Circuit‐Level Memory Technologies and Applications based on 2D Materials

Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) Jg. 34; H. 48; S. e2202371 - n/a
Hauptverfasser: Ma, Jiahui, Liu, Hefei, Yang, Ning, Zou, Jingyi, Lin, Sen, Zhang, Yuhao, Zhang, Xu, Guo, Jing, Wang, Han
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 01.12.2022
Schlagworte:
ISSN:0935-9648, 1521-4095, 1521-4095
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research. The developments of circuit‐level memory technologies and in‐memory computing applications realized experimentally using 2D materials are reviewed. Reports on large‐scale material synthesis methods, circuits with different levels of integration, logic‐in‐memory, and neuromorphic computing applications are systematically summarized. Major challenges and perspectives of large‐scale 2D‐material‐based integrated memory are provided.
AbstractList Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research.
Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research. The developments of circuit‐level memory technologies and in‐memory computing applications realized experimentally using 2D materials are reviewed. Reports on large‐scale material synthesis methods, circuits with different levels of integration, logic‐in‐memory, and neuromorphic computing applications are systematically summarized. Major challenges and perspectives of large‐scale 2D‐material‐based integrated memory are provided.
Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D-material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices are discussed. Reports on 2D-material-based integrated memory circuits, from conventional dynamic random-access memory, static random-access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, mostly on logic-in-memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large-scale applications of 2D-material-based memory are reviewed, and perspectives on possible approaches toward a more reliable system-level fabrication are also given, hopefully shedding some light on future research.Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D-material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices are discussed. Reports on 2D-material-based integrated memory circuits, from conventional dynamic random-access memory, static random-access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, mostly on logic-in-memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large-scale applications of 2D-material-based memory are reviewed, and perspectives on possible approaches toward a more reliable system-level fabrication are also given, hopefully shedding some light on future research.
Memory technologies and applications implemented fully or partially using emerging two-dimensional (2D) materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances, low power consumption as well as special functionalities. Here, an overview of progress in 2D material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices in batches are discussed. Reports on 2D material-based integrated memory circuits, from conventional dynamic random-access memory (DRAM), static random-access memory (SRAM), and Flash memory arrays, to emerging memristive crossbar structures, all the way to three-dimensional (3D) monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, which are mostly focused on logic-in-memory and neuromorphic computing, are summarized here. Finally, we review the major challenges that impede the large-scale applications of 2D material-based memory, and also give perspectives on possible approaches towards a more reliable system-level fabrication, hopefully shedding some light on future research in this field. This article is protected by copyright. All rights reserved.
Author Zhang, Yuhao
Zhang, Xu
Liu, Hefei
Ma, Jiahui
Zou, Jingyi
Guo, Jing
Wang, Han
Yang, Ning
Lin, Sen
Author_xml – sequence: 1
  givenname: Jiahui
  surname: Ma
  fullname: Ma, Jiahui
  organization: University of Southern California
– sequence: 2
  givenname: Hefei
  surname: Liu
  fullname: Liu, Hefei
  organization: University of Southern California
– sequence: 3
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  organization: University of Florida
– sequence: 4
  givenname: Jingyi
  surname: Zou
  fullname: Zou, Jingyi
  organization: Carnegie Mellon University
– sequence: 5
  givenname: Sen
  surname: Lin
  fullname: Lin, Sen
  organization: Carnegie Mellon University
– sequence: 6
  givenname: Yuhao
  surname: Zhang
  fullname: Zhang, Yuhao
  organization: Virginia Polytechnic Institute and State University
– sequence: 7
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: Carnegie Mellon University
– sequence: 8
  givenname: Jing
  surname: Guo
  fullname: Guo, Jing
  organization: University of Florida
– sequence: 9
  givenname: Han
  orcidid: 0000-0001-5121-3362
  surname: Wang
  fullname: Wang, Han
  email: han.wang.4@usc.edu
  organization: University of Southern California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35607274$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFO3DAQhq0KVBbaK8cqUi-9ZBnbiZMcV0tpQbvispwtx55QoyTe2globzwCz8iT1NtlQUKqKln6L983Gs9_TA561yMhpxSmFICdKdOpKQMWHy_oBzKhOaNpBlV-QCZQ8TytRFYekeMQ7gCgEiA-kiOeCyhYkU3I1dx6Pdrh-fFpgffYJkvsnN8kK9S_ete6W4shUb1JZut1a7UarOtDUquAJnF9ws6TpRrQW9WGT-SwiYGfX_KE3Fx8X81_povrH5fz2SLVvOA0FXFXQ6lipW5Q1FBAbQDR1DExE03BtM4EM5xVOS1qVpq6qZUWZYWCc2T8hHzbzV1793vEMMjOBo1tq3p0Y5BMRBZKmuUR_foOvXOj7-N2Mv6eVbzMYUt9eaHGukMj1952ym_k_koRyHaA9i4Ej43Udvh7isEr20oKcluG3JYhX8uI2vSdtp_8T6HaCQ-2xc1_aDk7X87e3D95PJuv
CitedBy_id crossref_primary_10_1007_s43939_024_00074_w
crossref_primary_10_1039_D5NR01509J
crossref_primary_10_1063_5_0189364
crossref_primary_10_1016_j_eurpolymj_2023_112025
crossref_primary_10_1088_2515_7639_ad467b
crossref_primary_10_1002_adfm_202514338
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1007_s40820_025_01769_2
crossref_primary_10_1016_j_jsamd_2025_100960
crossref_primary_10_1002_advs_202303734
crossref_primary_10_1088_2053_1583_ad015f
crossref_primary_10_1063_5_0147013
crossref_primary_10_3390_nano14171408
crossref_primary_10_1039_D3MH01734F
crossref_primary_10_1063_5_0165606
crossref_primary_10_1002_smll_202503717
crossref_primary_10_1007_s10854_022_09484_z
crossref_primary_10_1016_j_mtphys_2025_101763
crossref_primary_10_1016_j_pmatsci_2025_101471
crossref_primary_10_1016_j_device_2024_100509
crossref_primary_10_1002_aelm_202201252
crossref_primary_10_1002_aisy_202200338
crossref_primary_10_1002_adma_202304550
crossref_primary_10_1002_smll_202411297
crossref_primary_10_1016_j_jallcom_2023_173175
Cites_doi 10.1038/s41467-020-17849-3
10.1021/acs.chemmater.0c03112
10.1038/s41467-018-07572-5
10.1038/s41928-020-00475-8
10.1080/23746149.2016.1259585
10.1038/s41565-021-00963-8
10.1002/aelm.201600090
10.1038/s41467-018-05397-w
10.1021/acsnano.5b06842
10.1038/s41467-021-26230-x
10.1002/aelm.202000760
10.1038/s41563-019-0291-x
10.1038/s41467-019-11187-9
10.1002/adma.202108826
10.1088/2053-1583/3/3/035001
10.1038/s41563-019-0341-4
10.1021/acsnano.7b04100
10.1126/science.aah4698
10.1038/s41565-019-0438-6
10.1109/TED.2020.3018099
10.1063/5.0010829
10.1109/TNNLS.2019.2899262
10.1002/adfm.201908691
10.1021/acs.nanolett.7b04342
10.1002/smll.202105383
10.1126/science.aar3617
10.1038/nature23905
10.1038/s41928-021-00573-1
10.1038/s41586-019-1052-3
10.1002/adfm.201602748
10.1038/s41565-019-0554-3
10.1002/smll.201603994
10.1021/acs.nanolett.6b01051
10.1038/s41699-020-00162-4
10.1021/acsnano.6b08668
10.1038/s41467-021-26012-5
10.1038/s41565-020-0647-z
10.1002/aelm.201900740
10.1021/nl302015v
10.1145/2228360.2228447
10.1088/2634-4386/ac4a83
10.1038/s41467-018-04933-y
10.1002/adma.201703363
10.1109/T-C.1969.222754
10.1038/s41467-021-22332-8
10.1021/acsnano.0c08921
10.1002/smll.202103543
10.1021/nn305510u
10.1109/JEDS.2019.2925150
10.1038/s41586-020-2009-2
10.1038/s41563-018-0149-7
10.1021/acsnano.9b06627
10.1021/acs.nanolett.0c00002
10.1038/srep45546
10.1021/acsnano.5b04592
10.1109/5.849164
10.1021/acsphotonics.0c01224
10.1038/nnano.2010.279
10.1002/adfm.201502734
10.1109/TCSI.2019.2897497
10.1002/smll.201102654
10.1016/j.isci.2021.103138
10.1038/nnano.2010.132
10.1038/s41586-020-1942-4
10.1038/nnano.2017.100
10.1007/s12274-021-3381-4
10.1039/D1NA00171J
10.1038/s41586-019-1226-z
10.1038/s41928-020-00473-w
10.1109/JPROC.2010.2070050
10.1038/s41928-021-00684-9
10.1038/s41928-020-0441-9
10.1021/nl101902k
10.1186/s11671-020-03299-9
10.1002/smll.201001628
10.1002/adma.202004207
10.1109/JPROC.2012.2190369
10.1038/s41563-021-01099-9
10.1146/annurev-matsci-070214-020901
10.1002/advs.201700231
10.1021/acsnano.6b01636
10.1038/s41928-020-0460-6
10.1038/s41467-019-13176-4
10.1126/science.aar4851
10.1021/nl2043612
10.1126/sciadv.abg1455
10.1039/C6TC01602B
10.1002/smll.201503827
10.1002/adma.200903267
10.1021/acsnano.6b03440
10.1038/srep02126
10.1109/TED.2021.3057598
10.1039/C8NA00126J
10.1021/nn503412w
10.1109/DRC.2014.6872360
10.1038/s41467-021-23719-3
10.1126/science.abg3161
10.1002/adma.202108258
10.1109/JPROC.2008.2004313
10.1038/s41586-021-03472-9
10.1126/science.aat8126
10.1088/0957-4484/24/47/475202
10.1039/C9NR00747D
10.1038/nnano.2008.160
10.1038/s41565-019-0501-3
10.1002/adma.201801548
10.1002/aelm.201900818
10.1142/S0129156417400018
10.1002/adma.201104798
10.1021/nn3059136
10.1039/C8CS00254A
10.1038/nature25747
10.1002/adma.201602391
10.1039/C9MH02033K
10.23919/VLSIT.2019.8776570
10.1021/acsnano.1c05167
10.1038/s41598-019-56816-x
10.1145/1941487.1941507
10.1126/science.aac9439
10.1021/acsnano.7b07059
10.1126/science.1218461
10.1021/ja109793s
10.1038/nphoton.2014.271
10.1039/C8CS00561C
10.1038/s41467-020-16266-w
10.1109/LCA.2021.3117150
10.1002/adma.202103656
10.1038/s41565-018-0063-9
10.1063/1.5002138
10.1088/1361-6528/aac6b3
10.1002/aelm.201600364
10.1038/nnano.2012.193
10.1016/j.nanoen.2020.105692
10.1002/adfm.201303520
10.1002/adfm.202002506
10.1016/j.tsf.2019.137500
10.1038/s41928-021-00670-1
10.1038/nmat4218
10.1088/0957-4484/24/17/175202
10.1002/anie.201409400
10.1109/JPROC.2003.811702
10.1126/science.1102896
10.1016/j.mejo.2012.10.001
10.1038/s41586-020-2861-0
10.1038/nature14417
10.1038/s41467-020-19053-9
10.1038/s41586-018-0626-9
10.1002/adma.201801232
10.1038/nnano.2016.281
10.1021/acsami.0c08802
10.1038/s41928-020-0433-9
10.1021/nn303772b
10.1109/JETCAS.2016.2547704
10.1002/adfm.202011083
10.1002/adma.201500039
10.1021/acsnano.9b07421
10.1038/nnano.2015.29
10.1038/s41928-018-0021-4
10.1038/nature12385
10.1021/acsnano.0c09441
10.1038/s41563-021-01110-3
10.1126/science.aax8156
10.1002/adma.202103376
10.1039/C8NR01139G
10.1038/s41928-021-00566-0
10.1109/JPROC.2017.2697000
10.1002/aelm.201901335
10.1038/s41586-019-1573-9
10.1126/science.aba1416
10.1021/nn400280c
10.1038/s41563-018-0248-5
10.1002/adfm.202003683
10.1016/j.nanoen.2021.106439
10.1038/nmat4703
10.1088/1361-6528/aa6958
10.1063/1.3387812
10.1039/D1NA00504A
10.1038/srep01610
10.1038/s41467-021-25801-2
10.1002/adma.201803563
10.1038/nmat4135
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
This article is protected by copyright. All rights reserved.
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: This article is protected by copyright. All rights reserved.
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202202371
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35607274
10_1002_adma_202202371
ADMA202202371
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Carnegie Mellon University Scott Institute EQT Foundation
– fundername: Army Research Office
  funderid: W911NF2120128
– fundername: National Science Foundation
  funderid: ECCS‐1653870; 1809770; 1904580
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c3731-6220d11a28cfe6b070bd0eedb0bde46f72cc462d329517b28dbfbac689e633e23
IEDL.DBID DRFUL
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 14:22:59 EDT 2025
Mon Jul 14 10:24:21 EDT 2025
Wed Feb 19 02:23:57 EST 2025
Sat Nov 29 07:20:53 EST 2025
Tue Nov 18 21:43:28 EST 2025
Wed Jan 22 16:22:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Keywords two-dimensional (2D) materials
integrated circuits
in-memory computing
memory technology
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-6220d11a28cfe6b070bd0eedb0bde46f72cc462d329517b28dbfbac689e633e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5121-3362
PMID 35607274
PQID 2742938505
PQPubID 2045203
PageCount 23
ParticipantIDs proquest_miscellaneous_2668908145
proquest_journals_2742938505
pubmed_primary_35607274
crossref_citationtrail_10_1002_adma_202202371
crossref_primary_10_1002_adma_202202371
wiley_primary_10_1002_adma_202202371_ADMA202202371
PublicationCentury 2000
PublicationDate December 1, 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 1, 2022
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 68
2010; 98
2010; 10
2013; 3
2020; 20
2019; 11
2019; 10
2019; 13
2000; 88
2018; 563
2019; 14
2019; 688
2020; 15
2019; 18
2011; 54
2014; 24
2020; 12
2020; 11
2019; 568
2022; 21
2020; 10
2017; 550
2013; 7
2013; 5
2012; 12
2018; 47
2010; 22
2018; 9
2018; 1
2020; 577
2020; 579
2018; 30
2012; 24
2021; 82
2010; 5
1989
2019; 7
2018; 29
2019; 9
2012; 100
2019; 5
2019; 31
2015; 520
2019; 1
2015; 54
2016; 10
2020; 32
2004; 306
2011; 6
2016; 16
2011; 8
2011; 7
2011; 133
2016; 12
2016; 4
2018; 18
2016; 6
2018; 17
2016; 2
2016; 3
2020; 30
2018; 112
2021; 373
2022; 2
2018; 12
2016; 28
2019; 570
2018; 10
2016; 26
2019; 573
2022; 18
2018; 13
2018; 362
2021; 24
2017; 7
2017; 2
2021; 20
2017; 3
2018; 360
2017; 4
2013; 24
2008; 3
2020; 367
2020; 7
2015; 45
2020; 6
2020; 4
2020; 3
2021; 31
2021; 34
2003; 91
2021; 33
2019; 66
2016; 354
2016; 353
2021; 593
2014; 8
2012; 335
2021; 8
2021; 7
2015; 14
2021; 4
2021; 3
2021; 89
2017; 26
2012
2013; 44
2011
2017; 28
2015; 10
2009
2017; 29
2008; 96
2020; 587
2015; 9
1969; 100
2021; 14
2021; 16
2015; 25
2021; 15
2015; 27
2021; 12
2022
2021
2017; 16
2017; 11
2021; 17
2017; 13
2018; 554
2017; 12
2019
2013; 499
2018
2017
2015
2020; 67
2014
2012; 6
2012; 7
2010; 96
2017; 105
2012; 8
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_203_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_64_1
e_1_2_8_87_1
Aarts E. (e_1_2_8_194_1) 1989
Yan X. (e_1_2_8_149_1) 2021
e_1_2_8_41_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_48_1
Zhang F. (e_1_2_8_169_1) 2018
e_1_2_8_204_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_171_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_156_1
Hu V. P.‐H. (e_1_2_8_116_1) 2021
e_1_2_8_14_1
e_1_2_8_37_1
Alaskar Y. (e_1_2_8_40_1) 2016
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
Wang C.‐H. (e_1_2_8_105_1) 2018
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
Kshirsagar C. (e_1_2_8_110_1) 2014
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
Li J. (e_1_2_8_107_1) 2019
Shulaker M. M. (e_1_2_8_16_1) 2015
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
Itoh K. (e_1_2_8_1_1) 2013
e_1_2_8_134_1
e_1_2_8_70_1
Pang C.‐S. (e_1_2_8_103_1) 2018
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_183_1
e_1_2_8_145_1
e_1_2_8_93_1
e_1_2_8_27_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_8_1
Ebrahimi M. S. (e_1_2_8_17_1) 2014
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
Brewer J. (e_1_2_8_2_1) 2011
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
Cheong W. (e_1_2_8_166_1) 2018
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
Huyghebaert C. (e_1_2_8_39_1) 2018
e_1_2_8_123_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_57_1
Kim W. (e_1_2_8_122_1) 2009
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_200_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_79_1
Jiang J. (e_1_2_8_157_1) 2018
e_1_2_8_94_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
Huang J.‐J. (e_1_2_8_147_1) 2011
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
Nitin B. (e_1_2_8_161_1) 2018
O'Connor M. (e_1_2_8_164_1) 2017
e_1_2_8_201_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
Cheema S. S. (e_1_2_8_168_1) 2021
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
Golonzka O. (e_1_2_8_163_1) 2019
e_1_2_8_141_1
e_1_2_8_97_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_126_1
e_1_2_8_187_1
Kim K. (e_1_2_8_160_1) 2021
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
Chou A.‐S. (e_1_2_8_127_1) 2021
e_1_2_8_192_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_12_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – year: 2011
– volume: 91
  start-page: 489
  year: 2003
  publication-title: Proc. IEEE
– volume: 10
  year: 2020
  publication-title: AIP Adv.
– volume: 3
  year: 2016
  publication-title: 2D Mater.
– volume: 4
  start-page: 8859
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 14
  start-page: 4591
  year: 2021
  publication-title: Nano Res.
– volume: 12
  start-page: 965
  year: 2018
  publication-title: ACS Nano
– volume: 18
  year: 2022
  publication-title: Small
– volume: 26
  year: 2017
  publication-title: Int. J. High Speed Electron. Syst.
– volume: 112
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 408
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 1
  start-page: 643
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 429
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 2898
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 8457
  year: 2016
  publication-title: ACS Nano
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 3
  start-page: 466
  year: 2020
  publication-title: Nat. Electron.
– year: 1989
– volume: 12
  start-page: 5564
  year: 2021
  publication-title: Nat. Commun.
– volume: 7
  start-page: 878
  year: 2019
  publication-title: IEEE J. Electron Devices Soc.
– volume: 2
  start-page: 89
  year: 2017
  publication-title: Adv. Phys.: X
– volume: 133
  start-page: 2816
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 289
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 15
  start-page: 90
  year: 2020
  publication-title: Nanoscale Res. Lett.
– year: 2014
– volume: 68
  start-page: 2033
  year: 2021
  publication-title: IEEE Trans. Electron Devices
– volume: 29
  year: 2018
  publication-title: Nanotechnology
– volume: 7
  start-page: 3246
  year: 2013
  publication-title: ACS Nano
– volume: 88
  start-page: 667
  year: 2000
  publication-title: Proc. IEEE
– volume: 15
  start-page: 517
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 7
  start-page: 465
  year: 2011
  publication-title: Small
– volume: 16
  start-page: 3360
  year: 2016
  publication-title: Nano Lett.
– year: 2022
  publication-title: Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 593
  start-page: 211
  year: 2021
  publication-title: Nature
– volume: 21
  start-page: 134
  year: 2022
  publication-title: Nat. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 5953
  year: 2021
  publication-title: Nat. Commun.
– volume: 25
  start-page: 6710
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 5710
  year: 2021
  publication-title: Nat. Commun.
– volume: 3
  start-page: 486
  year: 2020
  publication-title: Nat. Electron.
– volume: 82
  year: 2021
  publication-title: Nano Energy
– volume: 9
  start-page: 2514
  year: 2018
  publication-title: Nat. Commun.
– volume: 12
  start-page: 744
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 54
  start-page: 67
  year: 2011
  publication-title: Commun. ACM
– volume: 554
  start-page: 500
  year: 2018
  publication-title: Nature
– volume: 8
  start-page: 8617
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 383
  year: 2020
  publication-title: Nat. Electron.
– year: 2019
– volume: 11
  start-page: 3010
  year: 2017
  publication-title: ACS Nano
– volume: 3
  start-page: 1610
  year: 2013
  publication-title: Sci. Rep.
– volume: 18
  start-page: 309
  year: 2019
  publication-title: Nat. Mater.
– volume: 20
  start-page: 158
  year: 2021
  publication-title: IEEE Comput. Archit. Lett.
– volume: 66
  start-page: 2533
  year: 2019
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
– year: 2021
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4674
  year: 2012
  publication-title: Nano Lett.
– volume: 12
  start-page: 2077
  year: 2016
  publication-title: Small
– volume: 3
  year: 2016
– volume: 520
  start-page: 656
  year: 2015
  publication-title: Nature
– volume: 688
  year: 2019
  publication-title: Thin Solid Films
– volume: 47
  start-page: 6224
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 98
  start-page: 2201
  year: 2010
  publication-title: Proc. IEEE
– volume: 15
  start-page: 1497
  year: 2020
  publication-title: ACS Nano
– volume: 7
  start-page: 2320
  year: 2013
  publication-title: ACS Nano
– volume: 360
  start-page: 1214
  year: 2018
  publication-title: Science
– volume: 15
  start-page: 1764
  year: 2021
  publication-title: ACS Nano
– volume: 17
  year: 2021
  publication-title: Small
– volume: 12
  start-page: 343
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– start-page: 187
  year: 2014
  end-page: 188
– volume: 3
  start-page: 711
  year: 2020
  publication-title: Nat. Electron.
– volume: 9
  start-page: 5106
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  start-page: 4
  year: 2019
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 10
  start-page: 9261
  year: 2018
  publication-title: Nanoscale
– volume: 3
  start-page: 3430
  year: 2021
  publication-title: Nanoscale Adv.
– volume: 4
  start-page: 29
  year: 2020
  publication-title: npj 2D Mater. Appl.
– volume: 367
  start-page: 895
  year: 2020
  publication-title: Science
– volume: 16
  start-page: 1201
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 7102
  year: 2019
  publication-title: Nanoscale
– volume: 24
  start-page: 5316
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 2797
  year: 2015
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1404
  year: 2016
  publication-title: ACS Nano
– volume: 12
  start-page: 2143
  year: 2021
  publication-title: Nat. Commun.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2017
  publication-title: Adv. Electron. Mater.
– volume: 353
  year: 2016
  publication-title: Science
– volume: 24
  year: 2013
  publication-title: Nanotechnology
– volume: 4
  start-page: 893
  year: 2021
  publication-title: Nat. Electron.
– volume: 14
  start-page: 776
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 362
  start-page: 665
  year: 2018
  publication-title: Science
– volume: 10
  start-page: 5201
  year: 2019
  publication-title: Nat. Commun.
– volume: 100
  start-page: 719
  year: 1969
  publication-title: IEEE Trans. Comput.
– volume: 96
  start-page: 1786
  year: 2008
  publication-title: Proc. IEEE
– volume: 16
  start-page: 170
  year: 2017
  publication-title: Nat. Mater.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 32
  year: 2020
  publication-title: Chem. Mater.
– volume: 8
  start-page: 899
  year: 2014
  publication-title: Nat. Photonics
– volume: 8
  start-page: 966
  year: 2012
  publication-title: Small
– volume: 18
  start-page: 434
  year: 2018
  publication-title: Nano Lett.
– volume: 34
  year: 2021
  publication-title: Adv. Mater.
– start-page: 41
  year: 2017
  end-page: 54
– volume: 563
  start-page: 94
  year: 2018
  publication-title: Nature
– volume: 11
  start-page: 3936
  year: 2020
  publication-title: Nat. Commun.
– volume: 10
  start-page: 6054
  year: 2016
  publication-title: ACS Nano
– start-page: 344
  year: 2021
  end-page: 346
– volume: 8
  start-page: 85
  year: 2021
  publication-title: ACS Photonics
– volume: 12
  start-page: 1538
  year: 2012
  publication-title: Nano Lett.
– volume: 26
  start-page: 7406
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 574
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 2045
  year: 2010
  publication-title: Adv. Mater.
– volume: 96
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 67
  start-page: 4216
  year: 2020
  publication-title: IEEE Trans. Electron Devices
– volume: 9
  year: 2015
  publication-title: ACS Nano
– year: 2021
– volume: 11
  start-page: 8456
  year: 2017
  publication-title: ACS Nano
– volume: 577
  start-page: 641
  year: 2020
  publication-title: Nature
– volume: 3
  start-page: 2126
  year: 2013
  publication-title: Sci. Rep.
– volume: 14
  start-page: 919
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 9
  start-page: 2966
  year: 2018
  publication-title: Nat. Commun.
– year: 2018
– volume: 14
  start-page: 175
  year: 2019
  publication-title: ACS Nano
– volume: 570
  start-page: 91
  year: 2019
  publication-title: Nature
– start-page: 188
  year: 2009
  end-page: 189
– volume: 4
  start-page: 342
  year: 2021
  publication-title: Nat. Electron.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 2
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 1
  start-page: 130
  year: 2018
  publication-title: Nat. Electron.
– volume: 44
  start-page: 176
  year: 2013
  publication-title: Microelectron. J.
– volume: 7
  start-page: 1495
  year: 2020
  publication-title: Mater. Horiz.
– volume: 14
  start-page: 264
  year: 2015
  publication-title: Nat. Mater.
– volume: 3
  start-page: 4952
  year: 2021
  publication-title: Nanoscale Adv.
– volume: 6
  year: 2012
  publication-title: ACS Nano
– volume: 499
  start-page: 419
  year: 2013
  publication-title: Nature
– volume: 573
  start-page: 507
  year: 2019
  publication-title: Nature
– year: 2015
– volume: 579
  start-page: 219
  year: 2020
  publication-title: Nature
– volume: 4
  start-page: 786
  year: 2021
  publication-title: Nat. Electron.
– volume: 367
  start-page: 903
  year: 2020
  publication-title: Science
– volume: 18
  start-page: 141
  year: 2019
  publication-title: Nat. Mater.
– volume: 12
  start-page: 3347
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 191
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 20
  start-page: 4144
  year: 2020
  publication-title: Nano Lett.
– volume: 335
  start-page: 947
  year: 2012
  publication-title: Science
– volume: 3
  start-page: 638
  year: 2020
  publication-title: Nat. Electron.
– volume: 100
  start-page: 1951
  year: 2012
  publication-title: Proc. IEEE
– volume: 10
  start-page: 3161
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  year: 2013
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: 195
  year: 2022
  publication-title: Nat. Mater.
– volume: 360
  start-page: 1218
  year: 2018
  publication-title: Science
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 587
  start-page: 72
  year: 2020
  publication-title: Nature
– volume: 9
  year: 2019
  publication-title: Sci. Rep.
– volume: 550
  start-page: 229
  year: 2017
  publication-title: Nature
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 105
  start-page: 1634
  year: 2017
  publication-title: Proc. IEEE
– volume: 54
  start-page: 3653
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– year: 2012
– volume: 354
  start-page: 99
  year: 2016
  publication-title: Science
– start-page: T230
  year: 2019
  end-page: T231
– volume: 6
  start-page: 147
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 17
  start-page: 778
  year: 2018
  publication-title: Nat. Mater.
– volume: 373
  start-page: 1353
  year: 2021
  publication-title: Science
– volume: 18
  start-page: 520
  year: 2019
  publication-title: Nat. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  year: 2022
  publication-title: Neuromorphic Comput. Eng.
– volume: 568
  start-page: 70
  year: 2019
  publication-title: Nature
– year: 2021
  publication-title: Adv. Electron. Mater.
– volume: 4
  start-page: 348
  year: 2021
  publication-title: Nat. Electron.
– volume: 45
  start-page: 63
  year: 2015
  publication-title: Annu. Rev. Mater. Res.
– volume: 28
  start-page: 9326
  year: 2016
  publication-title: Adv. Mater.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 10
  start-page: 4381
  year: 2010
  publication-title: Nano Lett.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 8
  year: 2011
– volume: 11
  start-page: 5689
  year: 2020
  publication-title: Nat. Commun.
– year: 2017
– volume: 11
  start-page: 2453
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  start-page: 109
  year: 2016
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
– volume: 14
  start-page: 199
  year: 2015
  publication-title: Nat. Mater.
– volume: 47
  start-page: 7426
  year: 2018
  publication-title: Chem. Soc. Rev.
– ident: e_1_2_8_183_1
  doi: 10.1038/s41467-020-17849-3
– ident: e_1_2_8_79_1
  doi: 10.1021/acs.chemmater.0c03112
– ident: e_1_2_8_187_1
  doi: 10.1038/s41467-018-07572-5
– ident: e_1_2_8_114_1
  doi: 10.1038/s41928-020-00475-8
– ident: e_1_2_8_20_1
  doi: 10.1080/23746149.2016.1259585
– ident: e_1_2_8_77_1
  doi: 10.1038/s41565-021-00963-8
– ident: e_1_2_8_13_1
  doi: 10.1002/aelm.201600090
– ident: e_1_2_8_139_1
  doi: 10.1038/s41467-018-05397-w
– ident: e_1_2_8_199_1
  doi: 10.1021/acsnano.5b06842
– ident: e_1_2_8_111_1
  doi: 10.1038/s41467-021-26230-x
– volume-title: 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI)
  year: 2018
  ident: e_1_2_8_161_1
– ident: e_1_2_8_179_1
  doi: 10.1002/aelm.202000760
– ident: e_1_2_8_15_1
  doi: 10.1038/s41563-019-0291-x
– ident: e_1_2_8_141_1
  doi: 10.1038/s41467-019-11187-9
– ident: e_1_2_8_189_1
  doi: 10.1002/adma.202108826
– ident: e_1_2_8_75_1
  doi: 10.1088/2053-1583/3/3/035001
– ident: e_1_2_8_125_1
  doi: 10.1038/s41563-019-0341-4
– start-page: 188
  volume-title: 2009 Symp. on VLSI Technology
  year: 2009
  ident: e_1_2_8_122_1
– ident: e_1_2_8_202_1
  doi: 10.1021/acsnano.7b04100
– ident: e_1_2_8_155_1
  doi: 10.1126/science.aah4698
– ident: e_1_2_8_34_1
  doi: 10.1038/s41565-019-0438-6
– ident: e_1_2_8_109_1
  doi: 10.1109/TED.2020.3018099
– ident: e_1_2_8_104_1
  doi: 10.1063/5.0010829
– ident: e_1_2_8_14_1
  doi: 10.1109/TNNLS.2019.2899262
– ident: e_1_2_8_165_1
  doi: 10.1002/adfm.201908691
– volume-title: VLSI Memory Chip Design
  year: 2013
  ident: e_1_2_8_1_1
– ident: e_1_2_8_71_1
  doi: 10.1021/acs.nanolett.7b04342
– ident: e_1_2_8_47_1
  doi: 10.1002/smll.202105383
– ident: e_1_2_8_135_1
  doi: 10.1126/science.aar3617
– ident: e_1_2_8_200_1
  doi: 10.1038/nature23905
– ident: e_1_2_8_178_1
  doi: 10.1038/s41928-021-00573-1
– ident: e_1_2_8_129_1
  doi: 10.1038/s41586-019-1052-3
– ident: e_1_2_8_92_1
  doi: 10.1002/adfm.201602748
– ident: e_1_2_8_153_1
  doi: 10.1038/s41565-019-0554-3
– ident: e_1_2_8_45_1
  doi: 10.1002/smll.201603994
– ident: e_1_2_8_60_1
  doi: 10.1021/acs.nanolett.6b01051
– ident: e_1_2_8_31_1
  doi: 10.1038/s41699-020-00162-4
– ident: e_1_2_8_93_1
  doi: 10.1021/acsnano.6b08668
– ident: e_1_2_8_191_1
  doi: 10.1038/s41467-021-26012-5
– ident: e_1_2_8_44_1
  doi: 10.1038/s41565-020-0647-z
– ident: e_1_2_8_87_1
  doi: 10.1002/aelm.201900740
– ident: e_1_2_8_113_1
  doi: 10.1021/nl302015v
– ident: e_1_2_8_12_1
  doi: 10.1145/2228360.2228447
– ident: e_1_2_8_22_1
  doi: 10.1088/2634-4386/ac4a83
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-018-04933-y
– volume-title: 2015 Design, Automation & Test in Europe Conf. & Exhibition (DATE)
  year: 2015
  ident: e_1_2_8_16_1
– ident: e_1_2_8_121_1
  doi: 10.1002/adma.201703363
– start-page: 2108025
  year: 2021
  ident: e_1_2_8_149_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_19_1
  doi: 10.1109/T-C.1969.222754
– volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_8_105_1
– ident: e_1_2_8_186_1
  doi: 10.1038/s41467-021-22332-8
– ident: e_1_2_8_98_1
  doi: 10.1021/acsnano.0c08921
– ident: e_1_2_8_184_1
  doi: 10.1002/smll.202103543
– ident: e_1_2_8_151_1
  doi: 10.1021/nn305510u
– ident: e_1_2_8_156_1
  doi: 10.1109/JEDS.2019.2925150
– ident: e_1_2_8_196_1
  doi: 10.1038/s41586-020-2009-2
– ident: e_1_2_8_137_1
  doi: 10.1038/s41563-018-0149-7
– ident: e_1_2_8_132_1
  doi: 10.1021/acsnano.9b06627
– ident: e_1_2_8_174_1
  doi: 10.1021/acs.nanolett.0c00002
– ident: e_1_2_8_128_1
  doi: 10.1038/srep45546
– ident: e_1_2_8_173_1
  doi: 10.1021/acsnano.5b04592
– ident: e_1_2_8_7_1
  doi: 10.1109/5.849164
– ident: e_1_2_8_35_1
  doi: 10.1021/acsphotonics.0c01224
– ident: e_1_2_8_49_1
  doi: 10.1038/nnano.2010.279
– ident: e_1_2_8_91_1
  doi: 10.1002/adfm.201502734
– ident: e_1_2_8_115_1
  doi: 10.1109/TCSI.2019.2897497
– ident: e_1_2_8_62_1
  doi: 10.1002/smll.201102654
– ident: e_1_2_8_108_1
  doi: 10.1016/j.isci.2021.103138
– ident: e_1_2_8_59_1
  doi: 10.1038/nnano.2010.132
– ident: e_1_2_8_204_1
  doi: 10.1038/s41586-020-1942-4
– ident: e_1_2_8_78_1
  doi: 10.1038/nnano.2017.100
– ident: e_1_2_8_181_1
  doi: 10.1007/s12274-021-3381-4
– ident: e_1_2_8_198_1
  doi: 10.1039/D1NA00171J
– ident: e_1_2_8_197_1
  doi: 10.1038/s41586-019-1226-z
– ident: e_1_2_8_64_1
  doi: 10.1038/s41928-020-00473-w
– ident: e_1_2_8_10_1
  doi: 10.1109/JPROC.2010.2070050
– ident: e_1_2_8_95_1
  doi: 10.1038/s41928-021-00684-9
– ident: e_1_2_8_133_1
  doi: 10.1038/s41928-020-0441-9
– ident: e_1_2_8_144_1
  doi: 10.1021/nl101902k
– ident: e_1_2_8_167_1
  doi: 10.1186/s11671-020-03299-9
– ident: e_1_2_8_50_1
  doi: 10.1002/smll.201001628
– volume-title: 2018 IEEE Int. Solid ‐ State Circuits Conf. ‐ (ISSCC)
  year: 2018
  ident: e_1_2_8_166_1
– ident: e_1_2_8_185_1
  doi: 10.1002/adma.202004207
– ident: e_1_2_8_5_1
  doi: 10.1109/JPROC.2012.2190369
– ident: e_1_2_8_190_1
  doi: 10.1038/s41563-021-01099-9
– ident: e_1_2_8_46_1
  doi: 10.1146/annurev-matsci-070214-020901
– ident: e_1_2_8_25_1
  doi: 10.1002/advs.201700231
– ident: e_1_2_8_83_1
  doi: 10.1021/acsnano.6b01636
– ident: e_1_2_8_203_1
  doi: 10.1038/s41928-020-0460-6
– ident: e_1_2_8_106_1
  doi: 10.1038/s41467-019-13176-4
– ident: e_1_2_8_136_1
  doi: 10.1126/science.aar4851
– ident: e_1_2_8_63_1
  doi: 10.1021/nl2043612
– ident: e_1_2_8_188_1
  doi: 10.1126/sciadv.abg1455
– ident: e_1_2_8_85_1
  doi: 10.1039/C6TC01602B
– ident: e_1_2_8_89_1
  doi: 10.1002/smll.201503827
– ident: e_1_2_8_90_1
  doi: 10.1002/adma.200903267
– ident: e_1_2_8_102_1
  doi: 10.1021/acsnano.6b03440
– volume-title: 2021 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2021
  ident: e_1_2_8_127_1
– ident: e_1_2_8_72_1
  doi: 10.1038/srep02126
– ident: e_1_2_8_148_1
  doi: 10.1109/TED.2021.3057598
– volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_8_169_1
– ident: e_1_2_8_86_1
  doi: 10.1039/C8NA00126J
– ident: e_1_2_8_76_1
  doi: 10.1021/nn503412w
– start-page: 187
  volume-title: 72nd Annual Device Research Conf. (DRC)
  year: 2014
  ident: e_1_2_8_110_1
  doi: 10.1109/DRC.2014.6872360
– ident: e_1_2_8_112_1
  doi: 10.1038/s41467-021-23719-3
– ident: e_1_2_8_172_1
  doi: 10.1126/science.abg3161
– ident: e_1_2_8_81_1
  doi: 10.1002/adma.202108258
– ident: e_1_2_8_11_1
  doi: 10.1109/JPROC.2008.2004313
– ident: e_1_2_8_126_1
  doi: 10.1038/s41586-021-03472-9
– ident: e_1_2_8_53_1
  doi: 10.1126/science.aat8126
– ident: e_1_2_8_41_1
  doi: 10.1088/0957-4484/24/47/475202
– ident: e_1_2_8_97_1
  doi: 10.1039/C9NR00747D
– volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_8_103_1
– ident: e_1_2_8_6_1
  doi: 10.1038/nnano.2008.160
– ident: e_1_2_8_9_1
  doi: 10.1038/s41565-019-0501-3
– ident: e_1_2_8_82_1
  doi: 10.1002/adma.201801548
– ident: e_1_2_8_33_1
  doi: 10.1002/aelm.201900818
– ident: e_1_2_8_3_1
  doi: 10.1142/S0129156417400018
– ident: e_1_2_8_61_1
  doi: 10.1002/adma.201104798
– ident: e_1_2_8_119_1
  doi: 10.1021/nn3059136
– ident: e_1_2_8_101_1
  doi: 10.1039/C8CS00254A
– ident: e_1_2_8_23_1
– start-page: 2100499
  year: 2021
  ident: e_1_2_8_168_1
  publication-title: Adv. Electron. Mater.
– ident: e_1_2_8_65_1
  doi: 10.1038/nature25747
– ident: e_1_2_8_94_1
  doi: 10.1002/adma.201602391
– ident: e_1_2_8_30_1
  doi: 10.1039/C9MH02033K
– start-page: T230
  volume-title: 2019 Symp. on VLSI Technology
  year: 2019
  ident: e_1_2_8_163_1
  doi: 10.23919/VLSIT.2019.8776570
– ident: e_1_2_8_175_1
  doi: 10.1021/acsnano.1c05167
– ident: e_1_2_8_170_1
  doi: 10.1038/s41598-019-56816-x
– ident: e_1_2_8_18_1
  doi: 10.1145/1941487.1941507
– start-page: 344
  volume-title: 2021 IEEE Int. Solid‐ State Circuits Conf. (ISSCC)
  year: 2021
  ident: e_1_2_8_160_1
– volume-title: 2014 SOI‐3D‐Subthreshold Microelectronics Technology Unified Conf. (S3S)
  year: 2014
  ident: e_1_2_8_17_1
– volume-title: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing
  year: 1989
  ident: e_1_2_8_194_1
– ident: e_1_2_8_37_1
  doi: 10.1126/science.aac9439
– ident: e_1_2_8_68_1
  doi: 10.1021/acsnano.7b07059
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1218461
– ident: e_1_2_8_74_1
  doi: 10.1021/ja109793s
– ident: e_1_2_8_29_1
  doi: 10.1038/nphoton.2014.271
– ident: e_1_2_8_26_1
  doi: 10.1039/C8CS00561C
– ident: e_1_2_8_51_1
  doi: 10.1038/s41467-020-16266-w
– ident: e_1_2_8_159_1
  doi: 10.1109/LCA.2021.3117150
– volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2019
  ident: e_1_2_8_107_1
– ident: e_1_2_8_131_1
  doi: 10.1002/adma.202103656
– ident: e_1_2_8_138_1
  doi: 10.1038/s41565-018-0063-9
– ident: e_1_2_8_42_1
  doi: 10.1063/1.5002138
– ident: e_1_2_8_171_1
  doi: 10.1088/1361-6528/aac6b3
– ident: e_1_2_8_24_1
  doi: 10.1002/aelm.201600364
– ident: e_1_2_8_32_1
  doi: 10.1038/nnano.2012.193
– ident: e_1_2_8_140_1
  doi: 10.1016/j.nanoen.2020.105692
– volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM)
  year: 2018
  ident: e_1_2_8_39_1
– ident: e_1_2_8_154_1
  doi: 10.1002/adfm.201303520
– ident: e_1_2_8_176_1
  doi: 10.1002/adfm.202002506
– ident: e_1_2_8_80_1
  doi: 10.1016/j.tsf.2019.137500
– ident: e_1_2_8_130_1
  doi: 10.1038/s41928-021-00670-1
– ident: e_1_2_8_38_1
  doi: 10.1038/nmat4218
– volume-title: 2018 IEEE SOI‐3D‐Subthreshold Microelectronics Technology Unified Conf. (S3S)
  year: 2018
  ident: e_1_2_8_157_1
– ident: e_1_2_8_145_1
  doi: 10.1088/0957-4484/24/17/175202
– ident: e_1_2_8_143_1
  doi: 10.1002/anie.201409400
– ident: e_1_2_8_124_1
  doi: 10.1109/JPROC.2003.811702
– ident: e_1_2_8_48_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_146_1
  doi: 10.1016/j.mejo.2012.10.001
– ident: e_1_2_8_70_1
  doi: 10.1038/s41586-020-2861-0
– ident: e_1_2_8_69_1
  doi: 10.1038/nature14417
– ident: e_1_2_8_201_1
  doi: 10.1038/s41467-020-19053-9
– volume-title: 2021 IEEE Int. Symp. on Circuits and Systems (ISCAS)
  year: 2021
  ident: e_1_2_8_116_1
– ident: e_1_2_8_54_1
  doi: 10.1038/s41586-018-0626-9
– ident: e_1_2_8_96_1
  doi: 10.1002/adma.201801232
– start-page: 41
  volume-title: 2017 50th Annu. IEEE/ACM Int. Symp. on Microarchitecture (MICRO)
  year: 2017
  ident: e_1_2_8_164_1
– volume-title: 2011 Int. Electron Devices Meeting
  year: 2011
  ident: e_1_2_8_147_1
– ident: e_1_2_8_88_1
  doi: 10.1038/nnano.2016.281
– ident: e_1_2_8_120_1
  doi: 10.1021/acsami.0c08802
– ident: e_1_2_8_177_1
  doi: 10.1038/s41928-020-0433-9
– ident: e_1_2_8_27_1
  doi: 10.1021/nn303772b
– ident: e_1_2_8_162_1
  doi: 10.1109/JETCAS.2016.2547704
– ident: e_1_2_8_117_1
  doi: 10.1002/adfm.202011083
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201500039
– ident: e_1_2_8_150_1
  doi: 10.1021/acsnano.9b07421
– ident: e_1_2_8_4_1
  doi: 10.1038/nnano.2015.29
– ident: e_1_2_8_134_1
  doi: 10.1038/s41928-018-0021-4
– ident: e_1_2_8_36_1
  doi: 10.1038/nature12385
– ident: e_1_2_8_142_1
  doi: 10.1021/acsnano.0c09441
– ident: e_1_2_8_193_1
  doi: 10.1038/s41563-021-01110-3
– ident: e_1_2_8_55_1
  doi: 10.1126/science.aax8156
– ident: e_1_2_8_56_1
  doi: 10.1002/adma.202103376
– ident: e_1_2_8_84_1
  doi: 10.1039/C8NR01139G
– ident: e_1_2_8_58_1
  doi: 10.1038/s41928-021-00566-0
– ident: e_1_2_8_123_1
  doi: 10.1109/JPROC.2017.2697000
– ident: e_1_2_8_158_1
  doi: 10.1002/aelm.201901335
– ident: e_1_2_8_152_1
  doi: 10.1038/s41586-019-1573-9
– volume-title: Two‐Dimensional Materials: Synthesis, Characterization and Potential Applications
  year: 2016
  ident: e_1_2_8_40_1
– ident: e_1_2_8_52_1
  doi: 10.1126/science.aba1416
– ident: e_1_2_8_28_1
  doi: 10.1021/nn400280c
– ident: e_1_2_8_182_1
  doi: 10.1038/s41563-018-0248-5
– ident: e_1_2_8_66_1
  doi: 10.1002/adfm.202003683
– ident: e_1_2_8_180_1
  doi: 10.1016/j.nanoen.2021.106439
– ident: e_1_2_8_43_1
  doi: 10.1038/nmat4703
– ident: e_1_2_8_67_1
  doi: 10.1088/1361-6528/aa6958
– ident: e_1_2_8_73_1
  doi: 10.1063/1.3387812
– ident: e_1_2_8_118_1
  doi: 10.1039/D1NA00504A
– ident: e_1_2_8_195_1
  doi: 10.1038/srep01610
– ident: e_1_2_8_192_1
  doi: 10.1038/s41467-021-25801-2
– volume-title: Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices
  year: 2011
  ident: e_1_2_8_2_1
– ident: e_1_2_8_99_1
  doi: 10.1002/adma.201803563
– ident: e_1_2_8_100_1
  doi: 10.1038/nmat4135
SSID ssj0009606
Score 2.560917
SecondaryResourceType review_article
Snippet Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in...
Memory technologies and applications implemented fully or partially using emerging two-dimensional (2D) materials have attracted increasing interest in the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2202371
SubjectTerms 2D materials
Arrays
Flash memory (computers)
Integrated circuits
in‐memory computing
Materials science
Memory devices
memory technology
Power consumption
Production methods
Two dimensional materials
Title Circuit‐Level Memory Technologies and Applications based on 2D Materials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202371
https://www.ncbi.nlm.nih.gov/pubmed/35607274
https://www.proquest.com/docview/2742938505
https://www.proquest.com/docview/2668908145
Volume 34
WOSCitedRecordID wos000873871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD644z6sD9521fFGBGGfim2SSTKPg-Mg4oiIwryV3AoDS2eZi-CbP8Hf6C_xpO3UGWQR3Ke29LRNk3NyvuQk3wE4jTMby7AujMXOR5xLHikj8VInQkphkthnRbIJeXOjBoP27cIu_pIfop5wC5ZR9NfBwLWZnL2ThmpX8AbRkP87bCJfpai8vAGr3bvew_U78a4o8muGeF_UFlzNiRtjerb8hmXH9AFtLoPXwvv0Nv6_3JuwXiFP0ilVZQtWfL4Nawt8hD_h6nw4trPh9PX55TosJiL9sA73idTz7zisJjp3pLMQ9ibBEToyygntkr6elir9Cx56F_fnl1GVbCGyTLIkElgglySaKpt5YbAnMC5GB2rw6LnIJLWWC-oYRUwmDVXOZEZbodpeMOYp24FGPsr9HhDHMxeiq62W1zj6bpnEOm0UZ55liH9oE6J5Tae2YiIPCTH-pCWHMk1DHaV1HTXhdy3_t-Tg-Kfk4bzh0soWJ2kIRreZQqjXhJP6NlpRCI3o3I9mKCPwRxAdcZTZLRu8_hRDUIgojzeBFu36SRnSTrffqa_2v_LQAfwI5-WqmUNoTMczfwTf7eN0OBkfwzc5UMeVnr8BlCX6yQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9GOuj20G3d1qXrOhUKfTK1JVlyHkOz0K1JGKOFvhn9MwSGU9JksLd-hH7GfpLe2Y7bMMpg7MnIPtuydPL9pDv9DuAwLlysKS5MxD5EUmoZZVZj0SRKa2WTOBRVsgk9mWSXl73vTTQh7YWp-SHaBTcaGdX_mgY4LUgfP7CGGl8RB3FKAE67yDck6lLagY3Bj-HF6IF5V1UJNsnhF_WUzFbMjTE_Xn_CumX6A26uo9fK_Axf_YeKv4atBnuyfq0sb-BZKLfh5SNGwrfw7WQ6d8vp4u7mdkThRGxMkbi_WbsCjxNrZkrP-o8c34xMoWezkvEBG5tFrdTv4GL45fzkNGrSLUROaJFECivkk8TwzBVBWfwXWB-jCbV4DFIVmjsnFfeCIyrTlmfeFtY4lfWCEiJw8R465awMH4B5WXjyr6ZpMDj_Tm3ivLGZFEEUiIB4F6JVU-eu4SKnlBg_85pFmefURnnbRl04auWvahaOJyX3Vj2XN6PxOid3dA91I067cNBexnFEzhFThtkSZRR-COIjiTI7dY-3rxIICxHnyS7wqmP_Uoe8Pxj329Luv9z0GTZPz8ejfPR1cvYRXtD5OoZmDzqL-TJ8gufu12J6Pd9v1P0evE390Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MtpT1Yb1tbdquVWHQJ1NbUiT7MTQLW5uEUhrIm9HNEBhOyKXQt_6E_sb-kh3ZjttQxmDsycg-tmVJx-eTztF3AL6FmQmljwtjoXUB55IHsZZYVJGQUugodFmRbEL2-_FwmNxW0YR-L0zJD1EvuHnNKP7XXsHdxGaXr6yhyhbEQdQnAPe7yNd5MxGom-vtu86g-8q8K4oEm97hFySCx0vmxpBerj5h1TK9g5ur6LUwP53t_1DxHfhUYU_SKgfLLnxw-R5svWEk3Ifrq9HULEbzl6fnrg8nIj0fiftI6hV4nFgTlVvSeuP4Jt4UWjLOCW2TnpqXg_ozDDrf769-BFW6hcAwyaJAYIVsFCkam8wJjf8CbUM0oRqPjotMUmO4oJZRRGVS09jqTCsj4sQJxhxlX2AtH-fuEIjlmfX-1WbTKZx_N3VkrNIxZ45liIBoA4JlU6em4iL3KTF-pSWLMk19G6V1GzXgopaflCwcf5Q8WfZcWmnjLPXu6ITFCPYacF5fRj3yzhGVu_ECZQR-COIjjjIHZY_Xr2IICxHn8QbQomP_Uoe01e616tLRv9x0Bpu37U7a_dm_OYaP_nQZQnMCa_Ppwn2FDfMwH82mp9Vo_w1IsP1M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circuit%E2%80%90Level+Memory+Technologies+and+Applications+based+on+2D+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ma%2C+Jiahui&rft.au=Liu%2C+Hefei&rft.au=Yang%2C+Ning&rft.au=Zou%2C+Jingyi&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=48&rft_id=info:doi/10.1002%2Fadma.202202371&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon