Cooperative combinatorial optimization: Evolutionary computation case study

This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioSystems Jg. 91; H. 1; S. 34 - 50
Hauptverfasser: Burgin, Mark, Eberbach, Eugene
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier Ireland Ltd 2008
Schlagworte:
ISSN:0303-2647, 1872-8324
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0303-2647
1872-8324
DOI:10.1016/j.biosystems.2007.06.003