ON THE PAIR CORRELATION OF ZEROS OF THE RIEMANN ZETA-FUNCTION

To study the distribution of pairs of zeros of the Riemann zeta-function, Montgomery introduced the function $$ F(\alpha) = F_T(\alpha) = \left({T\over 2\pi}\log T\right)^{-1} \sum_{0<\gamma,\gamma ' \le T} T^{i\alpha(\gamma -\gamma ')}w(\gamma-\gamma '), $$ where $\alpha$ is real...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the London Mathematical Society Vol. 80; no. 1; pp. 31 - 49
Main Authors: GOLDSTON, D. A., GONEK, S. M., ÖZLÜK, A. E., SNYDER, C.
Format: Journal Article
Language:English
Published: Cambridge University Press 01.01.2000
Oxford University Press
Subjects:
ISSN:0024-6115, 1460-244X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first