Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers
Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excita...
Gespeichert in:
| Veröffentlicht in: | Optics express Jg. 27; H. 21; S. 30031 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
14.10.2019
|
| ISSN: | 1094-4087, 1094-4087 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots. |
|---|---|
| AbstractList | Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots. |
| Author | Kuittinen, Markku Alam, Khairul Karvinen, Petri Vartiainen, Erik M. Toppari, J. Jussi Hulkko, Eero Dutta, Arpan Nuutinen, Tarmo |
| Author_xml | – sequence: 1 givenname: Arpan orcidid: 0000-0002-0139-2611 surname: Dutta fullname: Dutta, Arpan – sequence: 2 givenname: Khairul orcidid: 0000-0001-6486-4893 surname: Alam fullname: Alam, Khairul – sequence: 3 givenname: Tarmo surname: Nuutinen fullname: Nuutinen, Tarmo – sequence: 4 givenname: Eero surname: Hulkko fullname: Hulkko, Eero – sequence: 5 givenname: Petri surname: Karvinen fullname: Karvinen, Petri – sequence: 6 givenname: Markku surname: Kuittinen fullname: Kuittinen, Markku – sequence: 7 givenname: J. Jussi surname: Toppari fullname: Toppari, J. Jussi – sequence: 8 givenname: Erik M. surname: Vartiainen fullname: Vartiainen, Erik M. |
| BookMark | eNpt0LtOwzAUBmALFYm2sPEAHhlI8S1xMqIqhYpKlSjMluOcgJFjFzsdeHt6YUCI6Vz0nTP8EzTywQNC15TMKC_E3bqeMTkjnBBOz9CYkkpkgpRy9Ku_QJOUPgihQlZyjJ6WvnM78AZw6PBC-4AjpOD1cePxpn7eYPDvh7kHP2DrjyrbOp364K3Bwdm30ENMl-i80y7B1U-dotdF_TJ_zFbrh-X8fpUZLtmQdU3BNZO0yZumqbTIC0HaRheaFabNoeXQUtlSXULJyoIQsZfMCJ1XJZVG5nyKbk5_tzF87iANqrfJgHPaQ9glxThlTFaCsz29PVETQ0oROrWNttfxS1GiDpmpda2YVKfM9pz94cYOerDBD1Fb9__RNy7dcDI |
| CitedBy_id | crossref_primary_10_1186_s41476_020_00144_5 crossref_primary_10_1364_PRJ_383612 crossref_primary_10_3103_S1068335624601924 crossref_primary_10_3390_coatings12101419 crossref_primary_10_3390_photonics9050338 crossref_primary_10_1039_D4NA00247D crossref_primary_10_3390_coatings12091248 crossref_primary_10_1016_j_optlastec_2022_108407 crossref_primary_10_1186_s41476_020_00128_5 crossref_primary_10_1007_s11468_020_01312_6 crossref_primary_10_1021_acsanm_4c07096 crossref_primary_10_3389_fphy_2021_691027 |
| Cites_doi | 10.1039/C7CP05569B 10.1021/ac053456d 10.1103/PhysRevB.83.235427 10.1021/nn401175j 10.1088/0957-4484/22/24/245204 10.1364/OE.19.004949 10.1039/c0cp01841d 10.1103/PhysRevLett.101.047401 10.1021/nl102108u 10.1021/acs.jpcc.6b02753 10.1038/ncomms5424 10.1038/srep20777 10.1366/0003702944029776 10.1039/C7CS00238F 10.1021/nl500452p 10.1364/OE.19.022167 10.1021/nl3000453 10.1146/annurev-physchem-040215-112347 10.1103/RevModPhys.82.2257 10.1016/S1369-7021(12)70017-2 10.1021/acs.analchem.6b01597 10.1073/pnas.1220304110 10.1103/PhysRevB.88.085425 10.1038/nmat2810 10.1016/j.vibspec.2011.08.003 10.1364/AOP.9.000315 10.1103/PhysRevB.6.4370 10.1364/OME.1.001409 10.1016/j.sigpro.2005.02.002 10.1007/BF02958288 10.1364/OE.21.002236 10.1016/j.colsurfa.2016.07.020 10.1098/rstb.2012.0026 10.1007/s11468-014-9743-y 10.1080/01442358809353216 10.1021/nn203173r 10.1016/S1748-0132(08)70042-2 10.1146/annurev-physchem-032511-143757 10.1088/0031-8949/74/2/020 10.1039/C7CS00172J 10.1103/PhysRevLett.103.053602 10.1021/jp0490150 10.1002/lpor.201200021 10.1021/nl1029732 10.1021/nl101938p 10.1021/acs.analchem.5b04131 10.1103/PhysRev.124.1866 10.1021/nl3003683 10.1007/s00339-011-6732-2 10.1002/anie.201205748 10.1002/jrs.1747 10.1021/nn103172t 10.1021/acs.chemrev.6b00552 10.1016/0009-2614(74)85388-1 10.1021/acsphotonics.6b00482 10.1021/jp903126f 10.1038/nphoton.2017.142 10.1021/nl204303d 10.1021/nl202143j 10.1039/c3cp44463e 10.1039/C4AY00068D |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1364/OE.27.030031 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1094-4087 |
| ExternalDocumentID | 10_1364_OE_27_030031 |
| GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ABGOQ ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 |
| ID | FETCH-LOGICAL-c372t-fb63a271b5bbb9a45640dba6a26cd5ed3ed17d1a8e82860041b52c4a59817c753 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489954500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1094-4087 |
| IngestDate | Fri Jul 11 12:21:47 EDT 2025 Sat Nov 29 06:13:34 EST 2025 Tue Nov 18 21:59:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-fb63a271b5bbb9a45640dba6a26cd5ed3ed17d1a8e82860041b52c4a59817c753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0139-2611 0000-0001-6486-4893 |
| OpenAccessLink | https://doi.org/10.1364/oe.27.030031 |
| PQID | 2312279432 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2312279432 crossref_primary_10_1364_OE_27_030031 crossref_citationtrail_10_1364_OE_27_030031 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-14 |
| PublicationDateYYYYMMDD | 2019-10-14 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationTitle | Optics express |
| PublicationYear | 2019 |
| References | Lassiter (oe-27-21-30031-R35) 2012; 12 Luk’yanchuk (oe-27-21-30031-R25) 2010; 9 Wang (oe-27-21-30031-R49) 2013; 21 Ding (oe-27-21-30031-R11) 2017; 46 Zhang (oe-27-21-30031-R36) 2008; 101 Cialla-May (oe-27-21-30031-R12) 2017; 46 Miroshnichenko (oe-27-21-30031-R26) 2010; 82 Kneipp (oe-27-21-30031-R65) 1994; 48 Luo (oe-27-21-30031-R61) 2005; 85 Wu (oe-27-21-30031-R53) 2016; 506 Wang (oe-27-21-30031-R19) 2013; 368 Gallinet (oe-27-21-30031-R39) 2011; 19 Hakala (oe-27-21-30031-R58) 2009; 103 Lovera (oe-27-21-30031-R41) 2013; 7 Rahmani (oe-27-21-30031-R46) 2011; 19 Fano (oe-27-21-30031-R24) 1935; 12 Rahmani (oe-27-21-30031-R42) 2011; 22 Das (oe-27-21-30031-R5) 2011; 57 Ye (oe-27-21-30031-R22) 2012; 12 He (oe-27-21-30031-R60) 2014; 6 Gallinet (oe-27-21-30031-R45) 2011; 83 Sharma (oe-27-21-30031-R9) 2012; 15 Madzharova (oe-27-21-30031-R54) 2016; 120 Sheikholeslami (oe-27-21-30031-R50) 2011; 11 Rahmani (oe-27-21-30031-R23) 2013; 7 Fleischmann (oe-27-21-30031-R7) 1974; 26 Koponen (oe-27-21-30031-R59) 2013; 88 Rahmani (oe-27-21-30031-R43) 2012; 12 Johnson (oe-27-21-30031-R56) 1972; 6 Haynes (oe-27-21-30031-R6) 2005; 77 Kohr (oe-27-21-30031-R66) 2017; 19 Le Ru (oe-27-21-30031-R18) 2012; 63 Muehlethaler (oe-27-21-30031-R13) 2016; 88 Attaran (oe-27-21-30031-R44) 2014; 9 Chulhai (oe-27-21-30031-R14) 2016; 67 Zhang (oe-27-21-30031-R48) 2014; 5 He (oe-27-21-30031-R51) 2016; 6 Baieva (oe-27-21-30031-R57) 2017; 4 Hentschel (oe-27-21-30031-R30) 2011; 5 Joe (oe-27-21-30031-R40) 2006; 74 Clupek (oe-27-21-30031-R62) 2007; 38 Hentschel (oe-27-21-30031-R31) 2010; 10 Bantz (oe-27-21-30031-R17) 2011; 13 Limonov (oe-27-21-30031-R27) 2017; 11 Zrimsek (oe-27-21-30031-R21) 2017; 117 Suzuki (oe-27-21-30031-R67) 2004; 108 Rahmani (oe-27-21-30031-R47) 2011; 1 Gallinet (oe-27-21-30031-R34) 2011; 5 Shipp (oe-27-21-30031-R4) 2017; 9 Henry (oe-27-21-30031-R15) 2016; 88 Zhang (oe-27-21-30031-R32) 2013; 110 Schlücker (oe-27-21-30031-R8) 2014; 53 Tripp (oe-27-21-30031-R16) 2008; 3 Fano (oe-27-21-30031-R28) 1961; 124 Lee (oe-27-21-30031-R20) 2013; 15 Rahmani (oe-27-21-30031-R38) 2012; 107 Nazir (oe-27-21-30031-R52) 2014; 14 Kundu (oe-27-21-30031-R64) 2009; 113 Lassiter (oe-27-21-30031-R37) 2010; 10 Long (oe-27-21-30031-R1) 1988; 7 Fan (oe-27-21-30031-R33) 2010; 10 |
| References_xml | – volume: 19 start-page: 27074 year: 2017 ident: oe-27-21-30031-R66 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP05569B – volume: 77 start-page: 338A year: 2005 ident: oe-27-21-30031-R6 publication-title: Anal. Chem. doi: 10.1021/ac053456d – volume: 83 start-page: 2354271 year: 2011 ident: oe-27-21-30031-R45 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.235427 – volume: 7 start-page: 4527 year: 2013 ident: oe-27-21-30031-R41 publication-title: ACS Nano doi: 10.1021/nn401175j – volume: 22 start-page: 245204 year: 2011 ident: oe-27-21-30031-R42 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/24/245204 – volume: 19 start-page: 4949 year: 2011 ident: oe-27-21-30031-R46 publication-title: Opt. Express doi: 10.1364/OE.19.004949 – volume: 13 start-page: 11551 year: 2011 ident: oe-27-21-30031-R17 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp01841d – volume: 101 start-page: 047401 year: 2008 ident: oe-27-21-30031-R36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.047401 – volume: 10 start-page: 3184 year: 2010 ident: oe-27-21-30031-R37 publication-title: Nano Lett. doi: 10.1021/nl102108u – volume: 120 start-page: 15415 year: 2016 ident: oe-27-21-30031-R54 publication-title: J Phys Chem C Nanomater Interfaces doi: 10.1021/acs.jpcc.6b02753 – volume: 5 start-page: 4424 year: 2014 ident: oe-27-21-30031-R48 publication-title: Nat. Commun. doi: 10.1038/ncomms5424 – volume: 6 start-page: 20777 year: 2016 ident: oe-27-21-30031-R51 publication-title: Sci. Rep. doi: 10.1038/srep20777 – volume: 48 start-page: 951 year: 1994 ident: oe-27-21-30031-R65 publication-title: Appl. Spectrosc. doi: 10.1366/0003702944029776 – volume: 46 start-page: 4042 year: 2017 ident: oe-27-21-30031-R11 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00238F – volume: 14 start-page: 3166 year: 2014 ident: oe-27-21-30031-R52 publication-title: Nano Lett. doi: 10.1021/nl500452p – volume: 19 start-page: 22167 year: 2011 ident: oe-27-21-30031-R39 publication-title: Opt. Express doi: 10.1364/OE.19.022167 – volume: 12 start-page: 1660 year: 2012 ident: oe-27-21-30031-R22 publication-title: Nano Lett. doi: 10.1021/nl3000453 – volume: 67 start-page: 541 year: 2016 ident: oe-27-21-30031-R14 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040215-112347 – volume: 82 start-page: 2257 year: 2010 ident: oe-27-21-30031-R26 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2257 – volume: 15 start-page: 16 year: 2012 ident: oe-27-21-30031-R9 publication-title: Mater. Today doi: 10.1016/S1369-7021(12)70017-2 – volume: 88 start-page: 6638 year: 2016 ident: oe-27-21-30031-R15 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01597 – volume: 110 start-page: 9215 year: 2013 ident: oe-27-21-30031-R32 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1220304110 – volume: 88 start-page: 0854251 year: 2013 ident: oe-27-21-30031-R59 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.88.085425 – volume: 9 start-page: 707 year: 2010 ident: oe-27-21-30031-R25 publication-title: Nat. Mater. doi: 10.1038/nmat2810 – volume: 57 start-page: 163 year: 2011 ident: oe-27-21-30031-R5 publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2011.08.003 – volume: 9 start-page: 315 year: 2017 ident: oe-27-21-30031-R4 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.9.000315 – volume: 6 start-page: 4370 year: 1972 ident: oe-27-21-30031-R56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.6.4370 – volume: 1 start-page: 1409 year: 2011 ident: oe-27-21-30031-R47 publication-title: Opt. Mater. Express doi: 10.1364/OME.1.001409 – volume: 85 start-page: 1429 year: 2005 ident: oe-27-21-30031-R61 publication-title: Signal Processing doi: 10.1016/j.sigpro.2005.02.002 – volume: 12 start-page: 154 year: 1935 ident: oe-27-21-30031-R24 publication-title: Nuovo Cim. doi: 10.1007/BF02958288 – volume: 21 start-page: 2236 year: 2013 ident: oe-27-21-30031-R49 publication-title: Opt. Express doi: 10.1364/OE.21.002236 – volume: 506 start-page: 450 year: 2016 ident: oe-27-21-30031-R53 publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2016.07.020 – volume: 368 start-page: 20120026 year: 2013 ident: oe-27-21-30031-R19 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2012.0026 – volume: 9 start-page: 1303 year: 2014 ident: oe-27-21-30031-R44 publication-title: Plasmonics doi: 10.1007/s11468-014-9743-y – volume: 7 start-page: 317 year: 1988 ident: oe-27-21-30031-R1 publication-title: Int. Rev. Phys. Chem. doi: 10.1080/01442358809353216 – volume: 5 start-page: 8999 year: 2011 ident: oe-27-21-30031-R34 publication-title: ACS Nano doi: 10.1021/nn203173r – volume: 3 start-page: 31 year: 2008 ident: oe-27-21-30031-R16 publication-title: Nano Today doi: 10.1016/S1748-0132(08)70042-2 – volume: 63 start-page: 65 year: 2012 ident: oe-27-21-30031-R18 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143757 – volume: 74 start-page: 259 year: 2006 ident: oe-27-21-30031-R40 publication-title: Phys. Scr. doi: 10.1088/0031-8949/74/2/020 – volume: 46 start-page: 3945 year: 2017 ident: oe-27-21-30031-R12 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00172J – volume: 103 start-page: 053602 year: 2009 ident: oe-27-21-30031-R58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.053602 – volume: 108 start-page: 11660 year: 2004 ident: oe-27-21-30031-R67 publication-title: J. Phys. Chem. B doi: 10.1021/jp0490150 – volume: 7 start-page: 329 year: 2013 ident: oe-27-21-30031-R23 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201200021 – volume: 10 start-page: 4680 year: 2010 ident: oe-27-21-30031-R33 publication-title: Nano Lett. doi: 10.1021/nl1029732 – volume: 10 start-page: 2721 year: 2010 ident: oe-27-21-30031-R31 publication-title: Nano Lett. doi: 10.1021/nl101938p – volume: 88 start-page: 152 year: 2016 ident: oe-27-21-30031-R13 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04131 – volume: 124 start-page: 1866 year: 1961 ident: oe-27-21-30031-R28 publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.1866 – volume: 12 start-page: 2101 year: 2012 ident: oe-27-21-30031-R43 publication-title: Nano Lett. doi: 10.1021/nl3003683 – volume: 107 start-page: 23 year: 2012 ident: oe-27-21-30031-R38 publication-title: Appl. Phys., A Mater. Sci. Process. doi: 10.1007/s00339-011-6732-2 – volume: 53 start-page: 4756 year: 2014 ident: oe-27-21-30031-R8 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201205748 – volume: 38 start-page: 1174 year: 2007 ident: oe-27-21-30031-R62 publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.1747 – volume: 5 start-page: 2042 year: 2011 ident: oe-27-21-30031-R30 publication-title: ACS Nano doi: 10.1021/nn103172t – volume: 117 start-page: 7583 year: 2017 ident: oe-27-21-30031-R21 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00552 – volume: 26 start-page: 163 year: 1974 ident: oe-27-21-30031-R7 publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 4 start-page: 28 year: 2017 ident: oe-27-21-30031-R57 publication-title: ACS Photonics doi: 10.1021/acsphotonics.6b00482 – volume: 113 start-page: 14390 year: 2009 ident: oe-27-21-30031-R64 publication-title: J. Phys. Chem. C doi: 10.1021/jp903126f – volume: 11 start-page: 543 year: 2017 ident: oe-27-21-30031-R27 publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.142 – volume: 12 start-page: 1058 year: 2012 ident: oe-27-21-30031-R35 publication-title: Nano Lett. doi: 10.1021/nl204303d – volume: 11 start-page: 3927 year: 2011 ident: oe-27-21-30031-R50 publication-title: Nano Lett. doi: 10.1021/nl202143j – volume: 15 start-page: 5276 year: 2013 ident: oe-27-21-30031-R20 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44463e – volume: 6 start-page: 4402 year: 2014 ident: oe-27-21-30031-R60 publication-title: Anal. Methods doi: 10.1039/C4AY00068D |
| SSID | ssj0014797 |
| Score | 2.4248033 |
| Snippet | Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 30031 |
| Title | Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers |
| URI | https://www.proquest.com/docview/2312279432 |
| Volume | 27 |
| WOSCitedRecordID | wos000489954500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: DOA dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1094-4087 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014797 issn: 1094-4087 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEE-xPCojwWmVpbHjODlWKCvQQsuhSL1FtuOw0bZ2lLarnvjt2I6TtqhIy4FLlFhO2ni-jGfsmW8AeC8ta7gUJAgZKoMIUxFwmpCAcMwkT9NoJB1l_lc6mSTzefp9MKi7XJjbBVUq2W7T-r-K2rQZYdvU2X8Qd_9Q02DOjdDN0YjdHO8k-C9d2RFrB14ypc-NR62VSw2wysHmFEh1ba9dIEClXK-gNnb00tXD0Yvqp1760PjOcp3WjtBZbus-aMPZv-vW_Bw39Q5nYw-zq2tWNbvIw8nGvLZq9dyMNUu9w9Ti5sat2Way0fsLEWFqNXibAOp1p_EUjTvq5095pM0r3JYMwAOrzY_26hNbHXNUseM4MgM_zS4QvRj13Q75s_-Y1_poQ7dpF0f5NMsRzdu7T8A9RElq9eC3X1m_7xTRthxP97d9qoS5--P-bx8aMYdzuDNMZo_BI-9RwHGLhCdgINVT8MBF9orVM3DV4wHqElpJwx4PUCto8QD38AArBQ_xAHs8PAc_LrPZp8-Br6ARCEzROih5jBmiISec85RZ6qBRwVnMUCwKIgssi5AWIUukZROw3GucIBExkiYhFcaTfQFOlVbyJYBE4IQTW12h4BFiJS_D0lJ2cYEL80UnZ-C8G5JceHp5W-VkkR8b_jPwoe9dt7Qqf-n3rhvd3Og9u5nFlNSbVW78Ekt-GWH06o7Peg0e7mD7Bpyum418C-6L23W1aobghM6ToVuSGTpM_AanPng7 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Fano+resonance+on+SERS+enhancement+in+Fano-plasmonic+oligomers&rft.jtitle=Optics+express&rft.au=Dutta%2C+Arpan&rft.au=Alam%2C+Khairul&rft.au=Nuutinen%2C+Tarmo&rft.au=Hulkko%2C+Eero&rft.date=2019-10-14&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=21&rft.spage=30031&rft_id=info:doi/10.1364%2FOE.27.030031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_27_030031 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |