SEHRNet: A lightweight, high‐resolution network for aircraft keypoint detection
Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identificati...
Uložené v:
| Vydané v: | IET image processing Ročník 18; číslo 9; s. 2476 - 2489 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Wiley
01.07.2024
|
| Predmet: | |
| ISSN: | 1751-9659, 1751-9667 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection.
There are few studies on aircraft key component identification. Inspired by the network structure of High‐Resolution Network, this paper proposes targeted improvements by combining the characteristics of apron operation and the physical features of aircraft key components. The experimental results show that the algorithm in this paper can realize the real‐time high‐precision detection of key components of aircraft in the apron gate. |
|---|---|
| AbstractList | Abstract Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection. Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection. There are few studies on aircraft key component identification. Inspired by the network structure of High‐Resolution Network, this paper proposes targeted improvements by combining the characteristics of apron operation and the physical features of aircraft key components. The experimental results show that the algorithm in this paper can realize the real‐time high‐precision detection of key components of aircraft in the apron gate. Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to accomplish targeted identification of vulnerable and high‐cost aircraft components. However, the implementation of detailed aircraft identification is of great significance to enhance the safety of airport surface operations. Based on the excellent performance of High‐Resolution Network (HRNet) in keypoint detection, a lightweight end‐to‐end keypoint detection network, namely Squeeze and Excitation High‐Resolution Network (SEHRNet), is proposed in this paper to solve the problems of HRNet's slower computation and more redundancy. First, the errors arising from coordinate transformations in the coding and decoding process are solved by an improved feature map coding and decoding process. Second, replace the BasicBlock in HRNet with the Depthwise separable convolutions based on the Squeeze‐and‐Excitation Networks, which drastically cuts the computational cost of the network. Third, the improved Bottleneck module is used to further enhance the capability of feature extraction. Experimental results prove that, based on the aircraft keypoint detection dataset, the SEHRNet proposed in this paper shows stronger applicability compared to the current mainstream networks. Compared with the original HRNet, the improved network has higher accuracy, faster speed, and lighter model for aircraft keypoint detection. |
| Author | Zhang, Tianxiong Li, Jiajun Zhu, Xinping Zhang, Zhiqiang |
| Author_xml | – sequence: 1 givenname: Zhiqiang orcidid: 0009-0001-0412-7020 surname: Zhang fullname: Zhang, Zhiqiang organization: Civil Aviation Flight University of China – sequence: 2 givenname: Tianxiong orcidid: 0000-0003-1840-1657 surname: Zhang fullname: Zhang, Tianxiong organization: Civil Aviation Flight University of China – sequence: 3 givenname: Xinping surname: Zhu fullname: Zhu, Xinping email: zxp@cafuc.edu.cn organization: Civil Aviation Flight University of China – sequence: 4 givenname: Jiajun surname: Li fullname: Li, Jiajun organization: State Grid General Aviation Co., Ltd |
| BookMark | eNp9kE1OwzAQhS1UJNrChhNkjUjxxE7ssKuqQitV_BRYW45jt25DXDlBVXccgTNyEpIGsWQzbzR6843mDVCvdKVG6BLwCDBNb-zORyMgAHCC-sBiCNMkYb2_Pk7P0KCqNhjHKeZxHz2_TGfLB13fBuOgsKt1vddtvQ7WjXx_fnldueKjtq4MSl3vnd8GxvlAWq-8NHWw1Yeds2Ud5LrWqvWdo1Mji0pf_OoQvd1NXyezcPF4P5-MF6EijECYMa14TnUEROUAkmGJKeZUYcg4pxnOoyhhUjHGY2MUzwjLGCRR8yUBmWIyRPOOmzu5ETtv36U_CCetOA6cXwnpa6sKLShu4MaQLJKUStM8rjhklAPEprmYN6yrjqW8qyqvzR8PsGiDFW2w4hhsY4bOvLeFPvzjFPOnZdTt_AAsDnzC |
| Cites_doi | 10.1109/CVPR.2019.00750 10.2514/6.2019-3414 10.1109/TPAMI.2012.261 10.1109/CVPR.2019.01225 10.1145/1291233.1291311 10.1109/CVPR42600.2020.00712 10.1007/s11263-012-0524-9 10.1049/ipr2.12277 10.1007/978-3-030-01264-9_8 10.1109/CVPR42600.2020.00543 10.1109/ICCV.2015.169 10.1007/978-3-319-46484-8_29 10.1109/CVPR.2013.83 10.1109/ICCV.2017.203 10.3390/rs13040663 10.1109/CVPR.2016.511 10.1109/ICCV.1999.790410 10.1007/978-3-030-01231-1_29 10.1007/978-3-319-46466-4_3 10.1049/itr2.12314 10.1049/ipr2.12505 10.1109/ICCV.2017.256 10.1109/ICCVW.2019.00343 10.1109/ICCV.2011.6126309 10.1109/CVPR46437.2021.01030 10.1109/CVPR.2018.00474 10.1109/CVPR46437.2021.01625 10.1109/AERO53065.2022.9843439 10.1109/CVPR.2019.00584 10.1109/CVPR.2018.00742 10.1109/CVPR.2017.143 10.1007/11612032_6 10.1109/CVPR.2016.533 10.1109/ROBIO.2018.8665155 10.1109/CVPR.2019.00363 10.3390/s19245361 10.1023/B:VISI.0000029664.99615.94 10.1109/TPAMI.2005.233 10.1109/AERO.2018.8396425 10.1117/12.2595800 10.1109/ICRA.2017.7989233 10.1109/ACCESS.2020.3010307 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.13111 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 2489 |
| ExternalDocumentID | oai_doaj_org_article_400a0ff3b2a44af085c81b48115f84cd 10_1049_ipr2_13111 IPR213111 |
| Genre | article |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: ZHMH2022‐008; J2023‐047 – fundername: Graduate Student Research and Innovation Fund of Civil Aviation Flight University of China funderid: X2023‐35 – fundername: Funds of the National Key Research and Development Program of China funderid: 2022YFB2602004 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IDLOA IPLJI ITC LAI MCNEO MS~ O9- OK1 P2P QWB RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ K1G L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN |
| ID | FETCH-LOGICAL-c3731-b7ec8d4e213cd11a70a04084c01b884b0d2267ac7785ffc8b37b716204931a903 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208058900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Fri Oct 03 12:50:04 EDT 2025 Wed Nov 05 20:45:41 EST 2025 Wed Jun 11 08:25:49 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-b7ec8d4e213cd11a70a04084c01b884b0d2267ac7785ffc8b37b716204931a903 |
| ORCID | 0009-0001-0412-7020 0000-0003-1840-1657 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13111 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_400a0ff3b2a44af085c81b48115f84cd crossref_primary_10_1049_ipr2_13111 wiley_primary_10_1049_ipr2_13111_IPR213111 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2019; 2019 2004; 60 2011 2007 2019; 19 2006 2005 2005; 27 2012; 35 2012; 99 1999 2020; 8 2021; 13 2021; 15 2022 2021 2020 2019 2018 2023; 17(5) 2017 2016 2015 2014 2013 2022; 16 2022; 17 e_1_2_11_32_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 Fu D. (e_1_2_11_39_1) 2019; 2019 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 Newell A. (e_1_2_11_30_1) 2017 e_1_2_11_16_1 e_1_2_11_37_1 |
| References_xml | – year: 2011 – volume: 17(5) start-page: 878 year: 2023 end-page: 896 – year: 2005 – year: 2007 – year: 2017 article-title: Associative embedding: End‐to‐end learning for joint detection and grouping publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 132539 year: 2020 end-page: 132550 article-title: Simple baseline for vehicle pose estimation: Experimental validation publication-title: IEEE Access – year: 2021 – volume: 16 start-page: 2506 issue: 9 year: 2022 end-page: 2517 article-title: High resolution representation‐based Siamese network for remote sensing image change detection publication-title: IET Image Proc. – volume: 17 start-page: 878 issue: 5 year: 2022 end-page: 896 article-title: Research on conflict detection model for taxi‐in process on the apron based on aircraft wingtip keypoint detection publication-title: IET Intel. Transp. Syst. – volume: 35 start-page: 2878 issue: 12 year: 2012 end-page: 2890 article-title: Articulated human detection with flexible mixtures of parts publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 60 start-page: 91 issue: 2 year: 2004 end-page: 110 article-title: Distinctive image features from scale‐invariant keypoints publication-title: Int. J. Comput. Vision – year: 2016 – year: 2018 – year: 2014 – year: 2019 article-title: Pifpaf: Composite fields for human pose estimation – volume: 27 start-page: 1910 issue: 12 year: 2005 end-page: 1922 article-title: Analyzing and capturing articulated hand motion in image sequences publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 99 start-page: 190 issue: 2 year: 2012 end-page: 214 article-title: 2d articulated human pose estimation and retrieval in (almost) unconstrained still images publication-title: Int. J. Comput. Vision – volume: 2019 start-page: 1 year: 2019 end-page: 11 article-title: The aircraft pose estimation based on a convolutional neural network publication-title: Math. Prob. Eng. – volume: 19 start-page: 5361 issue: 24 year: 2019 article-title: Waterfall atrous spatial pooling architecture for efficient semantic segmentation publication-title: Sensors – year: 2006 – year: 2022 – year: 2020 – volume: 13 start-page: 663 issue: 4 year: 2021 article-title: Estimating 6D aircraft pose from keypoints and structures publication-title: Remote Sens. – year: 2017 – year: 2019 – volume: 15 start-page: 3433 issue: 14 year: 2021 end-page: 3440 article-title: Dual‐view 3D human pose estimation without camera parameters for action recognition publication-title: IET Image Proc. – year: 2015 – year: 2013 – year: 1999 – ident: e_1_2_11_5_1 – ident: e_1_2_11_34_1 doi: 10.1109/CVPR.2019.00750 – ident: e_1_2_11_2_1 doi: 10.2514/6.2019-3414 – ident: e_1_2_11_11_1 doi: 10.1109/TPAMI.2012.261 – ident: e_1_2_11_29_1 doi: 10.1109/CVPR.2019.01225 – ident: e_1_2_11_9_1 doi: 10.1145/1291233.1291311 – ident: e_1_2_11_44_1 doi: 10.1109/CVPR42600.2020.00712 – ident: e_1_2_11_14_1 doi: 10.1007/s11263-012-0524-9 – ident: e_1_2_11_23_1 doi: 10.1049/ipr2.12277 – ident: e_1_2_11_51_1 doi: 10.1007/978-3-030-01264-9_8 – ident: e_1_2_11_31_1 doi: 10.1109/CVPR42600.2020.00543 – ident: e_1_2_11_27_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_2_11_16_1 doi: 10.1007/978-3-319-46484-8_29 – ident: e_1_2_11_12_1 doi: 10.1109/CVPR.2013.83 – ident: e_1_2_11_50_1 doi: 10.1109/ICCV.2017.203 – ident: e_1_2_11_38_1 doi: 10.3390/rs13040663 – ident: e_1_2_11_3_1 – ident: e_1_2_11_22_1 – ident: e_1_2_11_47_1 doi: 10.1109/CVPR.2016.511 – ident: e_1_2_11_6_1 doi: 10.1109/ICCV.1999.790410 – ident: e_1_2_11_18_1 doi: 10.1007/978-3-030-01231-1_29 – ident: e_1_2_11_19_1 doi: 10.1007/978-3-319-46466-4_3 – ident: e_1_2_11_40_1 doi: 10.1049/itr2.12314 – ident: e_1_2_11_24_1 doi: 10.1049/ipr2.12505 – year: 2017 ident: e_1_2_11_30_1 article-title: Associative embedding: End‐to‐end learning for joint detection and grouping publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_2_11_25_1 doi: 10.1109/ICCV.2017.256 – ident: e_1_2_11_43_1 doi: 10.1109/ICCVW.2019.00343 – ident: e_1_2_11_13_1 doi: 10.1109/ICCV.2011.6126309 – ident: e_1_2_11_48_1 doi: 10.1109/CVPR46437.2021.01030 – ident: e_1_2_11_49_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_11_46_1 doi: 10.1109/CVPR46437.2021.01625 – ident: e_1_2_11_42_1 doi: 10.1109/AERO53065.2022.9843439 – ident: e_1_2_11_20_1 doi: 10.1109/CVPR.2019.00584 – ident: e_1_2_11_17_1 doi: 10.1109/CVPR.2018.00742 – ident: e_1_2_11_28_1 doi: 10.1109/CVPR.2017.143 – ident: e_1_2_11_45_1 – ident: e_1_2_11_15_1 – ident: e_1_2_11_4_1 – ident: e_1_2_11_52_1 doi: 10.1049/itr2.12314 – ident: e_1_2_11_8_1 doi: 10.1007/11612032_6 – ident: e_1_2_11_26_1 doi: 10.1109/CVPR.2016.533 – ident: e_1_2_11_32_1 doi: 10.1109/ROBIO.2018.8665155 – volume: 2019 start-page: 1 year: 2019 ident: e_1_2_11_39_1 article-title: The aircraft pose estimation based on a convolutional neural network publication-title: Math. Prob. Eng. – ident: e_1_2_11_21_1 doi: 10.1109/CVPR.2019.00363 – ident: e_1_2_11_37_1 doi: 10.3390/s19245361 – ident: e_1_2_11_7_1 doi: 10.1023/B:VISI.0000029664.99615.94 – ident: e_1_2_11_10_1 doi: 10.1109/TPAMI.2005.233 – ident: e_1_2_11_41_1 doi: 10.1109/AERO.2018.8396425 – ident: e_1_2_11_36_1 doi: 10.1117/12.2595800 – ident: e_1_2_11_33_1 doi: 10.1109/ICRA.2017.7989233 – ident: e_1_2_11_35_1 doi: 10.1109/ACCESS.2020.3010307 |
| SSID | ssj0059085 |
| Score | 2.3190293 |
| Snippet | Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it difficult to... Abstract Current research on apron conflict detection is often limited to the interaction between the aircraft as a whole and other objects, making it... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Index Database Publisher |
| StartPage | 2476 |
| SubjectTerms | aircraft computer vision convolutional neural nets image processing pose estimation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA0iLtz4FscXAV2J1ebRSepulBHdDD5hdiVPGJDO0Km69RP8Rr_Em7QjutGNu1IKKSc3uee0N-cidJgTrpkjLqGKsYTTVCVK0CyxqZHOGuat1bHZhBgM5HCY33xr9RVqwhp74Aa4U4gxlXrPNFWcKw8MwQDT4hKYjJfc2LD7piKfialmDw6NvLN4FDI0ke9m-cyYlOeno0lFT4LJDPmRiqJj_0-GGlPM5Qpaarkh7jXvtIrmXLmGllueiNtVOF1Ht_f9q7uBq89wDz8Fcf0av28e4-A9_PH2Dgq6DShcNlXeGKgpVqPKVMrXGNbtZDwqa2xdHSuxyg30eNl_uLhK2tYIiWGCkUQLZ6TljhJmLCFKAEg8BTxSoqXkOrVAq4QyQsjMeyM1Ezp4RQEAjKg8ZZtovhyXbgth0DAecj4oJZdxEKy6Sz1zxlPf1RrYUgcdzFAqJo0DRhH_XPO8CFgWEcsOOg8Afj0RXKvjDZjLop3L4q-57KCjCP8v4xTXN3c0Xm3_x4g7aJECS2nqb3fRfF09uz20YF7q0bTajzH1CXiMzqQ priority: 102 providerName: Directory of Open Access Journals |
| Title | SEHRNet: A lightweight, high‐resolution network for aircraft keypoint detection |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13111 https://doaj.org/article/400a0ff3b2a44af085c81b48115f84cd |
| Volume | 18 |
| WOSCitedRecordID | wos001208058900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (ODIN) customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFA6DunBzfV7u-BgCurpYb_PoJBU3Kopuhrk-0F3JUwakM9SqW3-Cv9Ff4knaUdwI4qaUktLk5Jzk-9LkOwht54Rr5ohLqGIs4TRViRI0S2xqpLOGeWt1TDYhBgN5c5MPO2h_eham0Yd4X3ALkRHH6xDgSjdZSADUQieOJhXdDWIxwH1mCWEi-DTlw-k4HJJ5Z_E4ZEgk38_yqTgpz_99vPtpOoqq_Z9RapxmThZ-VsFF9KuFl_ig8Ycl1HHlMlpooSZuA_l-Bf2_OD49H7h6Dx_gu8DPn-IS6Q4O8sWvzy9AwlufxGWzURwDusVqVJlK-RpD6E_Go7LG1tVxM1e5iq5Oji-PTpM2u0JimGAk0cIZabmjhBlLiBKpgoCW3KRES8l1agGZCWWEkJn3RmomdJCbgsYxovKU_UYz5bh0fxAGGuQBNgDZchkHzqv71DNnPPV9rQFwddHW1MjFpBHRKOLPb54XwUpFtFIXHQb7v5cIwtfxwbi6Ldo4KmDIUan3TFPFufLQxQaAN5cAbD3U3XbR39gnX3ynOBue03i39p3C62ieAqBptupuoJm6enCbaM481qP7qhddrxcZPVyvzwZvfOjc4g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1da9swFBUjLXQvTbtuLO22CtanMW-2JEfy3tKRkLI2ZFkGeTP6HIbiBNdtX_sT-hv3S3YlOxl5GYy-GSNjWbpXOuf66lyEzrKEKWoTGxFJacRILCPJSRqZWAtrNHXGqFBsgk8mYrHIpm1ujj8L0-hDbAJu3jPCeu0d3AekG8LJvEhmsarIJ68WA-Rnh8G25DP6CJuuF2JfzTsN5yF9Jfl-mq3VSVn2-e-zW_tRkO3fhqlhnxl1n9jDA7TfAkw8aCziED2z5QvUbcEmbl355gh9_zEczya2_oIH-Noz9PsQJP2IvYDx74dHoOGtVeKySRXHgG-xLCpdSVdjcP7VsihrbGwd0rnKl-jnaDj_Oo7a-gqRppwmkeJWC8MsSag2SSJ5LMGlBdNxooRgKjaAzbjUnIvUOS0U5coLTsHH0URmMX2FOuWytK8RBiLkADgA3bIpA9ar-sRRqx1xfaUAcvXQ-_Uo56tGRiMPv79ZlvtRysMo9dC5n4BNCy99HW4sq19560k5LDoydo4qIhmTDuZYA_RmAqCtg76bHvoQJuUf78kvpjMSro7_p_Ep2hvPry7zy4vJtxP0nAC8aRJ336BOXd3at2hX39XFTfUu2OEfOhLewg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3datswGBUlK2U37bp2LN1PBdvVqDtbkiN5d92akNBhvHSF3Bn9jkBxgutut3uEPmOfpJ9kJyM3hdE7Y2QsSzrSOfKn8yH0MUuYojaxEZGURozEMpKcpJGJtbBGU2eMCskmeJ6L2Swrutgcfxam9YdYb7h5ZIT52gPcLo1rBSfzJpnzZU1OvVsMiJ9nLOUBl4QVq4nYZ_NOw3lIn0l-kGYrd1KWff737MZ6FGz7N2lqWGdGe0-s4Qu02xFMfNaOiH20ZauXaK8jm7iD8s0B-nE5HE9z23zBZ_jaK_Q_YZP0BHsD4_u_dyDDu1GJqzZUHAO_xXJe61q6BgP4l4t51WBjmxDOVR2iq9Hw57dx1OVXiDTlNIkUt1oYZklCtUkSyWMJkBZMx4kSgqnYADfjUnMuUue0UJQrbzgFH0cTmcX0FepVi8q-RhiEkAPiAHLLpgxUrxoQR612xA2UAsrVRx9WrVwuWxuNMvz-ZlnpW6kMrdRHX30HrEt46-twY1H_KjsklTDpyNg5qohkTDroYw3Umwmgtg7qbvroU-iUR95TToopCVdH_1P4GO0U56Py-yS_eIOeE2A3bdzuW9Rr6lv7Dm3r3838pn4fhuED9Q_ePQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEHRNet%3A+A+lightweight%2C+high%E2%80%90resolution+network+for+aircraft+keypoint+detection&rft.jtitle=IET+image+processing&rft.au=Zhang%2C+Zhiqiang&rft.au=Zhang%2C+Tianxiong&rft.au=Zhu%2C+Xinping&rft.au=Li%2C+Jiajun&rft.date=2024-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=9&rft.spage=2476&rft.epage=2489&rft_id=info:doi/10.1049%2Fipr2.13111&rft.externalDBID=10.1049%252Fipr2.13111&rft.externalDocID=IPR213111 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |