SEHRNet: A lightweight, high‐resolution network for aircraft keypoint detection

Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identificati...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IET image processing Ročník 18; číslo 9; s. 2476 - 2489
Hlavní autori: Zhang, Zhiqiang, Zhang, Tianxiong, Zhu, Xinping, Li, Jiajun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Wiley 01.07.2024
Predmet:
ISSN:1751-9659, 1751-9667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection. There are few studies on aircraft key component identification. Inspired by the network structure of High‐Resolution Network, this paper proposes targeted improvements by combining the characteristics of apron operation and the physical features of aircraft key components. The experimental results show that the algorithm in this paper can realize the real‐time high‐precision detection of key components of aircraft in the apron gate.
AbstractList Abstract Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection.
Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection. There are few studies on aircraft key component identification. Inspired by the network structure of High‐Resolution Network, this paper proposes targeted improvements by combining the characteristics of apron operation and the physical features of aircraft key components. The experimental results show that the algorithm in this paper can realize the real‐time high‐precision detection of key components of aircraft in the apron gate.
Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection.
Author Zhang, Tianxiong
Li, Jiajun
Zhu, Xinping
Zhang, Zhiqiang
Author_xml – sequence: 1
  givenname: Zhiqiang
  orcidid: 0009-0001-0412-7020
  surname: Zhang
  fullname: Zhang, Zhiqiang
  organization: Civil Aviation Flight University of China
– sequence: 2
  givenname: Tianxiong
  orcidid: 0000-0003-1840-1657
  surname: Zhang
  fullname: Zhang, Tianxiong
  organization: Civil Aviation Flight University of China
– sequence: 3
  givenname: Xinping
  surname: Zhu
  fullname: Zhu, Xinping
  email: zxp@cafuc.edu.cn
  organization: Civil Aviation Flight University of China
– sequence: 4
  givenname: Jiajun
  surname: Li
  fullname: Li, Jiajun
  organization: State Grid General Aviation Co., Ltd
BookMark eNp9kE1OwzAQhS1UJNrChhNkjUjxxE7ssKuqQitV_BRYW45jt25DXDlBVXccgTNyEpIGsWQzbzR6843mDVCvdKVG6BLwCDBNb-zORyMgAHCC-sBiCNMkYb2_Pk7P0KCqNhjHKeZxHz2_TGfLB13fBuOgsKt1vddtvQ7WjXx_fnldueKjtq4MSl3vnd8GxvlAWq-8NHWw1Yeds2Ud5LrWqvWdo1Mji0pf_OoQvd1NXyezcPF4P5-MF6EijECYMa14TnUEROUAkmGJKeZUYcg4pxnOoyhhUjHGY2MUzwjLGCRR8yUBmWIyRPOOmzu5ETtv36U_CCetOA6cXwnpa6sKLShu4MaQLJKUStM8rjhklAPEprmYN6yrjqW8qyqvzR8PsGiDFW2w4hhsY4bOvLeFPvzjFPOnZdTt_AAsDnzC
Cites_doi 10.1109/CVPR.2019.00750
10.2514/6.2019-3414
10.1109/TPAMI.2012.261
10.1109/CVPR.2019.01225
10.1145/1291233.1291311
10.1109/CVPR42600.2020.00712
10.1007/s11263-012-0524-9
10.1049/ipr2.12277
10.1007/978-3-030-01264-9_8
10.1109/CVPR42600.2020.00543
10.1109/ICCV.2015.169
10.1007/978-3-319-46484-8_29
10.1109/CVPR.2013.83
10.1109/ICCV.2017.203
10.3390/rs13040663
10.1109/CVPR.2016.511
10.1109/ICCV.1999.790410
10.1007/978-3-030-01231-1_29
10.1007/978-3-319-46466-4_3
10.1049/itr2.12314
10.1049/ipr2.12505
10.1109/ICCV.2017.256
10.1109/ICCVW.2019.00343
10.1109/ICCV.2011.6126309
10.1109/CVPR46437.2021.01030
10.1109/CVPR.2018.00474
10.1109/CVPR46437.2021.01625
10.1109/AERO53065.2022.9843439
10.1109/CVPR.2019.00584
10.1109/CVPR.2018.00742
10.1109/CVPR.2017.143
10.1007/11612032_6
10.1109/CVPR.2016.533
10.1109/ROBIO.2018.8665155
10.1109/CVPR.2019.00363
10.3390/s19245361
10.1023/B:VISI.0000029664.99615.94
10.1109/TPAMI.2005.233
10.1109/AERO.2018.8396425
10.1117/12.2595800
10.1109/ICRA.2017.7989233
10.1109/ACCESS.2020.3010307
ContentType Journal Article
Copyright 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13111
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 2489
ExternalDocumentID oai_doaj_org_article_400a0ff3b2a44af085c81b48115f84cd
10_1049_ipr2_13111
IPR213111
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: ZHMH2022‐008; J2023‐047
– fundername: Graduate Student Research and Innovation Fund of Civil Aviation Flight University of China
  funderid: X2023‐35
– fundername: Funds of the National Key Research and Development Program of China
  funderid: 2022YFB2602004
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IDLOA
IPLJI
ITC
LAI
MCNEO
MS~
O9-
OK1
P2P
QWB
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c3731-b7ec8d4e213cd11a70a04084c01b884b0d2267ac7785ffc8b37b716204931a903
IEDL.DBID 24P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208058900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:50:04 EDT 2025
Wed Nov 05 20:45:41 EST 2025
Wed Jun 11 08:25:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-b7ec8d4e213cd11a70a04084c01b884b0d2267ac7785ffc8b37b716204931a903
ORCID 0009-0001-0412-7020
0000-0003-1840-1657
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13111
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_400a0ff3b2a44af085c81b48115f84cd
crossref_primary_10_1049_ipr2_13111
wiley_primary_10_1049_ipr2_13111_IPR213111
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 2019
2004; 60
2011
2007
2019; 19
2006
2005
2005; 27
2012; 35
2012; 99
1999
2020; 8
2021; 13
2021; 15
2022
2021
2020
2019
2018
2023; 17(5)
2017
2016
2015
2014
2013
2022; 16
2022; 17
e_1_2_11_32_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Fu D. (e_1_2_11_39_1) 2019; 2019
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
Newell A. (e_1_2_11_30_1) 2017
e_1_2_11_16_1
e_1_2_11_37_1
References_xml – year: 2011
– volume: 17(5)
  start-page: 878
  year: 2023
  end-page: 896
– year: 2005
– year: 2007
– year: 2017
  article-title: Associative embedding: End‐to‐end learning for joint detection and grouping
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 132539
  year: 2020
  end-page: 132550
  article-title: Simple baseline for vehicle pose estimation: Experimental validation
  publication-title: IEEE Access
– year: 2021
– volume: 16
  start-page: 2506
  issue: 9
  year: 2022
  end-page: 2517
  article-title: High resolution representation‐based Siamese network for remote sensing image change detection
  publication-title: IET Image Proc.
– volume: 17
  start-page: 878
  issue: 5
  year: 2022
  end-page: 896
  article-title: Research on conflict detection model for taxi‐in process on the apron based on aircraft wingtip keypoint detection
  publication-title: IET Intel. Transp. Syst.
– volume: 35
  start-page: 2878
  issue: 12
  year: 2012
  end-page: 2890
  article-title: Articulated human detection with flexible mixtures of parts
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int. J. Comput. Vision
– year: 2016
– year: 2018
– year: 2014
– year: 2019
  article-title: Pifpaf: Composite fields for human pose estimation
– volume: 27
  start-page: 1910
  issue: 12
  year: 2005
  end-page: 1922
  article-title: Analyzing and capturing articulated hand motion in image sequences
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 99
  start-page: 190
  issue: 2
  year: 2012
  end-page: 214
  article-title: 2d articulated human pose estimation and retrieval in (almost) unconstrained still images
  publication-title: Int. J. Comput. Vision
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  article-title: The aircraft pose estimation based on a convolutional neural network
  publication-title: Math. Prob. Eng.
– volume: 19
  start-page: 5361
  issue: 24
  year: 2019
  article-title: Waterfall atrous spatial pooling architecture for efficient semantic segmentation
  publication-title: Sensors
– year: 2006
– year: 2022
– year: 2020
– volume: 13
  start-page: 663
  issue: 4
  year: 2021
  article-title: Estimating 6D aircraft pose from keypoints and structures
  publication-title: Remote Sens.
– year: 2017
– year: 2019
– volume: 15
  start-page: 3433
  issue: 14
  year: 2021
  end-page: 3440
  article-title: Dual‐view 3D human pose estimation without camera parameters for action recognition
  publication-title: IET Image Proc.
– year: 2015
– year: 2013
– year: 1999
– ident: e_1_2_11_5_1
– ident: e_1_2_11_34_1
  doi: 10.1109/CVPR.2019.00750
– ident: e_1_2_11_2_1
  doi: 10.2514/6.2019-3414
– ident: e_1_2_11_11_1
  doi: 10.1109/TPAMI.2012.261
– ident: e_1_2_11_29_1
  doi: 10.1109/CVPR.2019.01225
– ident: e_1_2_11_9_1
  doi: 10.1145/1291233.1291311
– ident: e_1_2_11_44_1
  doi: 10.1109/CVPR42600.2020.00712
– ident: e_1_2_11_14_1
  doi: 10.1007/s11263-012-0524-9
– ident: e_1_2_11_23_1
  doi: 10.1049/ipr2.12277
– ident: e_1_2_11_51_1
  doi: 10.1007/978-3-030-01264-9_8
– ident: e_1_2_11_31_1
  doi: 10.1109/CVPR42600.2020.00543
– ident: e_1_2_11_27_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_11_16_1
  doi: 10.1007/978-3-319-46484-8_29
– ident: e_1_2_11_12_1
  doi: 10.1109/CVPR.2013.83
– ident: e_1_2_11_50_1
  doi: 10.1109/ICCV.2017.203
– ident: e_1_2_11_38_1
  doi: 10.3390/rs13040663
– ident: e_1_2_11_3_1
– ident: e_1_2_11_22_1
– ident: e_1_2_11_47_1
  doi: 10.1109/CVPR.2016.511
– ident: e_1_2_11_6_1
  doi: 10.1109/ICCV.1999.790410
– ident: e_1_2_11_18_1
  doi: 10.1007/978-3-030-01231-1_29
– ident: e_1_2_11_19_1
  doi: 10.1007/978-3-319-46466-4_3
– ident: e_1_2_11_40_1
  doi: 10.1049/itr2.12314
– ident: e_1_2_11_24_1
  doi: 10.1049/ipr2.12505
– year: 2017
  ident: e_1_2_11_30_1
  article-title: Associative embedding: End‐to‐end learning for joint detection and grouping
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_11_25_1
  doi: 10.1109/ICCV.2017.256
– ident: e_1_2_11_43_1
  doi: 10.1109/ICCVW.2019.00343
– ident: e_1_2_11_13_1
  doi: 10.1109/ICCV.2011.6126309
– ident: e_1_2_11_48_1
  doi: 10.1109/CVPR46437.2021.01030
– ident: e_1_2_11_49_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_11_46_1
  doi: 10.1109/CVPR46437.2021.01625
– ident: e_1_2_11_42_1
  doi: 10.1109/AERO53065.2022.9843439
– ident: e_1_2_11_20_1
  doi: 10.1109/CVPR.2019.00584
– ident: e_1_2_11_17_1
  doi: 10.1109/CVPR.2018.00742
– ident: e_1_2_11_28_1
  doi: 10.1109/CVPR.2017.143
– ident: e_1_2_11_45_1
– ident: e_1_2_11_15_1
– ident: e_1_2_11_4_1
– ident: e_1_2_11_52_1
  doi: 10.1049/itr2.12314
– ident: e_1_2_11_8_1
  doi: 10.1007/11612032_6
– ident: e_1_2_11_26_1
  doi: 10.1109/CVPR.2016.533
– ident: e_1_2_11_32_1
  doi: 10.1109/ROBIO.2018.8665155
– volume: 2019
  start-page: 1
  year: 2019
  ident: e_1_2_11_39_1
  article-title: The aircraft pose estimation based on a convolutional neural network
  publication-title: Math. Prob. Eng.
– ident: e_1_2_11_21_1
  doi: 10.1109/CVPR.2019.00363
– ident: e_1_2_11_37_1
  doi: 10.3390/s19245361
– ident: e_1_2_11_7_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_11_10_1
  doi: 10.1109/TPAMI.2005.233
– ident: e_1_2_11_41_1
  doi: 10.1109/AERO.2018.8396425
– ident: e_1_2_11_36_1
  doi: 10.1117/12.2595800
– ident: e_1_2_11_33_1
  doi: 10.1109/ICRA.2017.7989233
– ident: e_1_2_11_35_1
  doi: 10.1109/ACCESS.2020.3010307
SSID ssj0059085
Score 2.3190293
Snippet Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to...
Abstract Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
StartPage 2476
SubjectTerms aircraft
computer vision
convolutional neural nets
image processing
pose estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iLtz4FscXAV2J1ebRSepulBHdDD5hdiVPGJDO0Km69RP8Rr_Em7QjutGNu1IKKSc3uee0N-cidJgTrpkjLqGKsYTTVCVK0CyxqZHOGuat1bHZhBgM5HCY33xr9RVqwhp74Aa4U4gxlXrPNFWcKw8MwQDT4hKYjJfc2LD7piKfialmDw6NvLN4FDI0ke9m-cyYlOeno0lFT4LJDPmRiqJj_0-GGlPM5Qpaarkh7jXvtIrmXLmGllueiNtVOF1Ht_f9q7uBq89wDz8Fcf0av28e4-A9_PH2Dgq6DShcNlXeGKgpVqPKVMrXGNbtZDwqa2xdHSuxyg30eNl_uLhK2tYIiWGCkUQLZ6TljhJmLCFKAEg8BTxSoqXkOrVAq4QyQsjMeyM1Ezp4RQEAjKg8ZZtovhyXbgth0DAecj4oJZdxEKy6Sz1zxlPf1RrYUgcdzFAqJo0DRhH_XPO8CFgWEcsOOg8Afj0RXKvjDZjLop3L4q-57KCjCP8v4xTXN3c0Xm3_x4g7aJECS2nqb3fRfF09uz20YF7q0bTajzH1CXiMzqQ
  priority: 102
  providerName: Directory of Open Access Journals
Title SEHRNet: A lightweight, high‐resolution network for aircraft keypoint detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13111
https://doaj.org/article/400a0ff3b2a44af085c81b48115f84cd
Volume 18
WOSCitedRecordID wos001208058900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFA6DunBzfV7u-BgCurpYb_PoJBU3Kopuhrk-0F3JUwakM9SqW3-Cv9Ff4knaUdwI4qaUktLk5Jzk-9LkOwht54Rr5ohLqGIs4TRViRI0S2xqpLOGeWt1TDYhBgN5c5MPO2h_eham0Yd4X3ALkRHH6xDgSjdZSADUQieOJhXdDWIxwH1mCWEi-DTlw-k4HJJ5Z_E4ZEgk38_yqTgpz_99vPtpOoqq_Z9RapxmThZ-VsFF9KuFl_ig8Ycl1HHlMlpooSZuA_l-Bf2_OD49H7h6Dx_gu8DPn-IS6Q4O8sWvzy9AwlufxGWzURwDusVqVJlK-RpD6E_Go7LG1tVxM1e5iq5Oji-PTpM2u0JimGAk0cIZabmjhBlLiBKpgoCW3KRES8l1agGZCWWEkJn3RmomdJCbgsYxovKU_UYz5bh0fxAGGuQBNgDZchkHzqv71DNnPPV9rQFwddHW1MjFpBHRKOLPb54XwUpFtFIXHQb7v5cIwtfxwbi6Ldo4KmDIUan3TFPFufLQxQaAN5cAbD3U3XbR39gnX3ynOBue03i39p3C62ieAqBptupuoJm6enCbaM481qP7qhddrxcZPVyvzwZvfOjc4g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBUjLXQvTbtuLO22CtanMW-2JEfy3tKRkLI2ZFkGeTP6HIbiBNdtX_sT-hv3S3YlOxl5GYy-GSNjWbpXOuf66lyEzrKEKWoTGxFJacRILCPJSRqZWAtrNHXGqFBsgk8mYrHIpm1ujj8L0-hDbAJu3jPCeu0d3AekG8LJvEhmsarIJ68WA-Rnh8G25DP6CJuuF2JfzTsN5yF9Jfl-mq3VSVn2-e-zW_tRkO3fhqlhnxl1n9jDA7TfAkw8aCziED2z5QvUbcEmbl355gh9_zEczya2_oIH-Noz9PsQJP2IvYDx74dHoOGtVeKySRXHgG-xLCpdSVdjcP7VsihrbGwd0rnKl-jnaDj_Oo7a-gqRppwmkeJWC8MsSag2SSJ5LMGlBdNxooRgKjaAzbjUnIvUOS0U5coLTsHH0URmMX2FOuWytK8RBiLkADgA3bIpA9ar-sRRqx1xfaUAcvXQ-_Uo56tGRiMPv79ZlvtRysMo9dC5n4BNCy99HW4sq19560k5LDoydo4qIhmTDuZYA_RmAqCtg76bHvoQJuUf78kvpjMSro7_p_Ep2hvPry7zy4vJtxP0nAC8aRJ336BOXd3at2hX39XFTfUu2OEfOhLewg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datswGBUlK2U37bp2LN1PBdvVqDtbkiN5d92akNBhvHSF3Bn9jkBxgutut3uEPmOfpJ9kJyM3hdE7Y2QsSzrSOfKn8yH0MUuYojaxEZGURozEMpKcpJGJtbBGU2eMCskmeJ6L2Swrutgcfxam9YdYb7h5ZIT52gPcLo1rBSfzJpnzZU1OvVsMiJ9nLOUBl4QVq4nYZ_NOw3lIn0l-kGYrd1KWff737MZ6FGz7N2lqWGdGe0-s4Qu02xFMfNaOiH20ZauXaK8jm7iD8s0B-nE5HE9z23zBZ_jaK_Q_YZP0BHsD4_u_dyDDu1GJqzZUHAO_xXJe61q6BgP4l4t51WBjmxDOVR2iq9Hw57dx1OVXiDTlNIkUt1oYZklCtUkSyWMJkBZMx4kSgqnYADfjUnMuUue0UJQrbzgFH0cTmcX0FepVi8q-RhiEkAPiAHLLpgxUrxoQR612xA2UAsrVRx9WrVwuWxuNMvz-ZlnpW6kMrdRHX30HrEt46-twY1H_KjsklTDpyNg5qohkTDroYw3Umwmgtg7qbvroU-iUR95TToopCVdH_1P4GO0U56Py-yS_eIOeE2A3bdzuW9Rr6lv7Dm3r3838pn4fhuED9Q_ePQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEHRNet%3A+A+lightweight%2C+high%E2%80%90resolution+network+for+aircraft+keypoint+detection&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Zhiqiang&rft.au=Zhang%2C+Tianxiong&rft.au=Zhu%2C+Xinping&rft.au=Li%2C+Jiajun&rft.date=2024-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=9&rft.spage=2476&rft.epage=2489&rft_id=info:doi/10.1049%2Fipr2.13111&rft.externalDBID=10.1049%252Fipr2.13111&rft.externalDocID=IPR213111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon