Circuit‐Level Memory Technologies and Applications based on 2D Materials
Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power...
Gespeichert in:
| Veröffentlicht in: | Advanced materials (Weinheim) Jg. 34; H. 48; S. e2202371 - n/a |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
01.12.2022
|
| Schlagworte: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research.
The developments of circuit‐level memory technologies and in‐memory computing applications realized experimentally using 2D materials are reviewed. Reports on large‐scale material synthesis methods, circuits with different levels of integration, logic‐in‐memory, and neuromorphic computing applications are systematically summarized. Major challenges and perspectives of large‐scale 2D‐material‐based integrated memory are provided. |
|---|---|
| AbstractList | Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research. Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D‐material‐based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large‐scale 2D memory devices are discussed. Reports on 2D‐material‐based integrated memory circuits, from conventional dynamic random‐access memory, static random‐access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in‐memory computing applications, mostly on logic‐in‐memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large‐scale applications of 2D‐material‐based memory are reviewed, and perspectives on possible approaches toward a more reliable system‐level fabrication are also given, hopefully shedding some light on future research. The developments of circuit‐level memory technologies and in‐memory computing applications realized experimentally using 2D materials are reviewed. Reports on large‐scale material synthesis methods, circuits with different levels of integration, logic‐in‐memory, and neuromorphic computing applications are systematically summarized. Major challenges and perspectives of large‐scale 2D‐material‐based integrated memory are provided. Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D-material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices are discussed. Reports on 2D-material-based integrated memory circuits, from conventional dynamic random-access memory, static random-access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, mostly on logic-in-memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large-scale applications of 2D-material-based memory are reviewed, and perspectives on possible approaches toward a more reliable system-level fabrication are also given, hopefully shedding some light on future research.Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances and low power consumption, as well as special functionalities. Here, an overview of progress in 2D-material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices are discussed. Reports on 2D-material-based integrated memory circuits, from conventional dynamic random-access memory, static random-access memory, and flash memory arrays, to emerging memristive crossbar structures, all the way to 3D monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, mostly on logic-in-memory and neuromorphic computing, are summarized here. Finally, challenges that impede the large-scale applications of 2D-material-based memory are reviewed, and perspectives on possible approaches toward a more reliable system-level fabrication are also given, hopefully shedding some light on future research. Memory technologies and applications implemented fully or partially using emerging two-dimensional (2D) materials have attracted increasing interest in the research community in recent years. Their unique characteristics provide new possibilities for highly integrated circuits with superior performances, low power consumption as well as special functionalities. Here, an overview of progress in 2D material-based memory technologies and applications on the circuit level is presented. In the material growth and fabrication aspects, the advantages and disadvantages of various methods for producing large-scale 2D memory devices in batches are discussed. Reports on 2D material-based integrated memory circuits, from conventional dynamic random-access memory (DRAM), static random-access memory (SRAM), and Flash memory arrays, to emerging memristive crossbar structures, all the way to three-dimensional (3D) monolithic stacking architecture, are systematically reviewed. Comparisons between experimental implementations and theoretical estimations for different integration architectures are given in terms of the critical parameters in 2D memory devices. Attempts to use 2D memory arrays for in-memory computing applications, which are mostly focused on logic-in-memory and neuromorphic computing, are summarized here. Finally, we review the major challenges that impede the large-scale applications of 2D material-based memory, and also give perspectives on possible approaches towards a more reliable system-level fabrication, hopefully shedding some light on future research in this field. This article is protected by copyright. All rights reserved. |
| Author | Zhang, Yuhao Zhang, Xu Liu, Hefei Ma, Jiahui Zou, Jingyi Guo, Jing Wang, Han Yang, Ning Lin, Sen |
| Author_xml | – sequence: 1 givenname: Jiahui surname: Ma fullname: Ma, Jiahui organization: University of Southern California – sequence: 2 givenname: Hefei surname: Liu fullname: Liu, Hefei organization: University of Southern California – sequence: 3 givenname: Ning surname: Yang fullname: Yang, Ning organization: University of Florida – sequence: 4 givenname: Jingyi surname: Zou fullname: Zou, Jingyi organization: Carnegie Mellon University – sequence: 5 givenname: Sen surname: Lin fullname: Lin, Sen organization: Carnegie Mellon University – sequence: 6 givenname: Yuhao surname: Zhang fullname: Zhang, Yuhao organization: Virginia Polytechnic Institute and State University – sequence: 7 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Carnegie Mellon University – sequence: 8 givenname: Jing surname: Guo fullname: Guo, Jing organization: University of Florida – sequence: 9 givenname: Han orcidid: 0000-0001-5121-3362 surname: Wang fullname: Wang, Han email: han.wang.4@usc.edu organization: University of Southern California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35607274$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFO3DAQhq0KVBbaK8cqUi-9ZBnbiZMcV0tpQbvispwtx55QoyTe2globzwCz8iT1NtlQUKqKln6L983Gs9_TA561yMhpxSmFICdKdOpKQMWHy_oBzKhOaNpBlV-QCZQ8TytRFYekeMQ7gCgEiA-kiOeCyhYkU3I1dx6Pdrh-fFpgffYJkvsnN8kK9S_ete6W4shUb1JZut1a7UarOtDUquAJnF9ws6TpRrQW9WGT-SwiYGfX_KE3Fx8X81_povrH5fz2SLVvOA0FXFXQ6lipW5Q1FBAbQDR1DExE03BtM4EM5xVOS1qVpq6qZUWZYWCc2T8hHzbzV1793vEMMjOBo1tq3p0Y5BMRBZKmuUR_foOvXOj7-N2Mv6eVbzMYUt9eaHGukMj1952ym_k_koRyHaA9i4Ej43Udvh7isEr20oKcluG3JYhX8uI2vSdtp_8T6HaCQ-2xc1_aDk7X87e3D95PJuv |
| CitedBy_id | crossref_primary_10_1007_s43939_024_00074_w crossref_primary_10_1039_D5NR01509J crossref_primary_10_1063_5_0189364 crossref_primary_10_1016_j_eurpolymj_2023_112025 crossref_primary_10_1088_2515_7639_ad467b crossref_primary_10_1002_adfm_202514338 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1007_s40820_025_01769_2 crossref_primary_10_1016_j_jsamd_2025_100960 crossref_primary_10_1002_advs_202303734 crossref_primary_10_1088_2053_1583_ad015f crossref_primary_10_1063_5_0147013 crossref_primary_10_3390_nano14171408 crossref_primary_10_1039_D3MH01734F crossref_primary_10_1063_5_0165606 crossref_primary_10_1002_smll_202503717 crossref_primary_10_1007_s10854_022_09484_z crossref_primary_10_1016_j_mtphys_2025_101763 crossref_primary_10_1016_j_pmatsci_2025_101471 crossref_primary_10_1016_j_device_2024_100509 crossref_primary_10_1002_aelm_202201252 crossref_primary_10_1002_aisy_202200338 crossref_primary_10_1002_adma_202304550 crossref_primary_10_1002_smll_202411297 crossref_primary_10_1016_j_jallcom_2023_173175 |
| Cites_doi | 10.1038/s41467-020-17849-3 10.1021/acs.chemmater.0c03112 10.1038/s41467-018-07572-5 10.1038/s41928-020-00475-8 10.1080/23746149.2016.1259585 10.1038/s41565-021-00963-8 10.1002/aelm.201600090 10.1038/s41467-018-05397-w 10.1021/acsnano.5b06842 10.1038/s41467-021-26230-x 10.1002/aelm.202000760 10.1038/s41563-019-0291-x 10.1038/s41467-019-11187-9 10.1002/adma.202108826 10.1088/2053-1583/3/3/035001 10.1038/s41563-019-0341-4 10.1021/acsnano.7b04100 10.1126/science.aah4698 10.1038/s41565-019-0438-6 10.1109/TED.2020.3018099 10.1063/5.0010829 10.1109/TNNLS.2019.2899262 10.1002/adfm.201908691 10.1021/acs.nanolett.7b04342 10.1002/smll.202105383 10.1126/science.aar3617 10.1038/nature23905 10.1038/s41928-021-00573-1 10.1038/s41586-019-1052-3 10.1002/adfm.201602748 10.1038/s41565-019-0554-3 10.1002/smll.201603994 10.1021/acs.nanolett.6b01051 10.1038/s41699-020-00162-4 10.1021/acsnano.6b08668 10.1038/s41467-021-26012-5 10.1038/s41565-020-0647-z 10.1002/aelm.201900740 10.1021/nl302015v 10.1145/2228360.2228447 10.1088/2634-4386/ac4a83 10.1038/s41467-018-04933-y 10.1002/adma.201703363 10.1109/T-C.1969.222754 10.1038/s41467-021-22332-8 10.1021/acsnano.0c08921 10.1002/smll.202103543 10.1021/nn305510u 10.1109/JEDS.2019.2925150 10.1038/s41586-020-2009-2 10.1038/s41563-018-0149-7 10.1021/acsnano.9b06627 10.1021/acs.nanolett.0c00002 10.1038/srep45546 10.1021/acsnano.5b04592 10.1109/5.849164 10.1021/acsphotonics.0c01224 10.1038/nnano.2010.279 10.1002/adfm.201502734 10.1109/TCSI.2019.2897497 10.1002/smll.201102654 10.1016/j.isci.2021.103138 10.1038/nnano.2010.132 10.1038/s41586-020-1942-4 10.1038/nnano.2017.100 10.1007/s12274-021-3381-4 10.1039/D1NA00171J 10.1038/s41586-019-1226-z 10.1038/s41928-020-00473-w 10.1109/JPROC.2010.2070050 10.1038/s41928-021-00684-9 10.1038/s41928-020-0441-9 10.1021/nl101902k 10.1186/s11671-020-03299-9 10.1002/smll.201001628 10.1002/adma.202004207 10.1109/JPROC.2012.2190369 10.1038/s41563-021-01099-9 10.1146/annurev-matsci-070214-020901 10.1002/advs.201700231 10.1021/acsnano.6b01636 10.1038/s41928-020-0460-6 10.1038/s41467-019-13176-4 10.1126/science.aar4851 10.1021/nl2043612 10.1126/sciadv.abg1455 10.1039/C6TC01602B 10.1002/smll.201503827 10.1002/adma.200903267 10.1021/acsnano.6b03440 10.1038/srep02126 10.1109/TED.2021.3057598 10.1039/C8NA00126J 10.1021/nn503412w 10.1109/DRC.2014.6872360 10.1038/s41467-021-23719-3 10.1126/science.abg3161 10.1002/adma.202108258 10.1109/JPROC.2008.2004313 10.1038/s41586-021-03472-9 10.1126/science.aat8126 10.1088/0957-4484/24/47/475202 10.1039/C9NR00747D 10.1038/nnano.2008.160 10.1038/s41565-019-0501-3 10.1002/adma.201801548 10.1002/aelm.201900818 10.1142/S0129156417400018 10.1002/adma.201104798 10.1021/nn3059136 10.1039/C8CS00254A 10.1038/nature25747 10.1002/adma.201602391 10.1039/C9MH02033K 10.23919/VLSIT.2019.8776570 10.1021/acsnano.1c05167 10.1038/s41598-019-56816-x 10.1145/1941487.1941507 10.1126/science.aac9439 10.1021/acsnano.7b07059 10.1126/science.1218461 10.1021/ja109793s 10.1038/nphoton.2014.271 10.1039/C8CS00561C 10.1038/s41467-020-16266-w 10.1109/LCA.2021.3117150 10.1002/adma.202103656 10.1038/s41565-018-0063-9 10.1063/1.5002138 10.1088/1361-6528/aac6b3 10.1002/aelm.201600364 10.1038/nnano.2012.193 10.1016/j.nanoen.2020.105692 10.1002/adfm.201303520 10.1002/adfm.202002506 10.1016/j.tsf.2019.137500 10.1038/s41928-021-00670-1 10.1038/nmat4218 10.1088/0957-4484/24/17/175202 10.1002/anie.201409400 10.1109/JPROC.2003.811702 10.1126/science.1102896 10.1016/j.mejo.2012.10.001 10.1038/s41586-020-2861-0 10.1038/nature14417 10.1038/s41467-020-19053-9 10.1038/s41586-018-0626-9 10.1002/adma.201801232 10.1038/nnano.2016.281 10.1021/acsami.0c08802 10.1038/s41928-020-0433-9 10.1021/nn303772b 10.1109/JETCAS.2016.2547704 10.1002/adfm.202011083 10.1002/adma.201500039 10.1021/acsnano.9b07421 10.1038/nnano.2015.29 10.1038/s41928-018-0021-4 10.1038/nature12385 10.1021/acsnano.0c09441 10.1038/s41563-021-01110-3 10.1126/science.aax8156 10.1002/adma.202103376 10.1039/C8NR01139G 10.1038/s41928-021-00566-0 10.1109/JPROC.2017.2697000 10.1002/aelm.201901335 10.1038/s41586-019-1573-9 10.1126/science.aba1416 10.1021/nn400280c 10.1038/s41563-018-0248-5 10.1002/adfm.202003683 10.1016/j.nanoen.2021.106439 10.1038/nmat4703 10.1088/1361-6528/aa6958 10.1063/1.3387812 10.1039/D1NA00504A 10.1038/srep01610 10.1038/s41467-021-25801-2 10.1002/adma.201803563 10.1038/nmat4135 |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH This article is protected by copyright. All rights reserved. 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: This article is protected by copyright. All rights reserved. – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202202371 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 35607274 10_1002_adma_202202371 ADMA202202371 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Carnegie Mellon University Scott Institute EQT Foundation – fundername: Army Research Office funderid: W911NF2120128 – fundername: National Science Foundation funderid: ECCS‐1653870; 1809770; 1904580 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c3731-6220d11a28cfe6b070bd0eedb0bde46f72cc462d329517b28dbfbac689e633e23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000873871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 14:22:59 EDT 2025 Mon Jul 14 10:24:21 EDT 2025 Wed Feb 19 02:23:57 EST 2025 Sat Nov 29 07:20:53 EST 2025 Tue Nov 18 21:43:28 EST 2025 Wed Jan 22 16:22:40 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 48 |
| Keywords | two-dimensional (2D) materials integrated circuits in-memory computing memory technology |
| Language | English |
| License | This article is protected by copyright. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-6220d11a28cfe6b070bd0eedb0bde46f72cc462d329517b28dbfbac689e633e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-5121-3362 |
| PMID | 35607274 |
| PQID | 2742938505 |
| PQPubID | 2045203 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_2668908145 proquest_journals_2742938505 pubmed_primary_35607274 crossref_citationtrail_10_1002_adma_202202371 crossref_primary_10_1002_adma_202202371 wiley_primary_10_1002_adma_202202371_ADMA202202371 |
| PublicationCentury | 2000 |
| PublicationDate | December 1, 2022 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 1, 2022 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 68 2010; 98 2010; 10 2013; 3 2020; 20 2019; 11 2019; 10 2019; 13 2000; 88 2018; 563 2019; 14 2019; 688 2020; 15 2019; 18 2011; 54 2014; 24 2020; 12 2020; 11 2019; 568 2022; 21 2020; 10 2017; 550 2013; 7 2013; 5 2012; 12 2018; 47 2010; 22 2018; 9 2018; 1 2020; 577 2020; 579 2018; 30 2012; 24 2021; 82 2010; 5 1989 2019; 7 2018; 29 2019; 9 2012; 100 2019; 5 2019; 31 2015; 520 2019; 1 2015; 54 2016; 10 2020; 32 2004; 306 2011; 6 2016; 16 2011; 8 2011; 7 2011; 133 2016; 12 2016; 4 2018; 18 2016; 6 2018; 17 2016; 2 2016; 3 2020; 30 2018; 112 2021; 373 2022; 2 2018; 12 2016; 28 2019; 570 2018; 10 2016; 26 2019; 573 2022; 18 2018; 13 2018; 362 2021; 24 2017; 7 2017; 2 2021; 20 2017; 3 2018; 360 2017; 4 2013; 24 2008; 3 2020; 367 2020; 7 2015; 45 2020; 6 2020; 4 2020; 3 2021; 31 2021; 34 2003; 91 2021; 33 2019; 66 2016; 354 2016; 353 2021; 593 2014; 8 2012; 335 2021; 8 2021; 7 2015; 14 2021; 4 2021; 3 2021; 89 2017; 26 2012 2013; 44 2011 2017; 28 2015; 10 2009 2017; 29 2008; 96 2020; 587 2015; 9 1969; 100 2021; 14 2021; 16 2015; 25 2021; 15 2015; 27 2021; 12 2022 2021 2017; 16 2017; 11 2021; 17 2017; 13 2018; 554 2017; 12 2019 2013; 499 2018 2017 2015 2020; 67 2014 2012; 6 2012; 7 2010; 96 2017; 105 2012; 8 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_203_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 Aarts E. (e_1_2_8_194_1) 1989 Yan X. (e_1_2_8_149_1) 2021 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_48_1 Zhang F. (e_1_2_8_169_1) 2018 e_1_2_8_204_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_156_1 Hu V. P.‐H. (e_1_2_8_116_1) 2021 e_1_2_8_14_1 e_1_2_8_37_1 Alaskar Y. (e_1_2_8_40_1) 2016 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 Wang C.‐H. (e_1_2_8_105_1) 2018 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 Kshirsagar C. (e_1_2_8_110_1) 2014 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 Li J. (e_1_2_8_107_1) 2019 Shulaker M. M. (e_1_2_8_16_1) 2015 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 Itoh K. (e_1_2_8_1_1) 2013 e_1_2_8_134_1 e_1_2_8_70_1 Pang C.‐S. (e_1_2_8_103_1) 2018 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_93_1 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_8_1 Ebrahimi M. S. (e_1_2_8_17_1) 2014 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 Brewer J. (e_1_2_8_2_1) 2011 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 Cheong W. (e_1_2_8_166_1) 2018 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 Huyghebaert C. (e_1_2_8_39_1) 2018 e_1_2_8_123_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 Kim W. (e_1_2_8_122_1) 2009 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 Jiang J. (e_1_2_8_157_1) 2018 e_1_2_8_94_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 Huang J.‐J. (e_1_2_8_147_1) 2011 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 Nitin B. (e_1_2_8_161_1) 2018 O'Connor M. (e_1_2_8_164_1) 2017 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 Cheema S. S. (e_1_2_8_168_1) 2021 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 Golonzka O. (e_1_2_8_163_1) 2019 e_1_2_8_141_1 e_1_2_8_97_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_126_1 e_1_2_8_187_1 Kim K. (e_1_2_8_160_1) 2021 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 Chou A.‐S. (e_1_2_8_127_1) 2021 e_1_2_8_192_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
| References_xml | – year: 2011 – volume: 91 start-page: 489 year: 2003 publication-title: Proc. IEEE – volume: 10 year: 2020 publication-title: AIP Adv. – volume: 3 year: 2016 publication-title: 2D Mater. – volume: 4 start-page: 8859 year: 2016 publication-title: J. Mater. Chem. C – volume: 14 start-page: 4591 year: 2021 publication-title: Nano Res. – volume: 12 start-page: 965 year: 2018 publication-title: ACS Nano – volume: 18 year: 2022 publication-title: Small – volume: 26 year: 2017 publication-title: Int. J. High Speed Electron. Syst. – volume: 112 year: 2018 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 408 year: 2019 publication-title: Nat. Nanotechnol. – volume: 1 start-page: 643 year: 2019 publication-title: Nanoscale Adv. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 429 year: 2008 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 2898 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 8457 year: 2016 publication-title: ACS Nano – volume: 89 year: 2021 publication-title: Nano Energy – volume: 3 start-page: 466 year: 2020 publication-title: Nat. Electron. – year: 1989 – volume: 12 start-page: 5564 year: 2021 publication-title: Nat. Commun. – volume: 7 start-page: 878 year: 2019 publication-title: IEEE J. Electron Devices Soc. – volume: 2 start-page: 89 year: 2017 publication-title: Adv. Phys.: X – volume: 133 start-page: 2816 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 289 year: 2018 publication-title: Nat. Nanotechnol. – volume: 15 start-page: 90 year: 2020 publication-title: Nanoscale Res. Lett. – year: 2014 – volume: 68 start-page: 2033 year: 2021 publication-title: IEEE Trans. Electron Devices – volume: 29 year: 2018 publication-title: Nanotechnology – volume: 7 start-page: 3246 year: 2013 publication-title: ACS Nano – volume: 88 start-page: 667 year: 2000 publication-title: Proc. IEEE – volume: 15 start-page: 517 year: 2020 publication-title: Nat. Nanotechnol. – volume: 7 start-page: 465 year: 2011 publication-title: Small – volume: 16 start-page: 3360 year: 2016 publication-title: Nano Lett. – year: 2022 publication-title: Adv. Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 593 start-page: 211 year: 2021 publication-title: Nature – volume: 21 start-page: 134 year: 2022 publication-title: Nat. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 5953 year: 2021 publication-title: Nat. Commun. – volume: 25 start-page: 6710 year: 2015 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 5710 year: 2021 publication-title: Nat. Commun. – volume: 3 start-page: 486 year: 2020 publication-title: Nat. Electron. – volume: 82 year: 2021 publication-title: Nano Energy – volume: 9 start-page: 2514 year: 2018 publication-title: Nat. Commun. – volume: 12 start-page: 744 year: 2017 publication-title: Nat. Nanotechnol. – volume: 54 start-page: 67 year: 2011 publication-title: Commun. ACM – volume: 554 start-page: 500 year: 2018 publication-title: Nature – volume: 8 start-page: 8617 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 383 year: 2020 publication-title: Nat. Electron. – year: 2019 – volume: 11 start-page: 3010 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 1610 year: 2013 publication-title: Sci. Rep. – volume: 18 start-page: 309 year: 2019 publication-title: Nat. Mater. – volume: 20 start-page: 158 year: 2021 publication-title: IEEE Comput. Archit. Lett. – volume: 66 start-page: 2533 year: 2019 publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. – year: 2021 publication-title: Adv. Mater. – volume: 12 start-page: 4674 year: 2012 publication-title: Nano Lett. – volume: 12 start-page: 2077 year: 2016 publication-title: Small – volume: 3 year: 2016 – volume: 520 start-page: 656 year: 2015 publication-title: Nature – volume: 688 year: 2019 publication-title: Thin Solid Films – volume: 47 start-page: 6224 year: 2018 publication-title: Chem. Soc. Rev. – volume: 98 start-page: 2201 year: 2010 publication-title: Proc. IEEE – volume: 15 start-page: 1497 year: 2020 publication-title: ACS Nano – volume: 7 start-page: 2320 year: 2013 publication-title: ACS Nano – volume: 360 start-page: 1214 year: 2018 publication-title: Science – volume: 15 start-page: 1764 year: 2021 publication-title: ACS Nano – volume: 17 year: 2021 publication-title: Small – volume: 12 start-page: 343 year: 2017 publication-title: Nat. Nanotechnol. – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – start-page: 187 year: 2014 end-page: 188 – volume: 3 start-page: 711 year: 2020 publication-title: Nat. Electron. – volume: 9 start-page: 5106 year: 2018 publication-title: Nat. Commun. – volume: 31 start-page: 4 year: 2019 publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 10 start-page: 9261 year: 2018 publication-title: Nanoscale – volume: 3 start-page: 3430 year: 2021 publication-title: Nanoscale Adv. – volume: 4 start-page: 29 year: 2020 publication-title: npj 2D Mater. Appl. – volume: 367 start-page: 895 year: 2020 publication-title: Science – volume: 16 start-page: 1201 year: 2021 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 7102 year: 2019 publication-title: Nanoscale – volume: 24 start-page: 5316 year: 2014 publication-title: Adv. Funct. Mater. – volume: 27 start-page: 2797 year: 2015 publication-title: Adv. Mater. – volume: 10 start-page: 1404 year: 2016 publication-title: ACS Nano – volume: 12 start-page: 2143 year: 2021 publication-title: Nat. Commun. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 3 year: 2017 publication-title: Adv. Electron. Mater. – volume: 353 year: 2016 publication-title: Science – volume: 24 year: 2013 publication-title: Nanotechnology – volume: 4 start-page: 893 year: 2021 publication-title: Nat. Electron. – volume: 14 start-page: 776 year: 2019 publication-title: Nat. Nanotechnol. – volume: 362 start-page: 665 year: 2018 publication-title: Science – volume: 10 start-page: 5201 year: 2019 publication-title: Nat. Commun. – volume: 100 start-page: 719 year: 1969 publication-title: IEEE Trans. Comput. – volume: 96 start-page: 1786 year: 2008 publication-title: Proc. IEEE – volume: 16 start-page: 170 year: 2017 publication-title: Nat. Mater. – volume: 13 year: 2017 publication-title: Small – volume: 32 year: 2020 publication-title: Chem. Mater. – volume: 8 start-page: 899 year: 2014 publication-title: Nat. Photonics – volume: 8 start-page: 966 year: 2012 publication-title: Small – volume: 18 start-page: 434 year: 2018 publication-title: Nano Lett. – volume: 34 year: 2021 publication-title: Adv. Mater. – start-page: 41 year: 2017 end-page: 54 – volume: 563 start-page: 94 year: 2018 publication-title: Nature – volume: 11 start-page: 3936 year: 2020 publication-title: Nat. Commun. – volume: 10 start-page: 6054 year: 2016 publication-title: ACS Nano – start-page: 344 year: 2021 end-page: 346 – volume: 8 start-page: 85 year: 2021 publication-title: ACS Photonics – volume: 12 start-page: 1538 year: 2012 publication-title: Nano Lett. – volume: 26 start-page: 7406 year: 2016 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 574 year: 2010 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 2045 year: 2010 publication-title: Adv. Mater. – volume: 96 year: 2010 publication-title: Appl. Phys. Lett. – volume: 67 start-page: 4216 year: 2020 publication-title: IEEE Trans. Electron Devices – volume: 9 year: 2015 publication-title: ACS Nano – year: 2021 – volume: 11 start-page: 8456 year: 2017 publication-title: ACS Nano – volume: 577 start-page: 641 year: 2020 publication-title: Nature – volume: 3 start-page: 2126 year: 2013 publication-title: Sci. Rep. – volume: 14 start-page: 919 year: 2019 publication-title: Nat. Nanotechnol. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 9 start-page: 2966 year: 2018 publication-title: Nat. Commun. – year: 2018 – volume: 14 start-page: 175 year: 2019 publication-title: ACS Nano – volume: 570 start-page: 91 year: 2019 publication-title: Nature – start-page: 188 year: 2009 end-page: 189 – volume: 4 start-page: 342 year: 2021 publication-title: Nat. Electron. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 2 year: 2016 publication-title: Adv. Electron. Mater. – volume: 24 year: 2021 publication-title: iScience – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 1 start-page: 130 year: 2018 publication-title: Nat. Electron. – volume: 44 start-page: 176 year: 2013 publication-title: Microelectron. J. – volume: 7 start-page: 1495 year: 2020 publication-title: Mater. Horiz. – volume: 14 start-page: 264 year: 2015 publication-title: Nat. Mater. – volume: 3 start-page: 4952 year: 2021 publication-title: Nanoscale Adv. – volume: 6 year: 2012 publication-title: ACS Nano – volume: 499 start-page: 419 year: 2013 publication-title: Nature – volume: 573 start-page: 507 year: 2019 publication-title: Nature – year: 2015 – volume: 579 start-page: 219 year: 2020 publication-title: Nature – volume: 4 start-page: 786 year: 2021 publication-title: Nat. Electron. – volume: 367 start-page: 903 year: 2020 publication-title: Science – volume: 18 start-page: 141 year: 2019 publication-title: Nat. Mater. – volume: 12 start-page: 3347 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 191 year: 2015 publication-title: Nat. Nanotechnol. – volume: 20 start-page: 4144 year: 2020 publication-title: Nano Lett. – volume: 335 start-page: 947 year: 2012 publication-title: Science – volume: 3 start-page: 638 year: 2020 publication-title: Nat. Electron. – volume: 100 start-page: 1951 year: 2012 publication-title: Proc. IEEE – volume: 10 start-page: 3161 year: 2019 publication-title: Nat. Commun. – volume: 5 year: 2013 – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: 195 year: 2022 publication-title: Nat. Mater. – volume: 360 start-page: 1218 year: 2018 publication-title: Science – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 587 start-page: 72 year: 2020 publication-title: Nature – volume: 9 year: 2019 publication-title: Sci. Rep. – volume: 550 start-page: 229 year: 2017 publication-title: Nature – volume: 13 year: 2019 publication-title: ACS Nano – volume: 105 start-page: 1634 year: 2017 publication-title: Proc. IEEE – volume: 54 start-page: 3653 year: 2015 publication-title: Angew. Chem., Int. Ed. – year: 2012 – volume: 354 start-page: 99 year: 2016 publication-title: Science – start-page: T230 year: 2019 end-page: T231 – volume: 6 start-page: 147 year: 2011 publication-title: Nat. Nanotechnol. – volume: 17 start-page: 778 year: 2018 publication-title: Nat. Mater. – volume: 373 start-page: 1353 year: 2021 publication-title: Science – volume: 18 start-page: 520 year: 2019 publication-title: Nat. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 year: 2022 publication-title: Neuromorphic Comput. Eng. – volume: 568 start-page: 70 year: 2019 publication-title: Nature – year: 2021 publication-title: Adv. Electron. Mater. – volume: 4 start-page: 348 year: 2021 publication-title: Nat. Electron. – volume: 45 start-page: 63 year: 2015 publication-title: Annu. Rev. Mater. Res. – volume: 28 start-page: 9326 year: 2016 publication-title: Adv. Mater. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 10 start-page: 4381 year: 2010 publication-title: Nano Lett. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 8 year: 2011 – volume: 11 start-page: 5689 year: 2020 publication-title: Nat. Commun. – year: 2017 – volume: 11 start-page: 2453 year: 2020 publication-title: Nat. Commun. – volume: 6 start-page: 109 year: 2016 publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst. – volume: 14 start-page: 199 year: 2015 publication-title: Nat. Mater. – volume: 47 start-page: 7426 year: 2018 publication-title: Chem. Soc. Rev. – ident: e_1_2_8_183_1 doi: 10.1038/s41467-020-17849-3 – ident: e_1_2_8_79_1 doi: 10.1021/acs.chemmater.0c03112 – ident: e_1_2_8_187_1 doi: 10.1038/s41467-018-07572-5 – ident: e_1_2_8_114_1 doi: 10.1038/s41928-020-00475-8 – ident: e_1_2_8_20_1 doi: 10.1080/23746149.2016.1259585 – ident: e_1_2_8_77_1 doi: 10.1038/s41565-021-00963-8 – ident: e_1_2_8_13_1 doi: 10.1002/aelm.201600090 – ident: e_1_2_8_139_1 doi: 10.1038/s41467-018-05397-w – ident: e_1_2_8_199_1 doi: 10.1021/acsnano.5b06842 – ident: e_1_2_8_111_1 doi: 10.1038/s41467-021-26230-x – volume-title: 2018 IEEE 22nd Workshop on Signal and Power Integrity (SPI) year: 2018 ident: e_1_2_8_161_1 – ident: e_1_2_8_179_1 doi: 10.1002/aelm.202000760 – ident: e_1_2_8_15_1 doi: 10.1038/s41563-019-0291-x – ident: e_1_2_8_141_1 doi: 10.1038/s41467-019-11187-9 – ident: e_1_2_8_189_1 doi: 10.1002/adma.202108826 – ident: e_1_2_8_75_1 doi: 10.1088/2053-1583/3/3/035001 – ident: e_1_2_8_125_1 doi: 10.1038/s41563-019-0341-4 – start-page: 188 volume-title: 2009 Symp. on VLSI Technology year: 2009 ident: e_1_2_8_122_1 – ident: e_1_2_8_202_1 doi: 10.1021/acsnano.7b04100 – ident: e_1_2_8_155_1 doi: 10.1126/science.aah4698 – ident: e_1_2_8_34_1 doi: 10.1038/s41565-019-0438-6 – ident: e_1_2_8_109_1 doi: 10.1109/TED.2020.3018099 – ident: e_1_2_8_104_1 doi: 10.1063/5.0010829 – ident: e_1_2_8_14_1 doi: 10.1109/TNNLS.2019.2899262 – ident: e_1_2_8_165_1 doi: 10.1002/adfm.201908691 – volume-title: VLSI Memory Chip Design year: 2013 ident: e_1_2_8_1_1 – ident: e_1_2_8_71_1 doi: 10.1021/acs.nanolett.7b04342 – ident: e_1_2_8_47_1 doi: 10.1002/smll.202105383 – ident: e_1_2_8_135_1 doi: 10.1126/science.aar3617 – ident: e_1_2_8_200_1 doi: 10.1038/nature23905 – ident: e_1_2_8_178_1 doi: 10.1038/s41928-021-00573-1 – ident: e_1_2_8_129_1 doi: 10.1038/s41586-019-1052-3 – ident: e_1_2_8_92_1 doi: 10.1002/adfm.201602748 – ident: e_1_2_8_153_1 doi: 10.1038/s41565-019-0554-3 – ident: e_1_2_8_45_1 doi: 10.1002/smll.201603994 – ident: e_1_2_8_60_1 doi: 10.1021/acs.nanolett.6b01051 – ident: e_1_2_8_31_1 doi: 10.1038/s41699-020-00162-4 – ident: e_1_2_8_93_1 doi: 10.1021/acsnano.6b08668 – ident: e_1_2_8_191_1 doi: 10.1038/s41467-021-26012-5 – ident: e_1_2_8_44_1 doi: 10.1038/s41565-020-0647-z – ident: e_1_2_8_87_1 doi: 10.1002/aelm.201900740 – ident: e_1_2_8_113_1 doi: 10.1021/nl302015v – ident: e_1_2_8_12_1 doi: 10.1145/2228360.2228447 – ident: e_1_2_8_22_1 doi: 10.1088/2634-4386/ac4a83 – ident: e_1_2_8_21_1 doi: 10.1038/s41467-018-04933-y – volume-title: 2015 Design, Automation & Test in Europe Conf. & Exhibition (DATE) year: 2015 ident: e_1_2_8_16_1 – ident: e_1_2_8_121_1 doi: 10.1002/adma.201703363 – start-page: 2108025 year: 2021 ident: e_1_2_8_149_1 publication-title: Adv. Mater. – ident: e_1_2_8_19_1 doi: 10.1109/T-C.1969.222754 – volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM) year: 2018 ident: e_1_2_8_105_1 – ident: e_1_2_8_186_1 doi: 10.1038/s41467-021-22332-8 – ident: e_1_2_8_98_1 doi: 10.1021/acsnano.0c08921 – ident: e_1_2_8_184_1 doi: 10.1002/smll.202103543 – ident: e_1_2_8_151_1 doi: 10.1021/nn305510u – ident: e_1_2_8_156_1 doi: 10.1109/JEDS.2019.2925150 – ident: e_1_2_8_196_1 doi: 10.1038/s41586-020-2009-2 – ident: e_1_2_8_137_1 doi: 10.1038/s41563-018-0149-7 – ident: e_1_2_8_132_1 doi: 10.1021/acsnano.9b06627 – ident: e_1_2_8_174_1 doi: 10.1021/acs.nanolett.0c00002 – ident: e_1_2_8_128_1 doi: 10.1038/srep45546 – ident: e_1_2_8_173_1 doi: 10.1021/acsnano.5b04592 – ident: e_1_2_8_7_1 doi: 10.1109/5.849164 – ident: e_1_2_8_35_1 doi: 10.1021/acsphotonics.0c01224 – ident: e_1_2_8_49_1 doi: 10.1038/nnano.2010.279 – ident: e_1_2_8_91_1 doi: 10.1002/adfm.201502734 – ident: e_1_2_8_115_1 doi: 10.1109/TCSI.2019.2897497 – ident: e_1_2_8_62_1 doi: 10.1002/smll.201102654 – ident: e_1_2_8_108_1 doi: 10.1016/j.isci.2021.103138 – ident: e_1_2_8_59_1 doi: 10.1038/nnano.2010.132 – ident: e_1_2_8_204_1 doi: 10.1038/s41586-020-1942-4 – ident: e_1_2_8_78_1 doi: 10.1038/nnano.2017.100 – ident: e_1_2_8_181_1 doi: 10.1007/s12274-021-3381-4 – ident: e_1_2_8_198_1 doi: 10.1039/D1NA00171J – ident: e_1_2_8_197_1 doi: 10.1038/s41586-019-1226-z – ident: e_1_2_8_64_1 doi: 10.1038/s41928-020-00473-w – ident: e_1_2_8_10_1 doi: 10.1109/JPROC.2010.2070050 – ident: e_1_2_8_95_1 doi: 10.1038/s41928-021-00684-9 – ident: e_1_2_8_133_1 doi: 10.1038/s41928-020-0441-9 – ident: e_1_2_8_144_1 doi: 10.1021/nl101902k – ident: e_1_2_8_167_1 doi: 10.1186/s11671-020-03299-9 – ident: e_1_2_8_50_1 doi: 10.1002/smll.201001628 – volume-title: 2018 IEEE Int. Solid ‐ State Circuits Conf. ‐ (ISSCC) year: 2018 ident: e_1_2_8_166_1 – ident: e_1_2_8_185_1 doi: 10.1002/adma.202004207 – ident: e_1_2_8_5_1 doi: 10.1109/JPROC.2012.2190369 – ident: e_1_2_8_190_1 doi: 10.1038/s41563-021-01099-9 – ident: e_1_2_8_46_1 doi: 10.1146/annurev-matsci-070214-020901 – ident: e_1_2_8_25_1 doi: 10.1002/advs.201700231 – ident: e_1_2_8_83_1 doi: 10.1021/acsnano.6b01636 – ident: e_1_2_8_203_1 doi: 10.1038/s41928-020-0460-6 – ident: e_1_2_8_106_1 doi: 10.1038/s41467-019-13176-4 – ident: e_1_2_8_136_1 doi: 10.1126/science.aar4851 – ident: e_1_2_8_63_1 doi: 10.1021/nl2043612 – ident: e_1_2_8_188_1 doi: 10.1126/sciadv.abg1455 – ident: e_1_2_8_85_1 doi: 10.1039/C6TC01602B – ident: e_1_2_8_89_1 doi: 10.1002/smll.201503827 – ident: e_1_2_8_90_1 doi: 10.1002/adma.200903267 – ident: e_1_2_8_102_1 doi: 10.1021/acsnano.6b03440 – volume-title: 2021 IEEE Int. Electron Devices Meeting (IEDM) year: 2021 ident: e_1_2_8_127_1 – ident: e_1_2_8_72_1 doi: 10.1038/srep02126 – ident: e_1_2_8_148_1 doi: 10.1109/TED.2021.3057598 – volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM) year: 2018 ident: e_1_2_8_169_1 – ident: e_1_2_8_86_1 doi: 10.1039/C8NA00126J – ident: e_1_2_8_76_1 doi: 10.1021/nn503412w – start-page: 187 volume-title: 72nd Annual Device Research Conf. (DRC) year: 2014 ident: e_1_2_8_110_1 doi: 10.1109/DRC.2014.6872360 – ident: e_1_2_8_112_1 doi: 10.1038/s41467-021-23719-3 – ident: e_1_2_8_172_1 doi: 10.1126/science.abg3161 – ident: e_1_2_8_81_1 doi: 10.1002/adma.202108258 – ident: e_1_2_8_11_1 doi: 10.1109/JPROC.2008.2004313 – ident: e_1_2_8_126_1 doi: 10.1038/s41586-021-03472-9 – ident: e_1_2_8_53_1 doi: 10.1126/science.aat8126 – ident: e_1_2_8_41_1 doi: 10.1088/0957-4484/24/47/475202 – ident: e_1_2_8_97_1 doi: 10.1039/C9NR00747D – volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM) year: 2018 ident: e_1_2_8_103_1 – ident: e_1_2_8_6_1 doi: 10.1038/nnano.2008.160 – ident: e_1_2_8_9_1 doi: 10.1038/s41565-019-0501-3 – ident: e_1_2_8_82_1 doi: 10.1002/adma.201801548 – ident: e_1_2_8_33_1 doi: 10.1002/aelm.201900818 – ident: e_1_2_8_3_1 doi: 10.1142/S0129156417400018 – ident: e_1_2_8_61_1 doi: 10.1002/adma.201104798 – ident: e_1_2_8_119_1 doi: 10.1021/nn3059136 – ident: e_1_2_8_101_1 doi: 10.1039/C8CS00254A – ident: e_1_2_8_23_1 – start-page: 2100499 year: 2021 ident: e_1_2_8_168_1 publication-title: Adv. Electron. Mater. – ident: e_1_2_8_65_1 doi: 10.1038/nature25747 – ident: e_1_2_8_94_1 doi: 10.1002/adma.201602391 – ident: e_1_2_8_30_1 doi: 10.1039/C9MH02033K – start-page: T230 volume-title: 2019 Symp. on VLSI Technology year: 2019 ident: e_1_2_8_163_1 doi: 10.23919/VLSIT.2019.8776570 – ident: e_1_2_8_175_1 doi: 10.1021/acsnano.1c05167 – ident: e_1_2_8_170_1 doi: 10.1038/s41598-019-56816-x – ident: e_1_2_8_18_1 doi: 10.1145/1941487.1941507 – start-page: 344 volume-title: 2021 IEEE Int. Solid‐ State Circuits Conf. (ISSCC) year: 2021 ident: e_1_2_8_160_1 – volume-title: 2014 SOI‐3D‐Subthreshold Microelectronics Technology Unified Conf. (S3S) year: 2014 ident: e_1_2_8_17_1 – volume-title: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing year: 1989 ident: e_1_2_8_194_1 – ident: e_1_2_8_37_1 doi: 10.1126/science.aac9439 – ident: e_1_2_8_68_1 doi: 10.1021/acsnano.7b07059 – ident: e_1_2_8_57_1 doi: 10.1126/science.1218461 – ident: e_1_2_8_74_1 doi: 10.1021/ja109793s – ident: e_1_2_8_29_1 doi: 10.1038/nphoton.2014.271 – ident: e_1_2_8_26_1 doi: 10.1039/C8CS00561C – ident: e_1_2_8_51_1 doi: 10.1038/s41467-020-16266-w – ident: e_1_2_8_159_1 doi: 10.1109/LCA.2021.3117150 – volume-title: 2019 IEEE Int. Electron Devices Meeting (IEDM) year: 2019 ident: e_1_2_8_107_1 – ident: e_1_2_8_131_1 doi: 10.1002/adma.202103656 – ident: e_1_2_8_138_1 doi: 10.1038/s41565-018-0063-9 – ident: e_1_2_8_42_1 doi: 10.1063/1.5002138 – ident: e_1_2_8_171_1 doi: 10.1088/1361-6528/aac6b3 – ident: e_1_2_8_24_1 doi: 10.1002/aelm.201600364 – ident: e_1_2_8_32_1 doi: 10.1038/nnano.2012.193 – ident: e_1_2_8_140_1 doi: 10.1016/j.nanoen.2020.105692 – volume-title: 2018 IEEE Int. Electron Devices Meeting (IEDM) year: 2018 ident: e_1_2_8_39_1 – ident: e_1_2_8_154_1 doi: 10.1002/adfm.201303520 – ident: e_1_2_8_176_1 doi: 10.1002/adfm.202002506 – ident: e_1_2_8_80_1 doi: 10.1016/j.tsf.2019.137500 – ident: e_1_2_8_130_1 doi: 10.1038/s41928-021-00670-1 – ident: e_1_2_8_38_1 doi: 10.1038/nmat4218 – volume-title: 2018 IEEE SOI‐3D‐Subthreshold Microelectronics Technology Unified Conf. (S3S) year: 2018 ident: e_1_2_8_157_1 – ident: e_1_2_8_145_1 doi: 10.1088/0957-4484/24/17/175202 – ident: e_1_2_8_143_1 doi: 10.1002/anie.201409400 – ident: e_1_2_8_124_1 doi: 10.1109/JPROC.2003.811702 – ident: e_1_2_8_48_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_146_1 doi: 10.1016/j.mejo.2012.10.001 – ident: e_1_2_8_70_1 doi: 10.1038/s41586-020-2861-0 – ident: e_1_2_8_69_1 doi: 10.1038/nature14417 – ident: e_1_2_8_201_1 doi: 10.1038/s41467-020-19053-9 – volume-title: 2021 IEEE Int. Symp. on Circuits and Systems (ISCAS) year: 2021 ident: e_1_2_8_116_1 – ident: e_1_2_8_54_1 doi: 10.1038/s41586-018-0626-9 – ident: e_1_2_8_96_1 doi: 10.1002/adma.201801232 – start-page: 41 volume-title: 2017 50th Annu. IEEE/ACM Int. Symp. on Microarchitecture (MICRO) year: 2017 ident: e_1_2_8_164_1 – volume-title: 2011 Int. Electron Devices Meeting year: 2011 ident: e_1_2_8_147_1 – ident: e_1_2_8_88_1 doi: 10.1038/nnano.2016.281 – ident: e_1_2_8_120_1 doi: 10.1021/acsami.0c08802 – ident: e_1_2_8_177_1 doi: 10.1038/s41928-020-0433-9 – ident: e_1_2_8_27_1 doi: 10.1021/nn303772b – ident: e_1_2_8_162_1 doi: 10.1109/JETCAS.2016.2547704 – ident: e_1_2_8_117_1 doi: 10.1002/adfm.202011083 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201500039 – ident: e_1_2_8_150_1 doi: 10.1021/acsnano.9b07421 – ident: e_1_2_8_4_1 doi: 10.1038/nnano.2015.29 – ident: e_1_2_8_134_1 doi: 10.1038/s41928-018-0021-4 – ident: e_1_2_8_36_1 doi: 10.1038/nature12385 – ident: e_1_2_8_142_1 doi: 10.1021/acsnano.0c09441 – ident: e_1_2_8_193_1 doi: 10.1038/s41563-021-01110-3 – ident: e_1_2_8_55_1 doi: 10.1126/science.aax8156 – ident: e_1_2_8_56_1 doi: 10.1002/adma.202103376 – ident: e_1_2_8_84_1 doi: 10.1039/C8NR01139G – ident: e_1_2_8_58_1 doi: 10.1038/s41928-021-00566-0 – ident: e_1_2_8_123_1 doi: 10.1109/JPROC.2017.2697000 – ident: e_1_2_8_158_1 doi: 10.1002/aelm.201901335 – ident: e_1_2_8_152_1 doi: 10.1038/s41586-019-1573-9 – volume-title: Two‐Dimensional Materials: Synthesis, Characterization and Potential Applications year: 2016 ident: e_1_2_8_40_1 – ident: e_1_2_8_52_1 doi: 10.1126/science.aba1416 – ident: e_1_2_8_28_1 doi: 10.1021/nn400280c – ident: e_1_2_8_182_1 doi: 10.1038/s41563-018-0248-5 – ident: e_1_2_8_66_1 doi: 10.1002/adfm.202003683 – ident: e_1_2_8_180_1 doi: 10.1016/j.nanoen.2021.106439 – ident: e_1_2_8_43_1 doi: 10.1038/nmat4703 – ident: e_1_2_8_67_1 doi: 10.1088/1361-6528/aa6958 – ident: e_1_2_8_73_1 doi: 10.1063/1.3387812 – ident: e_1_2_8_118_1 doi: 10.1039/D1NA00504A – ident: e_1_2_8_195_1 doi: 10.1038/srep01610 – ident: e_1_2_8_192_1 doi: 10.1038/s41467-021-25801-2 – volume-title: Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices year: 2011 ident: e_1_2_8_2_1 – ident: e_1_2_8_99_1 doi: 10.1002/adma.201803563 – ident: e_1_2_8_100_1 doi: 10.1038/nmat4135 |
| SSID | ssj0009606 |
| Score | 2.560917 |
| SecondaryResourceType | review_article |
| Snippet | Memory technologies and applications implemented fully or partially using emerging 2D materials have attracted increasing interest in the research community in... Memory technologies and applications implemented fully or partially using emerging two-dimensional (2D) materials have attracted increasing interest in the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2202371 |
| SubjectTerms | 2D materials Arrays Flash memory (computers) Integrated circuits in‐memory computing Materials science Memory devices memory technology Power consumption Production methods Two dimensional materials |
| Title | Circuit‐Level Memory Technologies and Applications based on 2D Materials |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202202371 https://www.ncbi.nlm.nih.gov/pubmed/35607274 https://www.proquest.com/docview/2742938505 https://www.proquest.com/docview/2668908145 |
| Volume | 34 |
| WOSCitedRecordID | wos000873871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD644z6sD9521fFGBGGfim2SSTKPg-Mg4oiIwryV3AoDS2eZi-CbP8Hf6C_xpO3UGWQR3Ke29LRNk3NyvuQk3wE4jTMby7AujMXOR5xLHikj8VInQkphkthnRbIJeXOjBoP27cIu_pIfop5wC5ZR9NfBwLWZnL2ThmpX8AbRkP87bCJfpai8vAGr3bvew_U78a4o8muGeF_UFlzNiRtjerb8hmXH9AFtLoPXwvv0Nv6_3JuwXiFP0ilVZQtWfL4Nawt8hD_h6nw4trPh9PX55TosJiL9sA73idTz7zisJjp3pLMQ9ibBEToyygntkr6elir9Cx56F_fnl1GVbCGyTLIkElgglySaKpt5YbAnMC5GB2rw6LnIJLWWC-oYRUwmDVXOZEZbodpeMOYp24FGPsr9HhDHMxeiq62W1zj6bpnEOm0UZ55liH9oE6J5Tae2YiIPCTH-pCWHMk1DHaV1HTXhdy3_t-Tg-Kfk4bzh0soWJ2kIRreZQqjXhJP6NlpRCI3o3I9mKCPwRxAdcZTZLRu8_hRDUIgojzeBFu36SRnSTrffqa_2v_LQAfwI5-WqmUNoTMczfwTf7eN0OBkfwzc5UMeVnr8BlCX6yQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9swED9GOuj20G3d1qXrOhUKfTK1JVlyHkOz0K1JGKOFvhn9MwSGU9JksLd-hH7GfpLe2Y7bMMpg7MnIPtuydPL9pDv9DuAwLlysKS5MxD5EUmoZZVZj0SRKa2WTOBRVsgk9mWSXl73vTTQh7YWp-SHaBTcaGdX_mgY4LUgfP7CGGl8RB3FKAE67yDck6lLagY3Bj-HF6IF5V1UJNsnhF_WUzFbMjTE_Xn_CumX6A26uo9fK_Axf_YeKv4atBnuyfq0sb-BZKLfh5SNGwrfw7WQ6d8vp4u7mdkThRGxMkbi_WbsCjxNrZkrP-o8c34xMoWezkvEBG5tFrdTv4GL45fzkNGrSLUROaJFECivkk8TwzBVBWfwXWB-jCbV4DFIVmjsnFfeCIyrTlmfeFtY4lfWCEiJw8R465awMH4B5WXjyr6ZpMDj_Tm3ivLGZFEEUiIB4F6JVU-eu4SKnlBg_85pFmefURnnbRl04auWvahaOJyX3Vj2XN6PxOid3dA91I067cNBexnFEzhFThtkSZRR-COIjiTI7dY-3rxIICxHnyS7wqmP_Uoe8Pxj329Luv9z0GTZPz8ejfPR1cvYRXtD5OoZmDzqL-TJ8gufu12J6Pd9v1P0evE390Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD6MtpT1Yb1tbdquVWHQJ1NbUiT7MTQLW5uEUhrIm9HNEBhOyKXQt_6E_sb-kh3ZjttQxmDsycg-tmVJx-eTztF3AL6FmQmljwtjoXUB55IHsZZYVJGQUugodFmRbEL2-_FwmNxW0YR-L0zJD1EvuHnNKP7XXsHdxGaXr6yhyhbEQdQnAPe7yNd5MxGom-vtu86g-8q8K4oEm97hFySCx0vmxpBerj5h1TK9g5ur6LUwP53t_1DxHfhUYU_SKgfLLnxw-R5svWEk3Ifrq9HULEbzl6fnrg8nIj0fiftI6hV4nFgTlVvSeuP4Jt4UWjLOCW2TnpqXg_ozDDrf769-BFW6hcAwyaJAYIVsFCkam8wJjf8CbUM0oRqPjotMUmO4oJZRRGVS09jqTCsj4sQJxhxlX2AtH-fuEIjlmfX-1WbTKZx_N3VkrNIxZ45liIBoA4JlU6em4iL3KTF-pSWLMk19G6V1GzXgopaflCwcf5Q8WfZcWmnjLPXu6ITFCPYacF5fRj3yzhGVu_ECZQR-COIjjjIHZY_Xr2IICxHn8QbQomP_Uoe01e616tLRv9x0Bpu37U7a_dm_OYaP_nQZQnMCa_Ppwn2FDfMwH82mp9Vo_w1IsP1M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circuit%E2%80%90Level+Memory+Technologies+and+Applications+based+on+2D+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Ma%2C+Jiahui&rft.au=Liu%2C+Hefei&rft.au=Yang%2C+Ning&rft.au=Zou%2C+Jingyi&rft.date=2022-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=34&rft.issue=48&rft_id=info:doi/10.1002%2Fadma.202202371&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |