Deep Learning‐Assisted Active Metamaterials with Heat‐Enhanced Thermal Transport
Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with h...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 36; číslo 5; s. e2305791 - n/a |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.02.2024
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Drawing parallels from nonlinear optics, artificial intelligence assists a configurable nonlinear thermal material whose effective thermal conductivity being responsive to its temperature gradient. Such deep learning‐assisted nonlinear thermal material promotes two typical self‐adaptive devices, which can perceive their environment deeply. One maintains stable function, and another switches its function, in a changeable environment. |
|---|---|
| AbstractList | Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Drawing parallels from nonlinear optics, artificial intelligence assists a configurable nonlinear thermal material whose effective thermal conductivity being responsive to its temperature gradient. Such deep learning‐assisted nonlinear thermal material promotes two typical self‐adaptive devices, which can perceive their environment deeply. One maintains stable function, and another switches its function, in a changeable environment. Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments. Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments. |
| Author | Xu, Guoqiang Li, Jiaxin Xu, Liujun Huang, Jiping Qiu, Cheng‐Wei Jin, Peng |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0002-4440-5240 surname: Jin fullname: Jin, Peng organization: Fudan University – sequence: 2 givenname: Liujun surname: Xu fullname: Xu, Liujun organization: Graduate School of China Academy of Engineering Physics – sequence: 3 givenname: Guoqiang surname: Xu fullname: Xu, Guoqiang organization: National University of Singapore – sequence: 4 givenname: Jiaxin surname: Li fullname: Li, Jiaxin organization: National University of Singapore – sequence: 5 givenname: Cheng‐Wei surname: Qiu fullname: Qiu, Cheng‐Wei email: chengwei.qiu@nus.edu.sg organization: National University of Singapore – sequence: 6 givenname: Jiping orcidid: 0000-0002-3617-3275 surname: Huang fullname: Huang, Jiping email: jphuang@fudan.edu.cn organization: Fudan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37869962$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c9q3DAQBnBREppN2muPxdBLLt6OJFuyjiZ_Cxty8V3MylJXwZa3krYhtzxCnrFPUodNWgiUnuby-4ZhvmNyEKZgCflEYUkB2FfsR1wyYBxqqeg7sqA1o2UFqj4gC1C8LpWomiNynNIdACgB4j054rIRSgm2IN25tdtiZTEGH77_enxqU_Ip275oTfY_bXFjM46YbfQ4pOLe501xbTHP8iJsMJhZdhsbRxyKLmJI2ynmD-TQzdp-fJknpLu86M6uy9Xt1bezdlUaLjktUdA1OFgrpmphnDFCsKrnphGybyopuUEEpMD6BhT2jjm1rtEZKZ2spOMn5HS_dhunHzubsh59MnYYMNhplzRrGmgYZ1LM9MsbejftYpiP00wxqFilBJ3V5xe1W4-219voR4wP-vVdM6j2wMQppWidNj5j9lPIEf2gKejnVvRzK_pPK3Ns-Sb2uvmfAbUP3PvBPvxH6_b8pv2b_Q1j16Cn |
| CitedBy_id | crossref_primary_10_1002_adfm_202509862 crossref_primary_10_1021_acs_chemrev_4c00912 crossref_primary_10_1016_j_engstruct_2025_121336 crossref_primary_10_1016_j_amf_2024_200141 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125588 crossref_primary_10_1002_advs_202503024 crossref_primary_10_1515_nanoph_2025_0159 crossref_primary_10_1088_0256_307X_40_11_110305 crossref_primary_10_1088_2631_7990_ada839 crossref_primary_10_1002_smtd_202500469 crossref_primary_10_1016_j_xinn_2025_101070 crossref_primary_10_1002_adem_202501280 crossref_primary_10_1063_5_0208656 crossref_primary_10_1002_adom_202401333 crossref_primary_10_1016_j_isci_2024_110815 crossref_primary_10_1063_5_0207725 crossref_primary_10_1073_pnas_2410041121 crossref_primary_10_1088_1674_1056_adc36c crossref_primary_10_1115_1_4068647 crossref_primary_10_1016_j_ijmecsci_2025_110872 crossref_primary_10_1002_lpor_202400488 crossref_primary_10_1016_j_mtphys_2024_101603 crossref_primary_10_1002_adfm_202511451 crossref_primary_10_1016_j_apmt_2024_102431 crossref_primary_10_1080_10407790_2024_2384710 crossref_primary_10_1103_PhysRevApplied_21_054037 crossref_primary_10_1002_adma_202506061 crossref_primary_10_1016_j_solmat_2024_113382 |
| Cites_doi | 10.1038/natrevmats.2017.66 10.1002/adma.202209779 10.1038/s41567-019-0512-x 10.1038/s41467-022-30023-1 10.1038/s42254-023-00565-4 10.1103/PhysRevLett.121.173004 10.1002/adma.202003084 10.1126/sciadv.aar4206 10.1007/978-981-15-2301-4 10.1016/j.ijheatmasstransfer.2021.122305 10.1002/adma.202370237 10.1038/s41928-020-0380-5 10.1038/nmat3901 10.1038/s41563-018-0239-6 10.1103/PhysRevApplied.14.064034 10.1126/science.1125907 10.1103/PhysRevLett.112.055505 10.1103/PhysRevApplied.19.054096 10.1063/1.4959251 10.1016/j.ijheatmasstransfer.2020.120437 10.1103/PhysRevLett.115.195503 10.1073/pnas.1808534115 10.1126/science.aaw6259 10.1103/PhysRevLett.112.054302 10.1103/PhysRevLett.117.055501 10.1073/pnas.2110018119 10.1038/s41467-018-06802-0 10.1063/1.5019306 10.1002/adma.201707237 10.1115/1.4026911 10.1093/nsr/nwac159 10.1103/PhysRevB.97.195413 10.1002/adfm.201906718 10.1038/natrevmats.2016.1 10.1038/s41578-021-00283-2 10.1126/science.abf7136 10.1038/s41467-021-27543-7 10.1126/science.275.5307.1770 10.1002/adma.202201093 10.1126/sciadv.abj7906 10.1038/s41563-020-00884-2 10.1038/ncomms6553 10.1002/adma.202209123 10.1073/pnas.2217068120 10.1038/nmat2743 10.1002/adma.202200329 10.1063/1.5123908 10.1103/PhysRevLett.123.067701 10.1002/adma.202003823 10.1073/pnas.2209829120 10.1103/PhysRevApplied.12.044011 10.1016/j.ijheatmasstransfer.2021.121177 10.1016/j.ijheatmasstransfer.2022.122716 10.1126/science.aat8084 10.1063/1.4954739 10.1038/s41566-017-0089-9 10.1038/s41467-020-19909-0 10.1038/s41524-022-00861-0 10.1063/1.5134792 10.1038/s41566-020-0604-2 10.1103/PhysRevApplied.10.054032 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. 2024 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. – notice: 2024 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202305791 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 37869962 10_1002_adma_202305791 ADMA202305791 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12035004 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 20JC1414700 – fundername: Innovation Program of Shanghai Municipal Education Commission funderid: 2023ZKZD06 – fundername: Ministry of Education, Republic of Singapore funderid: A‐8000107‐01‐00 – fundername: Ministry of Education, Republic of Singapore grantid: A-8000107-01-00 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 20JC1414700 – fundername: Innovation Program of Shanghai Municipal Education Commission grantid: 2023ZKZD06 – fundername: National Natural Science Foundation of China grantid: 12035004 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3731-a61b0f0b92956cfcc6624d3c867d84773caa0a102d809adf2f9b5afc77f747f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001113480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Sun Nov 09 13:42:56 EST 2025 Fri Jul 25 21:57:00 EDT 2025 Thu Apr 03 06:57:07 EDT 2025 Sat Nov 29 07:22:40 EST 2025 Tue Nov 18 21:14:59 EST 2025 Wed Jan 22 16:14:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | deep learning enhanced thermal conduction active metamaterials self-adaptability |
| Language | English |
| License | 2023 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-a61b0f0b92956cfcc6624d3c867d84773caa0a102d809adf2f9b5afc77f747f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-3617-3275 0000-0002-4440-5240 |
| PMID | 37869962 |
| PQID | 2920424961 |
| PQPubID | 2045203 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2880823276 proquest_journals_2920424961 pubmed_primary_37869962 crossref_citationtrail_10_1002_adma_202305791 crossref_primary_10_1002_adma_202305791 wiley_primary_10_1002_adma_202305791_ADMA202305791 |
| PublicationCentury | 2000 |
| PublicationDate | February 1, 2024 2024-02-00 2024-Feb 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: February 1, 2024 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2018; 361 2018; 121 2023; 35 2017; 2 2021; 20 2020; 163 2023; 5 2016; 109 2016; 108 2019; 12 1997; 275 2018; 123 2019; 15 2019; 18 2020; 14 2020; 11 2019; 364 2014; 66 2019; 123 2020; 7 2018; 9 2014; 5 2020; 3 2021; 33 2018; 4 2019; 115 2022; 34 2014; 13 1984 2018; 30 2016; 117 2010; 9 2023; 10 2021; 7 2021; 6 2023; 120 2023; 19 2020; 32 2022; 119 2014; 112 2006; 312 2022; 189 2022; 184 2016; 1 2021; 12 2020; 2020 2015; 115 2020; 30 2020 2022; 8 2018; 115 2022; 13 2021; 172 2021; 374 2018; 12 2018; 10 2018; 97 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 e_1_2_12_62_1 e_1_2_12_60_1 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_58_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 Luo Y. T. (e_1_2_12_51_1) 2020; 2020 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_61_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 Shen Y. R. (e_1_2_12_64_1) 1984 e_1_2_12_7_1 e_1_2_12_9_1 |
| References_xml | – volume: 361 start-page: 1004 year: 2018 publication-title: Science – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 5 start-page: 5553 year: 2014 publication-title: Nat. Commun. – volume: 19 year: 2023 publication-title: Phys. Rev. Appl. – volume: 12 start-page: 79 year: 2018 publication-title: Nat. Photonics – volume: 18 start-page: 48 year: 2019 publication-title: Nat. Mater. – volume: 2020 year: 2020 publication-title: Research – volume: 172 year: 2021 publication-title: Int. J. Heat Mass. Transf. – volume: 6 start-page: 488 year: 2021 publication-title: Nat. Rev. Mater. – volume: 119 year: 2022 publication-title: Proc. Natl. Acad. Sci. USA – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 120 year: 2023 publication-title: Proc. Natl. Acad. Sci. USA – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 3 start-page: 165 year: 2020 publication-title: Nat. Electron. – volume: 10 year: 2018 publication-title: Phys. Rev. Appl. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 5 start-page: 218 year: 2023 publication-title: Nat. Rev. Phys. – volume: 275 start-page: 1770 year: 1997 publication-title: Science – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 7 year: 2020 publication-title: Appl. Phys. Rev. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 387 year: 2010 publication-title: Nat. Mater. – volume: 364 start-page: 170 year: 2019 publication-title: Science – volume: 163 year: 2020 publication-title: Int. J. Heat Mass. Transf. – volume: 9 start-page: 4334 year: 2018 publication-title: Nat. Commun. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 352 year: 2014 publication-title: Nat. Mater. – volume: 115 start-page: 9951 year: 2018 publication-title: Proc. Natl. Acad. Sci. USA – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 20 start-page: 463 year: 2021 publication-title: Nat. Mater. – volume: 12 start-page: 7228 year: 2021 publication-title: Nat. Commun. – volume: 109 year: 2016 publication-title: Appl. Phys. Lett. – volume: 2 year: 2017 publication-title: Nat. Rev. Mater. – volume: 14 year: 2020 publication-title: Phys. Rev. Appl. – volume: 4 start-page: 1 year: 2018 publication-title: Sci. Adv. – volume: 15 start-page: 790 year: 2019 publication-title: Nat. Phys. – volume: 13 start-page: 2683 year: 2022 publication-title: Nat. Commun. – volume: 8 start-page: 179 year: 2022 publication-title: NPJ Comput. Mater. – year: 1984 – volume: 115 year: 2019 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 383 year: 2020 publication-title: Nat. Photonics – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – year: 2020 – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 374 start-page: 1504 year: 2021 publication-title: Science – volume: 184 year: 2022 publication-title: Int. J. Heat Mass. Transf. – volume: 10 year: 2023 publication-title: Natl. Sci. Rev. – volume: 11 start-page: 6028 year: 2020 publication-title: Nat. Commun. – volume: 189 year: 2022 publication-title: Int. J. Heat Mass. Transf. – volume: 66 year: 2014 publication-title: Appl. Mech. Rev. – ident: e_1_2_12_10_1 doi: 10.1038/natrevmats.2017.66 – ident: e_1_2_12_14_1 doi: 10.1002/adma.202209779 – ident: e_1_2_12_50_1 doi: 10.1038/s41567-019-0512-x – ident: e_1_2_12_20_1 doi: 10.1038/s41467-022-30023-1 – ident: e_1_2_12_32_1 doi: 10.1038/s42254-023-00565-4 – ident: e_1_2_12_25_1 doi: 10.1103/PhysRevLett.121.173004 – ident: e_1_2_12_37_1 doi: 10.1002/adma.202003084 – ident: e_1_2_12_49_1 doi: 10.1126/sciadv.aar4206 – ident: e_1_2_12_11_1 doi: 10.1007/978-981-15-2301-4 – ident: e_1_2_12_55_1 doi: 10.1016/j.ijheatmasstransfer.2021.122305 – ident: e_1_2_12_57_1 doi: 10.1002/adma.202370237 – ident: e_1_2_12_43_1 doi: 10.1038/s41928-020-0380-5 – ident: e_1_2_12_16_1 doi: 10.1038/nmat3901 – ident: e_1_2_12_17_1 doi: 10.1038/s41563-018-0239-6 – ident: e_1_2_12_41_1 doi: 10.1103/PhysRevApplied.14.064034 – ident: e_1_2_12_15_1 doi: 10.1126/science.1125907 – ident: e_1_2_12_13_1 doi: 10.1103/PhysRevLett.112.055505 – ident: e_1_2_12_35_1 doi: 10.1103/PhysRevApplied.19.054096 – ident: e_1_2_12_61_1 doi: 10.1063/1.4959251 – ident: e_1_2_12_19_1 doi: 10.1016/j.ijheatmasstransfer.2020.120437 – ident: e_1_2_12_29_1 doi: 10.1103/PhysRevLett.115.195503 – ident: e_1_2_12_27_1 doi: 10.1073/pnas.1808534115 – ident: e_1_2_12_31_1 doi: 10.1126/science.aaw6259 – ident: e_1_2_12_58_1 doi: 10.1103/PhysRevLett.112.054302 – ident: e_1_2_12_30_1 doi: 10.1103/PhysRevLett.117.055501 – ident: e_1_2_12_33_1 doi: 10.1073/pnas.2110018119 – ident: e_1_2_12_42_1 doi: 10.1038/s41467-018-06802-0 – ident: e_1_2_12_60_1 doi: 10.1063/1.5019306 – ident: e_1_2_12_3_1 doi: 10.1002/adma.201707237 – ident: e_1_2_12_5_1 doi: 10.1115/1.4026911 – ident: e_1_2_12_24_1 doi: 10.1093/nsr/nwac159 – ident: e_1_2_12_7_1 doi: 10.1103/PhysRevB.97.195413 – ident: e_1_2_12_4_1 doi: 10.1002/adfm.201906718 – ident: e_1_2_12_9_1 doi: 10.1038/natrevmats.2016.1 – ident: e_1_2_12_12_1 doi: 10.1038/s41578-021-00283-2 – ident: e_1_2_12_1_1 doi: 10.1126/science.abf7136 – ident: e_1_2_12_21_1 doi: 10.1038/s41467-021-27543-7 – ident: e_1_2_12_45_1 doi: 10.1126/science.275.5307.1770 – volume: 2020 year: 2020 ident: e_1_2_12_51_1 publication-title: Research – volume-title: Principles of Nonlinear Optics year: 1984 ident: e_1_2_12_64_1 – ident: e_1_2_12_47_1 – ident: e_1_2_12_44_1 doi: 10.1002/adma.202201093 – ident: e_1_2_12_2_1 doi: 10.1126/sciadv.abj7906 – ident: e_1_2_12_59_1 doi: 10.1038/s41563-020-00884-2 – ident: e_1_2_12_26_1 doi: 10.1038/ncomms6553 – ident: e_1_2_12_34_1 doi: 10.1002/adma.202209123 – ident: e_1_2_12_38_1 doi: 10.1073/pnas.2217068120 – ident: e_1_2_12_8_1 doi: 10.1038/nmat2743 – ident: e_1_2_12_23_1 doi: 10.1002/adma.202200329 – ident: e_1_2_12_18_1 doi: 10.1063/1.5123908 – ident: e_1_2_12_39_1 doi: 10.1103/PhysRevLett.123.067701 – ident: e_1_2_12_62_1 doi: 10.1002/adma.202003823 – ident: e_1_2_12_28_1 doi: 10.1073/pnas.2209829120 – ident: e_1_2_12_40_1 doi: 10.1103/PhysRevApplied.12.044011 – ident: e_1_2_12_54_1 doi: 10.1016/j.ijheatmasstransfer.2021.121177 – ident: e_1_2_12_56_1 doi: 10.1016/j.ijheatmasstransfer.2022.122716 – ident: e_1_2_12_48_1 doi: 10.1126/science.aat8084 – ident: e_1_2_12_6_1 doi: 10.1063/1.4954739 – ident: e_1_2_12_46_1 doi: 10.1038/s41566-017-0089-9 – ident: e_1_2_12_36_1 doi: 10.1038/s41467-020-19909-0 – ident: e_1_2_12_22_1 doi: 10.1038/s41524-022-00861-0 – ident: e_1_2_12_52_1 doi: 10.1063/1.5134792 – ident: e_1_2_12_53_1 doi: 10.1038/s41566-020-0604-2 – ident: e_1_2_12_63_1 doi: 10.1103/PhysRevApplied.10.054032 |
| SSID | ssj0009606 |
| Score | 2.6276023 |
| Snippet | Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their... Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2305791 |
| SubjectTerms | active metamaterials Adaptive systems Ambient temperature Deep learning Diffusion barriers enhanced thermal conduction Heat Isotropic material Metamaterials self‐adaptability Thermal diffusion |
| Title | Deep Learning‐Assisted Active Metamaterials with Heat‐Enhanced Thermal Transport |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202305791 https://www.ncbi.nlm.nih.gov/pubmed/37869962 https://www.proquest.com/docview/2920424961 https://www.proquest.com/docview/2880823276 |
| Volume | 36 |
| WOSCitedRecordID | wos001113480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7ccQ-7h9V9qOOLFoQ9BZPuTnfnODgOHlREZmFuoZ-7gkRxxj37E_yN_pKtTjLRYRFBbwmpJE1XfVXVr68A9jHGe5HniDRqbMILzRItDUPg8cKZVGfa27rYhDw7U5NJcf7sFH_DD9FNuEVk1P46Alyb6cETaah2NW8QptC5jMfXlykab96D5eHF6NfJE_GuqOtrxvW-pBBczYkbU3qw-IXFwPRftrmYvNbRZ7Ty_navwpc28ySDxlS-wpKvvsHnZ3yE32E89P6GtJSrvx_vH1B50QwcGdRukZz6mcYUt7FaEudwyTE6c5Q8qv7UewkI2h36-ivSsab_gPHoaHx4nLRlFxLLJMsSLTKThtRg4pQLG6wVgnLHrBLSYSyTzGqNSkypU2mhXaChMLkOVsqAY5PA1qBXXVd-A4guuOQ-IO6d5Soo5agPeaqFyZgwLOtDMu_y0raU5LEyxlXZkCnTMnZW2XVWH3528jcNGceLkttzDZYtKKdlLMzFcbgp8PFe9xjhFNdIdOWv71AG_ZnCLFOKPqw3mu9-xaQSODykfaC1gl9pQzkYng66u823vLQFn_CaN7vEt6E3u73zO_DR_p1dTm934YOcqN3W4P8Big8AbQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFD6ICrs-6Lo3R12NsLBPxTZJk_RxcBxm2ZlBZATfSpqLClJFx33en-Bv9Jd40naqg4iw-Nj2tA05ty-37wD8xBzvRJqip9HCRDzTLNKyYOh4PLNFrBPtTFVsQo7H6vQ0O2p2E4azMDU_RDvhFjyjitfBwcOE9P4Ta6i2FXEQYuhUhvPrSxxtCY18qXfcPxk-Me-KqsBmWPCLMsHVjLkxpvvzX5jPTC_g5jx6rdJPf-0dGv4JVhvsSbq1sazDgis_w8ozRsIvMOk5d00a0tWzh3_3qL5gCJZ0q8BIRm6qEeTWdkvCLC4ZYDhHycPyvNpNQNDyMNpfkpY3_StM-oeTg0HUFF6IDJMsibRIitjHBUKnVBhvjBCUW2aUkBazmWRGa1RjTK2KM2099VmRam-k9Dg68ewbLJZXpdsAojMuufPo-dZw5ZWy1Pk01qJImChY0oFo1ue5aUjJQ22My7ymU6Z56Ky87awO_Grlr2s6jlclt2cqzBu3vM1DaS6OA06Bj_fax-hQYZVEl-7qDmUwoinEmVJ04Hut-vZXTCqBA0TaAVpp-I025N3eqNtebf7PS7vwYTAZDfPh7_GfLfiI93m9Z3wbFqc3d-4HLJu_04vbm53G7h8B3gIDdQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD6UtYg-1Hpfa3UKgk_BZGYyM3lcui4WdZGygm9hMhcVlrjo6nN_Qn9jf4lnkmx0KVKQPiY5SYY5t29u3wE4wBzvRJqip9HCRDzTLNKyYOh4PLNFrBPtTFVsQg6H6uoqu2h2E4azMDU_RDvhFjyjitfBwd3E-qMX1lBtK-IgxNCpDOfXF3ioJNOBhf7PweXZC_OuqApshgW_KBNczZgbY3o0_4X5zPQX3JxHr1X6Gaz8h4Z_hk8N9iS92lhW4YMr12D5FSPhOoz6zk1IQ7p6_efXb1RfMARLelVgJOduqhHk1nZLwiwuOcFwjpLH5U21m4Cg5WG0H5OWN30DRoPj0feTqCm8EBkmWRJpkRSxjwuETqkw3hghKLfMKCEtZjPJjNaoxphaFWfaeuqzItXeSOlxdOLZJnTKu9JtA9EZl9x59HxruPJKWep8GmtRJEwULOlCNOvz3DSk5KE2xjiv6ZRpHjorbzurC4et_KSm43hTcnemwrxxy4c8lObiOOAU-Phb-xgdKqyS6NLdPaIMRjSFOFOKLmzVqm9_xaQSOECkXaCVhv_RhrzXP--1VzvveWkfFi_6g_zsx_D0CyzhbV5vGd-FzvT-0X2Fj-Zpevtwv9eY_TNjYALw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning%E2%80%90Assisted+Active+Metamaterials+with+Heat%E2%80%90Enhanced+Thermal+Transport&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Peng&rft.au=Xu%2C+Liujun&rft.au=Xu%2C+Guoqiang&rft.au=Li%2C+Jiaxin&rft.date=2024-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202305791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202305791 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |