Fast and Efficient Method for Fire Detection Using Image Processing

Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may t...

Full description

Saved in:
Bibliographic Details
Published in:ETRI journal Vol. 32; no. 6; pp. 881 - 890
Main Author: Celik, Turgay
Format: Journal Article
Language:English
Published: 한국전자통신연구원 01.12.2010
Subjects:
ISSN:1225-6463, 2233-7326
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision‐based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand‐alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state‐of‐the‐art fire detection method.
AbstractList Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision‐based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand‐alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state‐of‐the‐art fire detection method.
Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system’s performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method. Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system’s performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method. KCI Citation Count: 64
Author Celik, Turgay
Author_xml – sequence: 1
  givenname: Turgay
  surname: Celik
  fullname: Celik, Turgay
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqNkE9PAjEQxRuDiYB-AU89ellsp9vd5UgQlASjIXBuut0plj9b025i-PbugidPnF7e5L2ZzG9AerWvkZBHzkYp8OIZm-B2o9YxzsYjlo3lDekDCJHkArIe6XMAmWRpJu7IIMYdY8BSWfTJdK5jQ3Vd0Zm1zjisG_qOzZevqPWBzl1A-oINmsb5mm6iq7d0cdRbpJ_BG4zd4J7cWn2I-PCnQ7KZz9bTt2T58bqYTpaJEbngiawqzJlOLZOl1iXHSjBdWIOpyaTVCNKUFoDnVkotGAg-biUvAXJtTIpiSJ4ue-tg1d445bU769arfVCT1XqhxjwvBLRRuERN8DEGtOo7uKMOJ8WZ6oipM7HOdcRUR6wtFf9KxjW6e7wJ2h2uqv64A56uOKZm6xWwouDiF54dhag
CitedBy_id crossref_primary_10_1109_JSEN_2019_2894665
crossref_primary_10_3390_fire8090338
crossref_primary_10_3390_s23146552
crossref_primary_10_1108_SR_05_2012_639
crossref_primary_10_1049_ipr2_13022
crossref_primary_10_3103_S0146411623060020
crossref_primary_10_3390_fire7090323
crossref_primary_10_1007_s11042_023_17482_4
crossref_primary_10_1016_j_psep_2019_05_016
crossref_primary_10_4028_www_scientific_net_AMM_347_350_3426
crossref_primary_10_3390_s23146635
crossref_primary_10_1088_1742_6596_2278_1_012024
crossref_primary_10_3390_electronics12183888
crossref_primary_10_1145_3009967
crossref_primary_10_1007_s13369_023_08127_7
crossref_primary_10_3390_fire5010023
crossref_primary_10_3390_fi10100102
crossref_primary_10_1080_00102202_2017_1358169
crossref_primary_10_3390_s20226442
crossref_primary_10_5772_58821
crossref_primary_10_1007_s11042_017_5276_7
crossref_primary_10_1007_s10694_020_00986_y
crossref_primary_10_1049_ipr2_12529
crossref_primary_10_1016_j_procs_2013_06_104
crossref_primary_10_3390_rs12213546
crossref_primary_10_1016_j_firesaf_2012_10_011
crossref_primary_10_1155_int_6278987
crossref_primary_10_1016_j_eswa_2025_126655
crossref_primary_10_3390_fire8040125
crossref_primary_10_1051_e3sconf_202338901022
crossref_primary_10_1016_j_jobe_2022_105154
crossref_primary_10_1088_1757_899X_993_1_012056
crossref_primary_10_1109_ACCESS_2021_3122346
crossref_primary_10_1007_s10694_021_01132_y
crossref_primary_10_1002_cpe_4145
crossref_primary_10_1109_ACCESS_2024_3501336
crossref_primary_10_1016_j_displa_2021_102140
crossref_primary_10_1007_s10694_023_01392_w
crossref_primary_10_1007_s11761_022_00336_6
crossref_primary_10_1016_j_eswa_2016_09_021
crossref_primary_10_1109_ACCESS_2019_2960209
crossref_primary_10_4018_IJDST_2020070101
crossref_primary_10_1007_s10694_020_01030_9
crossref_primary_10_1007_s40031_025_01209_0
crossref_primary_10_1109_ACCESS_2025_3560192
crossref_primary_10_1007_s10694_012_0253_1
crossref_primary_10_1016_j_est_2025_117070
crossref_primary_10_3390_app9173520
crossref_primary_10_1007_s10694_023_01522_4
crossref_primary_10_1007_s00138_021_01242_1
crossref_primary_10_3389_fenvs_2024_1440396
crossref_primary_10_1007_s00500_023_08136_6
crossref_primary_10_1016_j_scs_2020_102332
crossref_primary_10_1016_j_engappai_2024_109855
crossref_primary_10_1049_iet_ipr_2014_0935
crossref_primary_10_1007_s10694_023_01465_w
crossref_primary_10_3390_a11060079
crossref_primary_10_3390_rs17132259
crossref_primary_10_1049_iet_ipr_2016_0193
crossref_primary_10_1109_ACCESS_2022_3176724
crossref_primary_10_1109_TCSVT_2018_2889193
crossref_primary_10_1155_2024_8511649
crossref_primary_10_1109_ACCESS_2024_3385856
crossref_primary_10_1016_j_eswa_2023_122661
crossref_primary_10_1016_j_neucom_2018_01_091
crossref_primary_10_1371_journal_pone_0322052
crossref_primary_10_3390_iot4040024
crossref_primary_10_1016_j_firesaf_2017_06_012
crossref_primary_10_1002_cpe_7117
crossref_primary_10_1016_j_jocs_2022_101638
crossref_primary_10_3390_s22093310
crossref_primary_10_1016_j_dsp_2013_07_003
crossref_primary_10_1007_s10694_019_00872_2
crossref_primary_10_3390_s25175528
crossref_primary_10_1007_s10489_022_03243_7
crossref_primary_10_3390_s23063035
crossref_primary_10_1088_1742_6596_1916_1_012024
crossref_primary_10_1109_ACCESS_2025_3575057
crossref_primary_10_3390_app13158568
crossref_primary_10_1088_1742_6596_1916_1_012027
crossref_primary_10_1007_s12530_024_09623_3
crossref_primary_10_1108_BEPAM_08_2022_0122
crossref_primary_10_1007_s11760_021_02089_9
crossref_primary_10_3390_s22113965
crossref_primary_10_3390_su131911082
crossref_primary_10_1007_s11227_015_1382_3
crossref_primary_10_1016_j_firesaf_2014_02_004
crossref_primary_10_1007_s11760_015_0789_x
crossref_primary_10_3390_info12010044
crossref_primary_10_3390_electronics8101167
Cites_doi 10.1016/j.patrec.2005.06.015
10.1016/j.firesaf.2006.02.001
10.1109/WACV.2000.895426
10.1016/j.jvcir.2006.12.003
10.1109/ICNSC.2005.1461169
10.1016/j.firesaf.2005.07.009
ContentType Journal Article
Copyright 2010 ETRI
Copyright_xml – notice: 2010 ETRI
DBID AAYXX
CITATION
ACYCR
DOI 10.4218/etrij.10.0109.0695
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 890
ExternalDocumentID oai_kci_go_kr_ARTI_917832
10_4218_etrij_10_0109_0695
ETR20881
Genre article
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
AAYBS
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAMMB
AAYXX
ADMLS
AEFGJ
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
OVT
ID FETCH-LOGICAL-c3731-5dde70a4f05baab1ed30a8fce4c65fae25cbf2217f55a302319a307b227acc4e3
IEDL.DBID WIN
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285370300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1225-6463
IngestDate Sat Oct 25 08:02:08 EDT 2025
Sat Nov 29 03:21:22 EST 2025
Tue Nov 18 22:27:40 EST 2025
Wed Jan 22 16:22:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3731-5dde70a4f05baab1ed30a8fce4c65fae25cbf2217f55a302319a307b227acc4e3
Notes G704-001110.2010.32.6.008
OpenAccessLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_917832
crossref_primary_10_4218_etrij_10_0109_0695
crossref_citationtrail_10_4218_etrij_10_0109_0695
wiley_primary_10_4218_etrij_10_0109_0695_ETR20881
PublicationCentury 2000
PublicationDate December 2010
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: December 2010
PublicationDecade 2010
PublicationTitle ETRI journal
PublicationYear 2010
Publisher 한국전자통신연구원
Publisher_xml – name: 한국전자통신연구원
References 2007; 18
2006
2005
2006; 41
2004
2002
2000
2006; 27
Key-10.4218/etrij.10.0109.0695-8
Key-10.4218/etrij.10.0109.0695-7
Key-10.4218/etrij.10.0109.0695-9
Key-10.4218/etrij.10.0109.0695-4
Key-10.4218/etrij.10.0109.0695-3
Key-10.4218/etrij.10.0109.0695-6
References_xml – volume: 41
  start-page: 290
  issue: 4
  year: 2006
  end-page: 300
  article-title: Design and Test Methods for a Video‐Based Cargo Fire Verification System for Commercial Aircraft
  publication-title: Fire Safety J.
– start-page: 100
  year: 2005
  end-page: 105
  article-title: A New Image‐Based Real‐Time Flame Detection Method Using Color Analysis
– start-page: 1707
  year: 2004
  end-page: 1710
  article-title: An Early Fire‐Detection Method Based on Image Processing
– start-page: 1230
  year: 2005
  end-page: 1233
  article-title: Flame Detection in Video Using Hidden Markov Models
– volume: 27
  start-page: 49
  issue: 1
  year: 2006
  end-page: 58
  article-title: Computer Vision Based Method for Real‐Time Fire and Flame Detection
  publication-title: Pattern Recognition Lett.
– volume: 18
  start-page: 176
  issue: 2
  year: 2007
  end-page: 185
  article-title: Fire Detection Using Statistical Color Model in Video Sequences
  publication-title: J. Visual Commun. Image Representation
– volume: 41
  start-page: 285
  issue: 4
  year: 2006
  end-page: 289
  article-title: An Image Processing Technique for Fire Detection in Video Images
  publication-title: Fire Safety J.
– start-page: 224
  year: 2000
  end-page: 229
  article-title: Flame Recognition in Video
– year: 2002
– year: 2006
  article-title: Automatic Fire Detection in Video Sequences
– ident: Key-10.4218/etrij.10.0109.0695-3
  doi: 10.1016/j.patrec.2005.06.015
– ident: Key-10.4218/etrij.10.0109.0695-7
  doi: 10.1016/j.firesaf.2006.02.001
– ident: Key-10.4218/etrij.10.0109.0695-9
  doi: 10.1109/WACV.2000.895426
– ident: Key-10.4218/etrij.10.0109.0695-4
  doi: 10.1016/j.jvcir.2006.12.003
– ident: Key-10.4218/etrij.10.0109.0695-8
  doi: 10.1109/ICNSC.2005.1461169
– ident: Key-10.4218/etrij.10.0109.0695-6
  doi: 10.1016/j.firesaf.2005.07.009
SSID ssj0020458
Score 2.3500502
Snippet Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by...
SourceID nrf
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 881
SubjectTerms color modeling
Fire detection
image processing
image segmentation
motion detection
video processing
전자/정보통신공학
Title Fast and Efficient Method for Fire Detection Using Image Processing
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.10.0109.0695
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532
Volume 32
WOSCitedRecordID wos000285370300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2010, 32(6), , pp.881-890
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2233-7326
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020458
  issn: 1225-6463
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66eNCDb_FNBG_SNa-226O4u7gHFxHFvYU0TWRZrdKt_n5nsg8UQUQ8hZYmhJlkHk3m-wg5ZQVirAgVScnzSLmWjYxwLnIxMzHzWE3pA9lE2u-3BoPsZoG0Z7UwE3yI-Q833BnBXuMGN3lgIVHglVCJdTWEjc6aeLjTZEmGleZccaQxeOj151kXngRi1gULN0pUIieVMzjI-fchvninxbLyX2PW4HS6a_8z3XWyOg066cVklWyQBVdukpVPUIRb5LJrxjU1ZUE7AVQCfBG9DuzSFMJa2gXLSNuuDhe3ShouGtDeMxgjOi01gBfb5L7bubu8iqYEC5GVqeRRDLYtZUZ5FufG5NwVkpmWt07ZJPbGidjmXkDS4uPYILsQz6BJcyFSY61ycoc0ypfS7RJaMC9Bx0omoPhCtbIiUxAc-ExAypTxbI_wmWC1naKPIwnGk4YsBEWkg4DwCQWkUUB75Gze53WCvfHj1yegLz2yQ42Q2dg-vuhRpSEx6GnISsF2wSyCjn4xnO7c3QowwXz_D30OyLKYX3s5JI26enNHZMm-18NxdRzW5wcrl-VZ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB_8KFQfrG0tVVuN0Leyms3H7u2j2Ds81EPkRN9CNpvIcXaVdevf70zuPBShiPgUdklCmMl8JZnfAPziFWGsCJVImZaJ8h2XWOF94jW3mgfKpgyx2EQ-GHQuL4vTOeg-5sJM8CFmB24kGVFfk4DTgTRJuUKzRFxsmxFKOt-l251dnhV6HhYVehxUweGiP5jFXXQXSHEXbt0kU5mc5M7QLHsv53hmn-brJjz3WqPZ6X16pwWvwsrU72T7k43yGeZ8_QWWn6ARfoWDnr1rma0r1o24EmiO2EksMM3Qs2U9VI7sj2_j262axbcGrP8X9RGbZhvgjzU473WHB4fJtMZC4mQu00Sjesu5VYHr0toy9ZXkthOcVy7TwXqhXRkExi1Ba0sFhtICm7wUIrfOKS-_wUJ9U_vvwCoeJLJZyQx5X6lOURUK_YNQCIyairRYh_SRssZNAcipDsa1wUCESGQigeiLCGSIQOvwezbmdgK_8d_eO8gwM3YjQ6jZ1F7dmHFjMDboGwxMUX3hKiKTXjGd6Q7PBGrhdOMNY7bh4-Hw5Ngc9wdHm7AkZq9gfsBC2_zzP-GDu29Hd81W3KwPmPLpdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_UitSH1q9StdUVfJPoZj-Sy6PohR7qIaLg27LZ7MpxbZSY9u_vzN55KAUp4tOSkF2WmZ2PX3Y-APZ5TTVWhEqkTKtE-Z5LrPA-8ZpbzQNlU4bYbCIfDnu3t8XlHPSfcmEm9SFmP9xIMqK-JgH3D3UgKVdoloiLXTtCSeeHdLtzyLNCz8MHlSEwp8SSwXCGu-gukHAXHt0kU5mc5M7QKkf_rvHCPs03bXjptUazU35-pw2vwKep38mOJwdlFeZ8swbLz6oRrsNJaR87Zpua9WNdCTRH7CI2mGbo2bISlSM79V2M3WpYjDVgg1-oj9g02wBfbMBN2b8--ZFMeywkTuYyTTSqt5xbFbiurK1SX0tue8F55TIdrBfaVUEgbglaW2owlBY45JUQuXVOefkFFpr7xn8FVvMgkc1KZsj7WvWKulDoH4RCIGoq0mIT0ifKGjctQE59MH4aBCJEIhMJRE9EIEME2oSD2ZyHSfmNV7_eQ4aZsRsZqppN4929GbcGscHAIDBF9YW7iEz6j-VM__pKoBZOt94wZxeWLk9Lcz4Ynm3DRzELgvkGC13723-HRfenGz22O_Gs_gVbuOj7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+Method+for+Fire+Detection+Using+Image+Processing&rft.jtitle=ETRI+journal&rft.au=Celik%2C+Turgay&rft.date=2010-12-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=32&rft.issue=6&rft.spage=881&rft.epage=890&rft_id=info:doi/10.4218%2Fetrij.10.0109.0695&rft.externalDBID=10.4218%252Fetrij.10.0109.0695&rft.externalDocID=ETR20881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon