Fast and Efficient Method for Fire Detection Using Image Processing
Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may t...
Saved in:
| Published in: | ETRI journal Vol. 32; no. 6; pp. 881 - 890 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
한국전자통신연구원
01.12.2010
|
| Subjects: | |
| ISSN: | 1225-6463, 2233-7326 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision‐based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand‐alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state‐of‐the‐art fire detection method. |
|---|---|
| AbstractList | Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision‐based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand‐alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state‐of‐the‐art fire detection method. Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system’s performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method. Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE L*a*b* color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system’s performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method. KCI Citation Count: 64 |
| Author | Celik, Turgay |
| Author_xml | – sequence: 1 givenname: Turgay surname: Celik fullname: Celik, Turgay |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqNkE9PAjEQxRuDiYB-AU89ellsp9vd5UgQlASjIXBuut0plj9b025i-PbugidPnF7e5L2ZzG9AerWvkZBHzkYp8OIZm-B2o9YxzsYjlo3lDekDCJHkArIe6XMAmWRpJu7IIMYdY8BSWfTJdK5jQ3Vd0Zm1zjisG_qOzZevqPWBzl1A-oINmsb5mm6iq7d0cdRbpJ_BG4zd4J7cWn2I-PCnQ7KZz9bTt2T58bqYTpaJEbngiawqzJlOLZOl1iXHSjBdWIOpyaTVCNKUFoDnVkotGAg-biUvAXJtTIpiSJ4ue-tg1d445bU769arfVCT1XqhxjwvBLRRuERN8DEGtOo7uKMOJ8WZ6oipM7HOdcRUR6wtFf9KxjW6e7wJ2h2uqv64A56uOKZm6xWwouDiF54dhag |
| CitedBy_id | crossref_primary_10_1109_JSEN_2019_2894665 crossref_primary_10_3390_fire8090338 crossref_primary_10_3390_s23146552 crossref_primary_10_1108_SR_05_2012_639 crossref_primary_10_1049_ipr2_13022 crossref_primary_10_3103_S0146411623060020 crossref_primary_10_3390_fire7090323 crossref_primary_10_1007_s11042_023_17482_4 crossref_primary_10_1016_j_psep_2019_05_016 crossref_primary_10_4028_www_scientific_net_AMM_347_350_3426 crossref_primary_10_3390_s23146635 crossref_primary_10_1088_1742_6596_2278_1_012024 crossref_primary_10_3390_electronics12183888 crossref_primary_10_1145_3009967 crossref_primary_10_1007_s13369_023_08127_7 crossref_primary_10_3390_fire5010023 crossref_primary_10_3390_fi10100102 crossref_primary_10_1080_00102202_2017_1358169 crossref_primary_10_3390_s20226442 crossref_primary_10_5772_58821 crossref_primary_10_1007_s11042_017_5276_7 crossref_primary_10_1007_s10694_020_00986_y crossref_primary_10_1049_ipr2_12529 crossref_primary_10_1016_j_procs_2013_06_104 crossref_primary_10_3390_rs12213546 crossref_primary_10_1016_j_firesaf_2012_10_011 crossref_primary_10_1155_int_6278987 crossref_primary_10_1016_j_eswa_2025_126655 crossref_primary_10_3390_fire8040125 crossref_primary_10_1051_e3sconf_202338901022 crossref_primary_10_1016_j_jobe_2022_105154 crossref_primary_10_1088_1757_899X_993_1_012056 crossref_primary_10_1109_ACCESS_2021_3122346 crossref_primary_10_1007_s10694_021_01132_y crossref_primary_10_1002_cpe_4145 crossref_primary_10_1109_ACCESS_2024_3501336 crossref_primary_10_1016_j_displa_2021_102140 crossref_primary_10_1007_s10694_023_01392_w crossref_primary_10_1007_s11761_022_00336_6 crossref_primary_10_1016_j_eswa_2016_09_021 crossref_primary_10_1109_ACCESS_2019_2960209 crossref_primary_10_4018_IJDST_2020070101 crossref_primary_10_1007_s10694_020_01030_9 crossref_primary_10_1007_s40031_025_01209_0 crossref_primary_10_1109_ACCESS_2025_3560192 crossref_primary_10_1007_s10694_012_0253_1 crossref_primary_10_1016_j_est_2025_117070 crossref_primary_10_3390_app9173520 crossref_primary_10_1007_s10694_023_01522_4 crossref_primary_10_1007_s00138_021_01242_1 crossref_primary_10_3389_fenvs_2024_1440396 crossref_primary_10_1007_s00500_023_08136_6 crossref_primary_10_1016_j_scs_2020_102332 crossref_primary_10_1016_j_engappai_2024_109855 crossref_primary_10_1049_iet_ipr_2014_0935 crossref_primary_10_1007_s10694_023_01465_w crossref_primary_10_3390_a11060079 crossref_primary_10_3390_rs17132259 crossref_primary_10_1049_iet_ipr_2016_0193 crossref_primary_10_1109_ACCESS_2022_3176724 crossref_primary_10_1109_TCSVT_2018_2889193 crossref_primary_10_1155_2024_8511649 crossref_primary_10_1109_ACCESS_2024_3385856 crossref_primary_10_1016_j_eswa_2023_122661 crossref_primary_10_1016_j_neucom_2018_01_091 crossref_primary_10_1371_journal_pone_0322052 crossref_primary_10_3390_iot4040024 crossref_primary_10_1016_j_firesaf_2017_06_012 crossref_primary_10_1002_cpe_7117 crossref_primary_10_1016_j_jocs_2022_101638 crossref_primary_10_3390_s22093310 crossref_primary_10_1016_j_dsp_2013_07_003 crossref_primary_10_1007_s10694_019_00872_2 crossref_primary_10_3390_s25175528 crossref_primary_10_1007_s10489_022_03243_7 crossref_primary_10_3390_s23063035 crossref_primary_10_1088_1742_6596_1916_1_012024 crossref_primary_10_1109_ACCESS_2025_3575057 crossref_primary_10_3390_app13158568 crossref_primary_10_1088_1742_6596_1916_1_012027 crossref_primary_10_1007_s12530_024_09623_3 crossref_primary_10_1108_BEPAM_08_2022_0122 crossref_primary_10_1007_s11760_021_02089_9 crossref_primary_10_3390_s22113965 crossref_primary_10_3390_su131911082 crossref_primary_10_1007_s11227_015_1382_3 crossref_primary_10_1016_j_firesaf_2014_02_004 crossref_primary_10_1007_s11760_015_0789_x crossref_primary_10_3390_info12010044 crossref_primary_10_3390_electronics8101167 |
| Cites_doi | 10.1016/j.patrec.2005.06.015 10.1016/j.firesaf.2006.02.001 10.1109/WACV.2000.895426 10.1016/j.jvcir.2006.12.003 10.1109/ICNSC.2005.1461169 10.1016/j.firesaf.2005.07.009 |
| ContentType | Journal Article |
| Copyright | 2010 ETRI |
| Copyright_xml | – notice: 2010 ETRI |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.4218/etrij.10.0109.0695 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2233-7326 |
| EndPage | 890 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_917832 10_4218_etrij_10_0109_0695 ETR20881 |
| Genre | article |
| GroupedDBID | -~X .4S .DC .UV 0R~ 1OC 29G 2WC 5GY 5VS 9ZL AAKPC AAYBS ACGFS ACXQS ACYCR ADBBV ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BCNDV DU5 E3Z EBS EDO EJD GROUPED_DOAJ IPNFZ ITG ITH JDI KQ8 KVFHK MK~ ML~ O9- OK1 P5Y RIG RNS TR2 TUS WIN XSB AAMMB AAYXX ADMLS AEFGJ AGXDD AIDQK AIDYY ALUQN CITATION OVT |
| ID | FETCH-LOGICAL-c3731-5dde70a4f05baab1ed30a8fce4c65fae25cbf2217f55a302319a307b227acc4e3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 145 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285370300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1225-6463 |
| IngestDate | Sat Oct 25 08:02:08 EDT 2025 Sat Nov 29 03:21:22 EST 2025 Tue Nov 18 22:27:40 EST 2025 Wed Jan 22 16:22:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3731-5dde70a4f05baab1ed30a8fce4c65fae25cbf2217f55a302319a307b227acc4e3 |
| Notes | G704-001110.2010.32.6.008 |
| OpenAccessLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532 |
| PageCount | 10 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_917832 crossref_primary_10_4218_etrij_10_0109_0695 crossref_citationtrail_10_4218_etrij_10_0109_0695 wiley_primary_10_4218_etrij_10_0109_0695_ETR20881 |
| PublicationCentury | 2000 |
| PublicationDate | December 2010 |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: December 2010 |
| PublicationDecade | 2010 |
| PublicationTitle | ETRI journal |
| PublicationYear | 2010 |
| Publisher | 한국전자통신연구원 |
| Publisher_xml | – name: 한국전자통신연구원 |
| References | 2007; 18 2006 2005 2006; 41 2004 2002 2000 2006; 27 Key-10.4218/etrij.10.0109.0695-8 Key-10.4218/etrij.10.0109.0695-7 Key-10.4218/etrij.10.0109.0695-9 Key-10.4218/etrij.10.0109.0695-4 Key-10.4218/etrij.10.0109.0695-3 Key-10.4218/etrij.10.0109.0695-6 |
| References_xml | – volume: 41 start-page: 290 issue: 4 year: 2006 end-page: 300 article-title: Design and Test Methods for a Video‐Based Cargo Fire Verification System for Commercial Aircraft publication-title: Fire Safety J. – start-page: 100 year: 2005 end-page: 105 article-title: A New Image‐Based Real‐Time Flame Detection Method Using Color Analysis – start-page: 1707 year: 2004 end-page: 1710 article-title: An Early Fire‐Detection Method Based on Image Processing – start-page: 1230 year: 2005 end-page: 1233 article-title: Flame Detection in Video Using Hidden Markov Models – volume: 27 start-page: 49 issue: 1 year: 2006 end-page: 58 article-title: Computer Vision Based Method for Real‐Time Fire and Flame Detection publication-title: Pattern Recognition Lett. – volume: 18 start-page: 176 issue: 2 year: 2007 end-page: 185 article-title: Fire Detection Using Statistical Color Model in Video Sequences publication-title: J. Visual Commun. Image Representation – volume: 41 start-page: 285 issue: 4 year: 2006 end-page: 289 article-title: An Image Processing Technique for Fire Detection in Video Images publication-title: Fire Safety J. – start-page: 224 year: 2000 end-page: 229 article-title: Flame Recognition in Video – year: 2002 – year: 2006 article-title: Automatic Fire Detection in Video Sequences – ident: Key-10.4218/etrij.10.0109.0695-3 doi: 10.1016/j.patrec.2005.06.015 – ident: Key-10.4218/etrij.10.0109.0695-7 doi: 10.1016/j.firesaf.2006.02.001 – ident: Key-10.4218/etrij.10.0109.0695-9 doi: 10.1109/WACV.2000.895426 – ident: Key-10.4218/etrij.10.0109.0695-4 doi: 10.1016/j.jvcir.2006.12.003 – ident: Key-10.4218/etrij.10.0109.0695-8 doi: 10.1109/ICNSC.2005.1461169 – ident: Key-10.4218/etrij.10.0109.0695-6 doi: 10.1016/j.firesaf.2005.07.009 |
| SSID | ssj0020458 |
| Score | 2.3500502 |
| Snippet | Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by... |
| SourceID | nrf crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 881 |
| SubjectTerms | color modeling Fire detection image processing image segmentation motion detection video processing 전자/정보통신공학 |
| Title | Fast and Efficient Method for Fire Detection Using Image Processing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.10.0109.0695 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001500532 |
| Volume | 32 |
| WOSCitedRecordID | wos000285370300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | ETRI Journal, 2010, 32(6), , pp.881-890 |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2233-7326 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020458 issn: 1225-6463 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA66eNCDb_FNBG_SNa-226O4u7gHFxHFvYU0TWRZrdKt_n5nsg8UQUQ8hZYmhJlkHk3m-wg5ZQVirAgVScnzSLmWjYxwLnIxMzHzWE3pA9lE2u-3BoPsZoG0Z7UwE3yI-Q833BnBXuMGN3lgIVHglVCJdTWEjc6aeLjTZEmGleZccaQxeOj151kXngRi1gULN0pUIieVMzjI-fchvninxbLyX2PW4HS6a_8z3XWyOg066cVklWyQBVdukpVPUIRb5LJrxjU1ZUE7AVQCfBG9DuzSFMJa2gXLSNuuDhe3ShouGtDeMxgjOi01gBfb5L7bubu8iqYEC5GVqeRRDLYtZUZ5FufG5NwVkpmWt07ZJPbGidjmXkDS4uPYILsQz6BJcyFSY61ycoc0ypfS7RJaMC9Bx0omoPhCtbIiUxAc-ExAypTxbI_wmWC1naKPIwnGk4YsBEWkg4DwCQWkUUB75Gze53WCvfHj1yegLz2yQ42Q2dg-vuhRpSEx6GnISsF2wSyCjn4xnO7c3QowwXz_D30OyLKYX3s5JI26enNHZMm-18NxdRzW5wcrl-VZ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB_8KFQfrG0tVVuN0Leyms3H7u2j2Ds81EPkRN9CNpvIcXaVdevf70zuPBShiPgUdklCmMl8JZnfAPziFWGsCJVImZaJ8h2XWOF94jW3mgfKpgyx2EQ-GHQuL4vTOeg-5sJM8CFmB24kGVFfk4DTgTRJuUKzRFxsmxFKOt-l251dnhV6HhYVehxUweGiP5jFXXQXSHEXbt0kU5mc5M7QLHsv53hmn-brJjz3WqPZ6X16pwWvwsrU72T7k43yGeZ8_QWWn6ARfoWDnr1rma0r1o24EmiO2EksMM3Qs2U9VI7sj2_j262axbcGrP8X9RGbZhvgjzU473WHB4fJtMZC4mQu00Sjesu5VYHr0toy9ZXkthOcVy7TwXqhXRkExi1Ba0sFhtICm7wUIrfOKS-_wUJ9U_vvwCoeJLJZyQx5X6lOURUK_YNQCIyairRYh_SRssZNAcipDsa1wUCESGQigeiLCGSIQOvwezbmdgK_8d_eO8gwM3YjQ6jZ1F7dmHFjMDboGwxMUX3hKiKTXjGd6Q7PBGrhdOMNY7bh4-Hw5Ngc9wdHm7AkZq9gfsBC2_zzP-GDu29Hd81W3KwPmPLpdw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_UitSH1q9StdUVfJPoZj-Sy6PohR7qIaLg27LZ7MpxbZSY9u_vzN55KAUp4tOSkF2WmZ2PX3Y-APZ5TTVWhEqkTKtE-Z5LrPA-8ZpbzQNlU4bYbCIfDnu3t8XlHPSfcmEm9SFmP9xIMqK-JgH3D3UgKVdoloiLXTtCSeeHdLtzyLNCz8MHlSEwp8SSwXCGu-gukHAXHt0kU5mc5M7QKkf_rvHCPs03bXjptUazU35-pw2vwKep38mOJwdlFeZ8swbLz6oRrsNJaR87Zpua9WNdCTRH7CI2mGbo2bISlSM79V2M3WpYjDVgg1-oj9g02wBfbMBN2b8--ZFMeywkTuYyTTSqt5xbFbiurK1SX0tue8F55TIdrBfaVUEgbglaW2owlBY45JUQuXVOefkFFpr7xn8FVvMgkc1KZsj7WvWKulDoH4RCIGoq0mIT0ifKGjctQE59MH4aBCJEIhMJRE9EIEME2oSD2ZyHSfmNV7_eQ4aZsRsZqppN4929GbcGscHAIDBF9YW7iEz6j-VM__pKoBZOt94wZxeWLk9Lcz4Ynm3DRzELgvkGC13723-HRfenGz22O_Gs_gVbuOj7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+Method+for+Fire+Detection+Using+Image+Processing&rft.jtitle=ETRI+journal&rft.au=Celik%2C+Turgay&rft.date=2010-12-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=32&rft.issue=6&rft.spage=881&rft.epage=890&rft_id=info:doi/10.4218%2Fetrij.10.0109.0695&rft.externalDBID=10.4218%252Fetrij.10.0109.0695&rft.externalDocID=ETR20881 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon |