_1_2_8_2_1
  doi: 10.3390/challe6010117
– ident: e_1_2_8_65_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_34_1
  doi: 10.1126/science.aax7792
– ident: e_1_2_8_8_1
  doi: 10.1038/nnano.2008.417
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jallcom.2020.154239
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.201900304
– ident: e_1_2_8_56_1
  doi: 10.1021/acs.nanolett.1c02847
– ident: e_1_2_8_9_1
  doi: 10.1038/s41928-022-00776-0
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevB.58.3641
– ident: e_1_2_8_52_1
  doi: 10.1002/aenm.201401391
– ident: e_1_2_8_41_1
  doi: 10.1002/adma.201604899
– ident: e_1_2_8_60_1
  doi: 10.1063/1.3078025
– ident: e_1_2_8_12_1
  doi: 10.1021/acs.chemrev.0c00026
– ident: e_1_2_8_58_1
  doi: 10.3390/mi5041219
– ident: e_1_2_8_42_1
  doi: 10.1016/j.nanoen.2017.01.013
– volume-title: Thermoelectrics Handbook: Macro to Nano
  year: 2006
  ident: e_1_2_8_47_1
– ident: e_1_2_8_1_1
  doi: 10.1038/s41928-022-00860-5
– ident: e_1_2_8_33_1
  doi: 10.1039/D1TA02206G
– ident: e_1_2_8_44_1
  doi: 10.1063/1.3457902
– ident: e_1_2_8_26_1
  doi: 10.1038/s41893-022-01003-6
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-018-05999-4
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.78.115322
– ident: e_1_2_8_55_1
  doi: 10.1016/j.apenergy.2014.11.040
– ident: e_1_2_8_18_1
  doi: 10.1038/nmat4251
– ident: e_1_2_8_38_1
  doi: 10.1038/nature13184
– ident: e_1_2_8_43_1
  doi: 10.4028/www.scientific.net/MSF.787.198
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.201802016
– ident: e_1_2_8_50_1
  doi: 10.1039/c3nr01499a
– ident: e_1_2_8_59_1
  doi: 10.1126/sciadv.aap9264
SSID ssj0009606
Score 2.517284
Snippet Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high‐spatial‐resolution...
Flexible thermoelectric materials have attracted increasing interest because of their potential use in thermal energy harvesting and high-spatial-resolution...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2304751
SubjectTerms 1D van der Waals‐coupling guided epitaxial growth
Antimony
Bismuth
Carbon nanotubes
carbon nanotube‐(Bi,Sb)2Te3 hybrid
Energy harvesting
Epitaxial growth
Figure of merit
flexible freestanding thermoelectric films
Materials science
micro‐thermoelectric cooler
micro‐thermoelectric generator
Modules
Nanocrystals
Open circuit voltage
Temperature gradients
Thermal conductivity
Thermal energy
Thermal management
Thermoelectric materials
Title Flexible Carbon Nanotube‐Epitaxially Grown Nanocrystals for Micro‐Thermoelectric Modules
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202304751
https://www.ncbi.nlm.nih.gov/pubmed/37533116
https://www.proquest.com/docview/2890238592
https://www.proquest.com/docview/2845658108
Volume 35
WOSCitedRecordID wos001084865600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7aTQ_toU1_4_zhQKEnE0vySvJxSbLtIRtKSMIeCkaSZQg4drF3Q3PrI_QZ-yTVyF4nSymF9majsS1GM9I3GusbgPfWOVHCNYmUwhJmueCRtFRFQuWqMNIo6vd0r07F2Zmcz9PPD07xd_wQw4Ybeoafr9HBlW4P70lDVe55g3zeCM9Qb1BnvOMRbByfTy9P74l3ua-vifm-KOWJXBE3xvRw_Q3rC9NvaHMdvPrVZ_ri__u9Cc975BlOOlN5CY9s9QqePeAjfA1fpkiPqUsbHqlG11Xo5t56sdT25_cfJ1he5Juz1vIu_Iixu280zZ2Dl2UbOuwbzvDnPifqTK-5qbsCO9cmnNX5srTtG7icnlwcfYr68guRYYKRyCTWxlqPJSmIcpGhkIUVhS5ibTRNE-OCGeuCWsuKsVCoX-KiaZobyeS4SBhnb2FU1ZXdgpBxLSwpXHSUIILgSkvNc2N0bjmLUxFAtNJ9ZnpuciyRUWYdqzLNUGvZoLUAPgzyXztWjj9K7q6GMuu9s818ctX1MqUBHAzNzq8wWaIqWy9RBrGuJLEM4F1nAsOnmIvxGCE8AOpH-i99yCbHs8lwt_0vD-3AU7zuDkHuwmjRLO0ePDG3i-u22YfHYi73e8v_BU4bA-U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9RAEB-kFbQP1r81tmoEwafQbDa3u3k82p4V7w6RVvoghN3NBgoxkdyd2Dc_gp_RT-LMJpd6iAjiY5JJsszO7M5vZ_c3AC8dOlEqDIu0phJmhRSRcomOpC50aZXViV_T_TCV87m6uMje9bsJ6SxMxw8xLLiRZ_jxmhycFqQPr1lDdeGJg3ziiA5Rb6doS2jk28fvJ-fTa-Zd4QtsUsIvykSq1syNcXK4-YXNmem3cHMzevXTz2T3PzT8LtzpY89w3BnLPbjh6vuw8wsj4QP4OCGCTFO58Ei3pqlDHH2b5cq4H9--n1CBka9or9VV-JrQu39o2ysMMKtFiNFvOKPtfSiKxtd-aroSO5c2nDXFqnKLh3A-OTk7Oo36AgyR5ZKzyKbOxcaMFCuZRmwoVelkacrYWJNkqUU44xDWOl6OpCYFM8TTSWEVV6My5YI_gq26qd1jCLkw0rES8VFKMYTQRhlRWGsKJ3icyQCitfJz27OTU5GMKu94lZOctJYPWgvg1SD_uePl-KPkwbov894_F7lPr2IrsySAF8Nj9CxKl-jaNSuSoWhXsVgFsNfZwPArjiiPMyYCSHxX_6UN-fh4Nh6unvzLS8_h1unZbJpP38zf7sNtut8diTyArWW7ck_hpv2yvFy0z3oH-AnA3Abt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEB9kT0QfPP9b79QKgk_lmqabpI_L7VXF3eUQT-5BKEmawEFtj-6ueG9-BD-jn-Qyabd3i4ggPradtmEyk8wvk_wG4LVxTpQyRSIpsYRZyVkkTCIjLktptdAy8Wu6n2d8sRCnp9lxv5sQz8J0_BDDght6hh-v0cHNeWkPrlhDZemJg3ziCA9R76RYSWYEO9OP-cnsinmX-QKbmPCLMpaKDXNjnBxsf2F7Zvot3NyOXv30k-_-h4bfg7t97BlOOmO5DzdM_QDuXGMkfAhfciTIVJUJD2Wrmjp0o2-zWivz68fPIyww8t3Za3URvkX07h_q9sIFmNUydNFvOMftfU7UGV_7telK7JzpcN6U68osH8FJfvTp8F3UF2CINOWURDo1JlZqLIgl0mFDLqzhVtlYaZVkqXZwxjhYa6gdc4kKJg5PJ6UWVIxtShl9DKO6qc1TCClT3BDr8FGKMQSTSihWaq1Kw2ic8QCijfIL3bOTY5GMquh4lZMCtVYMWgvgzSB_3vFy_FFyf9OXRe-fy8KnV10rsySAV8Nj51mYLpG1adYog9GuILEI4ElnA8OvqEN5lBAWQOK7-i9tKCbT-WS4evYvL72EW8fTvJi9X3zYg9t4uzsRuQ-jVbs2z-Gm_rY6W7Yvevu_BEFQBmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Carbon+Nanotube%E2%80%90Epitaxially+Grown+Nanocrystals+for+Micro%E2%80%90Thermoelectric+Modules&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Qun&rft.au=Zhao%2C+Yang&rft.au=Long%2C+Xuehao&rft.au=Jiang%2C+Song&rft.date=2023-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=35&rft.issue=46&rft_id=info:doi/10.1002%2Fadma.202304751&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon