Deep Learning‐Assisted Active Metamaterials with Heat‐Enhanced Thermal Transport

Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 36; číslo 5; s. e2305791 - n/a
Hlavní autoři: Jin, Peng, Xu, Liujun, Xu, Guoqiang, Li, Jiaxin, Qiu, Cheng‐Wei, Huang, Jiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 01.02.2024
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments. Drawing parallels from nonlinear optics, artificial intelligence assists a configurable nonlinear thermal material whose effective thermal conductivity being responsive to its temperature gradient. Such deep learning‐assisted nonlinear thermal material promotes two typical self‐adaptive devices, which can perceive their environment deeply. One maintains stable function, and another switches its function, in a changeable environment.
AbstractList Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments. Drawing parallels from nonlinear optics, artificial intelligence assists a configurable nonlinear thermal material whose effective thermal conductivity being responsive to its temperature gradient. Such deep learning‐assisted nonlinear thermal material promotes two typical self‐adaptive devices, which can perceive their environment deeply. One maintains stable function, and another switches its function, in a changeable environment.
Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working‐temperature ranges, and the need for manual intervention, which remain long‐term and tricky obstacles for the most advanced self‐adaptive metamaterials. To surmount these barriers, heat‐enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on‐demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Author Xu, Guoqiang
Li, Jiaxin
Xu, Liujun
Huang, Jiping
Qiu, Cheng‐Wei
Jin, Peng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0002-4440-5240
  surname: Jin
  fullname: Jin, Peng
  organization: Fudan University
– sequence: 2
  givenname: Liujun
  surname: Xu
  fullname: Xu, Liujun
  organization: Graduate School of China Academy of Engineering Physics
– sequence: 3
  givenname: Guoqiang
  surname: Xu
  fullname: Xu, Guoqiang
  organization: National University of Singapore
– sequence: 4
  givenname: Jiaxin
  surname: Li
  fullname: Li, Jiaxin
  organization: National University of Singapore
– sequence: 5
  givenname: Cheng‐Wei
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: chengwei.qiu@nus.edu.sg
  organization: National University of Singapore
– sequence: 6
  givenname: Jiping
  orcidid: 0000-0002-3617-3275
  surname: Huang
  fullname: Huang, Jiping
  email: jphuang@fudan.edu.cn
  organization: Fudan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37869962$$D View this record in MEDLINE/PubMed
BookMark eNqF0c9q3DAQBnBREppN2muPxdBLLt6OJFuyjiZ_Cxty8V3MylJXwZa3krYhtzxCnrFPUodNWgiUnuby-4ZhvmNyEKZgCflEYUkB2FfsR1wyYBxqqeg7sqA1o2UFqj4gC1C8LpWomiNynNIdACgB4j054rIRSgm2IN25tdtiZTEGH77_enxqU_Ip275oTfY_bXFjM46YbfQ4pOLe501xbTHP8iJsMJhZdhsbRxyKLmJI2ynmD-TQzdp-fJknpLu86M6uy9Xt1bezdlUaLjktUdA1OFgrpmphnDFCsKrnphGybyopuUEEpMD6BhT2jjm1rtEZKZ2spOMn5HS_dhunHzubsh59MnYYMNhplzRrGmgYZ1LM9MsbejftYpiP00wxqFilBJ3V5xe1W4-219voR4wP-vVdM6j2wMQppWidNj5j9lPIEf2gKejnVvRzK_pPK3Ns-Sb2uvmfAbUP3PvBPvxH6_b8pv2b_Q1j16Cn
CitedBy_id crossref_primary_10_1002_adfm_202509862
crossref_primary_10_1021_acs_chemrev_4c00912
crossref_primary_10_1016_j_engstruct_2025_121336
crossref_primary_10_1016_j_amf_2024_200141
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125588
crossref_primary_10_1002_advs_202503024
crossref_primary_10_1515_nanoph_2025_0159
crossref_primary_10_1088_0256_307X_40_11_110305
crossref_primary_10_1088_2631_7990_ada839
crossref_primary_10_1002_smtd_202500469
crossref_primary_10_1016_j_xinn_2025_101070
crossref_primary_10_1002_adem_202501280
crossref_primary_10_1063_5_0208656
crossref_primary_10_1002_adom_202401333
crossref_primary_10_1016_j_isci_2024_110815
crossref_primary_10_1063_5_0207725
crossref_primary_10_1073_pnas_2410041121
crossref_primary_10_1088_1674_1056_adc36c
crossref_primary_10_1115_1_4068647
crossref_primary_10_1016_j_ijmecsci_2025_110872
crossref_primary_10_1002_lpor_202400488
crossref_primary_10_1016_j_mtphys_2024_101603
crossref_primary_10_1002_adfm_202511451
crossref_primary_10_1016_j_apmt_2024_102431
crossref_primary_10_1080_10407790_2024_2384710
crossref_primary_10_1103_PhysRevApplied_21_054037
crossref_primary_10_1002_adma_202506061
crossref_primary_10_1016_j_solmat_2024_113382
Cites_doi 10.1038/natrevmats.2017.66
10.1002/adma.202209779
10.1038/s41567-019-0512-x
10.1038/s41467-022-30023-1
10.1038/s42254-023-00565-4
10.1103/PhysRevLett.121.173004
10.1002/adma.202003084
10.1126/sciadv.aar4206
10.1007/978-981-15-2301-4
10.1016/j.ijheatmasstransfer.2021.122305
10.1002/adma.202370237
10.1038/s41928-020-0380-5
10.1038/nmat3901
10.1038/s41563-018-0239-6
10.1103/PhysRevApplied.14.064034
10.1126/science.1125907
10.1103/PhysRevLett.112.055505
10.1103/PhysRevApplied.19.054096
10.1063/1.4959251
10.1016/j.ijheatmasstransfer.2020.120437
10.1103/PhysRevLett.115.195503
10.1073/pnas.1808534115
10.1126/science.aaw6259
10.1103/PhysRevLett.112.054302
10.1103/PhysRevLett.117.055501
10.1073/pnas.2110018119
10.1038/s41467-018-06802-0
10.1063/1.5019306
10.1002/adma.201707237
10.1115/1.4026911
10.1093/nsr/nwac159
10.1103/PhysRevB.97.195413
10.1002/adfm.201906718
10.1038/natrevmats.2016.1
10.1038/s41578-021-00283-2
10.1126/science.abf7136
10.1038/s41467-021-27543-7
10.1126/science.275.5307.1770
10.1002/adma.202201093
10.1126/sciadv.abj7906
10.1038/s41563-020-00884-2
10.1038/ncomms6553
10.1002/adma.202209123
10.1073/pnas.2217068120
10.1038/nmat2743
10.1002/adma.202200329
10.1063/1.5123908
10.1103/PhysRevLett.123.067701
10.1002/adma.202003823
10.1073/pnas.2209829120
10.1103/PhysRevApplied.12.044011
10.1016/j.ijheatmasstransfer.2021.121177
10.1016/j.ijheatmasstransfer.2022.122716
10.1126/science.aat8084
10.1063/1.4954739
10.1038/s41566-017-0089-9
10.1038/s41467-020-19909-0
10.1038/s41524-022-00861-0
10.1063/1.5134792
10.1038/s41566-020-0604-2
10.1103/PhysRevApplied.10.054032
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202305791
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 37869962
10_1002_adma_202305791
ADMA202305791
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12035004
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 20JC1414700
– fundername: Innovation Program of Shanghai Municipal Education Commission
  funderid: 2023ZKZD06
– fundername: Ministry of Education, Republic of Singapore
  funderid: A‐8000107‐01‐00
– fundername: Ministry of Education, Republic of Singapore
  grantid: A-8000107-01-00
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 20JC1414700
– fundername: Innovation Program of Shanghai Municipal Education Commission
  grantid: 2023ZKZD06
– fundername: National Natural Science Foundation of China
  grantid: 12035004
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3731-a61b0f0b92956cfcc6624d3c867d84773caa0a102d809adf2f9b5afc77f747f3
IEDL.DBID DRFUL
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001113480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Sun Nov 09 13:42:56 EST 2025
Fri Jul 25 21:57:00 EDT 2025
Thu Apr 03 06:57:07 EDT 2025
Sat Nov 29 07:22:40 EST 2025
Tue Nov 18 21:14:59 EST 2025
Wed Jan 22 16:14:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords deep learning
enhanced thermal conduction
active metamaterials
self-adaptability
Language English
License 2023 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-a61b0f0b92956cfcc6624d3c867d84773caa0a102d809adf2f9b5afc77f747f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3617-3275
0000-0002-4440-5240
PMID 37869962
PQID 2920424961
PQPubID 2045203
PageCount 10
ParticipantIDs proquest_miscellaneous_2880823276
proquest_journals_2920424961
pubmed_primary_37869962
crossref_citationtrail_10_1002_adma_202305791
crossref_primary_10_1002_adma_202305791
wiley_primary_10_1002_adma_202305791_ADMA202305791
PublicationCentury 2000
PublicationDate February 1, 2024
2024-02-00
2024-Feb
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 1, 2024
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2018; 121
2023; 35
2017; 2
2021; 20
2020; 163
2023; 5
2016; 109
2016; 108
2019; 12
1997; 275
2018; 123
2019; 15
2019; 18
2020; 14
2020; 11
2019; 364
2014; 66
2019; 123
2020; 7
2018; 9
2014; 5
2020; 3
2021; 33
2018; 4
2019; 115
2022; 34
2014; 13
1984
2018; 30
2016; 117
2010; 9
2023; 10
2021; 7
2021; 6
2023; 120
2023; 19
2020; 32
2022; 119
2014; 112
2006; 312
2022; 189
2022; 184
2016; 1
2021; 12
2020; 2020
2015; 115
2020; 30
2020
2022; 8
2018; 115
2022; 13
2021; 172
2021; 374
2018; 12
2018; 10
2018; 97
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
e_1_2_12_62_1
e_1_2_12_60_1
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_58_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
Luo Y. T. (e_1_2_12_51_1) 2020; 2020
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_61_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
Shen Y. R. (e_1_2_12_64_1) 1984
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 361
  start-page: 1004
  year: 2018
  publication-title: Science
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 5553
  year: 2014
  publication-title: Nat. Commun.
– volume: 19
  year: 2023
  publication-title: Phys. Rev. Appl.
– volume: 12
  start-page: 79
  year: 2018
  publication-title: Nat. Photonics
– volume: 18
  start-page: 48
  year: 2019
  publication-title: Nat. Mater.
– volume: 2020
  year: 2020
  publication-title: Research
– volume: 172
  year: 2021
  publication-title: Int. J. Heat Mass. Transf.
– volume: 6
  start-page: 488
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 119
  year: 2022
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 120
  year: 2023
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3
  start-page: 165
  year: 2020
  publication-title: Nat. Electron.
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 5
  start-page: 218
  year: 2023
  publication-title: Nat. Rev. Phys.
– volume: 275
  start-page: 1770
  year: 1997
  publication-title: Science
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 387
  year: 2010
  publication-title: Nat. Mater.
– volume: 364
  start-page: 170
  year: 2019
  publication-title: Science
– volume: 163
  year: 2020
  publication-title: Int. J. Heat Mass. Transf.
– volume: 9
  start-page: 4334
  year: 2018
  publication-title: Nat. Commun.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 352
  year: 2014
  publication-title: Nat. Mater.
– volume: 115
  start-page: 9951
  year: 2018
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 20
  start-page: 463
  year: 2021
  publication-title: Nat. Mater.
– volume: 12
  start-page: 7228
  year: 2021
  publication-title: Nat. Commun.
– volume: 109
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 4
  start-page: 1
  year: 2018
  publication-title: Sci. Adv.
– volume: 15
  start-page: 790
  year: 2019
  publication-title: Nat. Phys.
– volume: 13
  start-page: 2683
  year: 2022
  publication-title: Nat. Commun.
– volume: 8
  start-page: 179
  year: 2022
  publication-title: NPJ Comput. Mater.
– year: 1984
– volume: 115
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 383
  year: 2020
  publication-title: Nat. Photonics
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– year: 2020
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 374
  start-page: 1504
  year: 2021
  publication-title: Science
– volume: 184
  year: 2022
  publication-title: Int. J. Heat Mass. Transf.
– volume: 10
  year: 2023
  publication-title: Natl. Sci. Rev.
– volume: 11
  start-page: 6028
  year: 2020
  publication-title: Nat. Commun.
– volume: 189
  year: 2022
  publication-title: Int. J. Heat Mass. Transf.
– volume: 66
  year: 2014
  publication-title: Appl. Mech. Rev.
– ident: e_1_2_12_10_1
  doi: 10.1038/natrevmats.2017.66
– ident: e_1_2_12_14_1
  doi: 10.1002/adma.202209779
– ident: e_1_2_12_50_1
  doi: 10.1038/s41567-019-0512-x
– ident: e_1_2_12_20_1
  doi: 10.1038/s41467-022-30023-1
– ident: e_1_2_12_32_1
  doi: 10.1038/s42254-023-00565-4
– ident: e_1_2_12_25_1
  doi: 10.1103/PhysRevLett.121.173004
– ident: e_1_2_12_37_1
  doi: 10.1002/adma.202003084
– ident: e_1_2_12_49_1
  doi: 10.1126/sciadv.aar4206
– ident: e_1_2_12_11_1
  doi: 10.1007/978-981-15-2301-4
– ident: e_1_2_12_55_1
  doi: 10.1016/j.ijheatmasstransfer.2021.122305
– ident: e_1_2_12_57_1
  doi: 10.1002/adma.202370237
– ident: e_1_2_12_43_1
  doi: 10.1038/s41928-020-0380-5
– ident: e_1_2_12_16_1
  doi: 10.1038/nmat3901
– ident: e_1_2_12_17_1
  doi: 10.1038/s41563-018-0239-6
– ident: e_1_2_12_41_1
  doi: 10.1103/PhysRevApplied.14.064034
– ident: e_1_2_12_15_1
  doi: 10.1126/science.1125907
– ident: e_1_2_12_13_1
  doi: 10.1103/PhysRevLett.112.055505
– ident: e_1_2_12_35_1
  doi: 10.1103/PhysRevApplied.19.054096
– ident: e_1_2_12_61_1
  doi: 10.1063/1.4959251
– ident: e_1_2_12_19_1
  doi: 10.1016/j.ijheatmasstransfer.2020.120437
– ident: e_1_2_12_29_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_12_27_1
  doi: 10.1073/pnas.1808534115
– ident: e_1_2_12_31_1
  doi: 10.1126/science.aaw6259
– ident: e_1_2_12_58_1
  doi: 10.1103/PhysRevLett.112.054302
– ident: e_1_2_12_30_1
  doi: 10.1103/PhysRevLett.117.055501
– ident: e_1_2_12_33_1
  doi: 10.1073/pnas.2110018119
– ident: e_1_2_12_42_1
  doi: 10.1038/s41467-018-06802-0
– ident: e_1_2_12_60_1
  doi: 10.1063/1.5019306
– ident: e_1_2_12_3_1
  doi: 10.1002/adma.201707237
– ident: e_1_2_12_5_1
  doi: 10.1115/1.4026911
– ident: e_1_2_12_24_1
  doi: 10.1093/nsr/nwac159
– ident: e_1_2_12_7_1
  doi: 10.1103/PhysRevB.97.195413
– ident: e_1_2_12_4_1
  doi: 10.1002/adfm.201906718
– ident: e_1_2_12_9_1
  doi: 10.1038/natrevmats.2016.1
– ident: e_1_2_12_12_1
  doi: 10.1038/s41578-021-00283-2
– ident: e_1_2_12_1_1
  doi: 10.1126/science.abf7136
– ident: e_1_2_12_21_1
  doi: 10.1038/s41467-021-27543-7
– ident: e_1_2_12_45_1
  doi: 10.1126/science.275.5307.1770
– volume: 2020
  year: 2020
  ident: e_1_2_12_51_1
  publication-title: Research
– volume-title: Principles of Nonlinear Optics
  year: 1984
  ident: e_1_2_12_64_1
– ident: e_1_2_12_47_1
– ident: e_1_2_12_44_1
  doi: 10.1002/adma.202201093
– ident: e_1_2_12_2_1
  doi: 10.1126/sciadv.abj7906
– ident: e_1_2_12_59_1
  doi: 10.1038/s41563-020-00884-2
– ident: e_1_2_12_26_1
  doi: 10.1038/ncomms6553
– ident: e_1_2_12_34_1
  doi: 10.1002/adma.202209123
– ident: e_1_2_12_38_1
  doi: 10.1073/pnas.2217068120
– ident: e_1_2_12_8_1
  doi: 10.1038/nmat2743
– ident: e_1_2_12_23_1
  doi: 10.1002/adma.202200329
– ident: e_1_2_12_18_1
  doi: 10.1063/1.5123908
– ident: e_1_2_12_39_1
  doi: 10.1103/PhysRevLett.123.067701
– ident: e_1_2_12_62_1
  doi: 10.1002/adma.202003823
– ident: e_1_2_12_28_1
  doi: 10.1073/pnas.2209829120
– ident: e_1_2_12_40_1
  doi: 10.1103/PhysRevApplied.12.044011
– ident: e_1_2_12_54_1
  doi: 10.1016/j.ijheatmasstransfer.2021.121177
– ident: e_1_2_12_56_1
  doi: 10.1016/j.ijheatmasstransfer.2022.122716
– ident: e_1_2_12_48_1
  doi: 10.1126/science.aat8084
– ident: e_1_2_12_6_1
  doi: 10.1063/1.4954739
– ident: e_1_2_12_46_1
  doi: 10.1038/s41566-017-0089-9
– ident: e_1_2_12_36_1
  doi: 10.1038/s41467-020-19909-0
– ident: e_1_2_12_22_1
  doi: 10.1038/s41524-022-00861-0
– ident: e_1_2_12_52_1
  doi: 10.1063/1.5134792
– ident: e_1_2_12_53_1
  doi: 10.1038/s41566-020-0604-2
– ident: e_1_2_12_63_1
  doi: 10.1103/PhysRevApplied.10.054032
SSID ssj0009606
Score 2.6276023
Snippet Heat management is crucial for state‐of‐the‐art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their...
Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2305791
SubjectTerms active metamaterials
Adaptive systems
Ambient temperature
Deep learning
Diffusion barriers
enhanced thermal conduction
Heat
Isotropic material
Metamaterials
self‐adaptability
Thermal diffusion
Title Deep Learning‐Assisted Active Metamaterials with Heat‐Enhanced Thermal Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202305791
https://www.ncbi.nlm.nih.gov/pubmed/37869962
https://www.proquest.com/docview/2920424961
https://www.proquest.com/docview/2880823276
Volume 36
WOSCitedRecordID wos001113480200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC7ccQ-7h9V9qOOLFoQ9BZPuTnfnODgOHlREZmFuoZ-7gkRxxj37E_yN_pKtTjLRYRFBbwmpJE1XfVXVr68A9jHGe5HniDRqbMILzRItDUPg8cKZVGfa27rYhDw7U5NJcf7sFH_DD9FNuEVk1P46Alyb6cETaah2NW8QptC5jMfXlykab96D5eHF6NfJE_GuqOtrxvW-pBBczYkbU3qw-IXFwPRftrmYvNbRZ7Ty_navwpc28ySDxlS-wpKvvsHnZ3yE32E89P6GtJSrvx_vH1B50QwcGdRukZz6mcYUt7FaEudwyTE6c5Q8qv7UewkI2h36-ivSsab_gPHoaHx4nLRlFxLLJMsSLTKThtRg4pQLG6wVgnLHrBLSYSyTzGqNSkypU2mhXaChMLkOVsqAY5PA1qBXXVd-A4guuOQ-IO6d5Soo5agPeaqFyZgwLOtDMu_y0raU5LEyxlXZkCnTMnZW2XVWH3528jcNGceLkttzDZYtKKdlLMzFcbgp8PFe9xjhFNdIdOWv71AG_ZnCLFOKPqw3mu9-xaQSODykfaC1gl9pQzkYng66u823vLQFn_CaN7vEt6E3u73zO_DR_p1dTm934YOcqN3W4P8Big8AbQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFD6ICrs-6Lo3R12NsLBPxTZJk_RxcBxm2ZlBZATfSpqLClJFx33en-Bv9Jd40naqg4iw-Nj2tA05ty-37wD8xBzvRJqip9HCRDzTLNKyYOh4PLNFrBPtTFVsQo7H6vQ0O2p2E4azMDU_RDvhFjyjitfBwcOE9P4Ta6i2FXEQYuhUhvPrSxxtCY18qXfcPxk-Me-KqsBmWPCLMsHVjLkxpvvzX5jPTC_g5jx6rdJPf-0dGv4JVhvsSbq1sazDgis_w8ozRsIvMOk5d00a0tWzh3_3qL5gCJZ0q8BIRm6qEeTWdkvCLC4ZYDhHycPyvNpNQNDyMNpfkpY3_StM-oeTg0HUFF6IDJMsibRIitjHBUKnVBhvjBCUW2aUkBazmWRGa1RjTK2KM2099VmRam-k9Dg68ewbLJZXpdsAojMuufPo-dZw5ZWy1Pk01qJImChY0oFo1ue5aUjJQ22My7ymU6Z56Ky87awO_Grlr2s6jlclt2cqzBu3vM1DaS6OA06Bj_fax-hQYZVEl-7qDmUwoinEmVJ04Hut-vZXTCqBA0TaAVpp-I025N3eqNtebf7PS7vwYTAZDfPh7_GfLfiI93m9Z3wbFqc3d-4HLJu_04vbm53G7h8B3gIDdQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFD6UtYg-1Hpfa3UKgk_BZGYyM3lcui4WdZGygm9hMhcVlrjo6nN_Qn9jf4lnkmx0KVKQPiY5SYY5t29u3wE4wBzvRJqip9HCRDzTLNKyYOh4PLNFrBPtTFVsQg6H6uoqu2h2E4azMDU_RDvhFjyjitfBwd3E-qMX1lBtK-IgxNCpDOfXF3ioJNOBhf7PweXZC_OuqApshgW_KBNczZgbY3o0_4X5zPQX3JxHr1X6Gaz8h4Z_hk8N9iS92lhW4YMr12D5FSPhOoz6zk1IQ7p6_efXb1RfMARLelVgJOduqhHk1nZLwiwuOcFwjpLH5U21m4Cg5WG0H5OWN30DRoPj0feTqCm8EBkmWRJpkRSxjwuETqkw3hghKLfMKCEtZjPJjNaoxphaFWfaeuqzItXeSOlxdOLZJnTKu9JtA9EZl9x59HxruPJKWep8GmtRJEwULOlCNOvz3DSk5KE2xjiv6ZRpHjorbzurC4et_KSm43hTcnemwrxxy4c8lObiOOAU-Phb-xgdKqyS6NLdPaIMRjSFOFOKLmzVqm9_xaQSOECkXaCVhv_RhrzXP--1VzvveWkfFi_6g_zsx_D0CyzhbV5vGd-FzvT-0X2Fj-Zpevtwv9eY_TNjYALw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning%E2%80%90Assisted+Active+Metamaterials+with+Heat%E2%80%90Enhanced+Thermal+Transport&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Jin%2C+Peng&rft.au=Xu%2C+Liujun&rft.au=Xu%2C+Guoqiang&rft.au=Li%2C+Jiaxin&rft.date=2024-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=36&rft.issue=5&rft_id=info:doi/10.1002%2Fadma.202305791&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202305791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon