Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers

Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express Jg. 27; H. 21; S. 30031
Hauptverfasser: Dutta, Arpan, Alam, Khairul, Nuutinen, Tarmo, Hulkko, Eero, Karvinen, Petri, Kuittinen, Markku, Toppari, J. Jussi, Vartiainen, Erik M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 14.10.2019
ISSN:1094-4087, 1094-4087
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.
AbstractList Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant near-field enhancement due to its light trapping capability into the so-called hotspots. Appearance of these highly localized hotspots at the excitation and/or Stokes wavelengths of the analytes makes such oligomers promising SERS active substrates. In this work, we numerically and experimentally investigate optical properties of two disk-type gold oligomers, which have different strength and origin of Fano resonance. Raman analysis of rhodamine 6G and adenine with the presence of the fabricated oligomers clearly indicates that an increment in the strength of Fano resonance can improve the Raman enhancement of an oligomer significantly. Therefore, by suitable engineering of Fano lineshape, one can achieve efficient SERS active substrates with spatially localized hotspots.
Author Kuittinen, Markku
Alam, Khairul
Karvinen, Petri
Vartiainen, Erik M.
Toppari, J. Jussi
Hulkko, Eero
Dutta, Arpan
Nuutinen, Tarmo
Author_xml – sequence: 1
  givenname: Arpan
  orcidid: 0000-0002-0139-2611
  surname: Dutta
  fullname: Dutta, Arpan
– sequence: 2
  givenname: Khairul
  orcidid: 0000-0001-6486-4893
  surname: Alam
  fullname: Alam, Khairul
– sequence: 3
  givenname: Tarmo
  surname: Nuutinen
  fullname: Nuutinen, Tarmo
– sequence: 4
  givenname: Eero
  surname: Hulkko
  fullname: Hulkko, Eero
– sequence: 5
  givenname: Petri
  surname: Karvinen
  fullname: Karvinen, Petri
– sequence: 6
  givenname: Markku
  surname: Kuittinen
  fullname: Kuittinen, Markku
– sequence: 7
  givenname: J. Jussi
  surname: Toppari
  fullname: Toppari, J. Jussi
– sequence: 8
  givenname: Erik M.
  surname: Vartiainen
  fullname: Vartiainen, Erik M.
BookMark eNpt0LtOwzAUBmALFYm2sPEAHhlI8S1xMqIqhYpKlSjMluOcgJFjFzsdeHt6YUCI6Vz0nTP8EzTywQNC15TMKC_E3bqeMTkjnBBOz9CYkkpkgpRy9Ku_QJOUPgihQlZyjJ6WvnM78AZw6PBC-4AjpOD1cePxpn7eYPDvh7kHP2DrjyrbOp364K3Bwdm30ENMl-i80y7B1U-dotdF_TJ_zFbrh-X8fpUZLtmQdU3BNZO0yZumqbTIC0HaRheaFabNoeXQUtlSXULJyoIQsZfMCJ1XJZVG5nyKbk5_tzF87iANqrfJgHPaQ9glxThlTFaCsz29PVETQ0oROrWNttfxS1GiDpmpda2YVKfM9pz94cYOerDBD1Fb9__RNy7dcDI
CitedBy_id crossref_primary_10_1186_s41476_020_00144_5
crossref_primary_10_1364_PRJ_383612
crossref_primary_10_3103_S1068335624601924
crossref_primary_10_3390_coatings12101419
crossref_primary_10_3390_photonics9050338
crossref_primary_10_1039_D4NA00247D
crossref_primary_10_3390_coatings12091248
crossref_primary_10_1016_j_optlastec_2022_108407
crossref_primary_10_1186_s41476_020_00128_5
crossref_primary_10_1007_s11468_020_01312_6
crossref_primary_10_1021_acsanm_4c07096
crossref_primary_10_3389_fphy_2021_691027
Cites_doi 10.1039/C7CP05569B
10.1021/ac053456d
10.1103/PhysRevB.83.235427
10.1021/nn401175j
10.1088/0957-4484/22/24/245204
10.1364/OE.19.004949
10.1039/c0cp01841d
10.1103/PhysRevLett.101.047401
10.1021/nl102108u
10.1021/acs.jpcc.6b02753
10.1038/ncomms5424
10.1038/srep20777
10.1366/0003702944029776
10.1039/C7CS00238F
10.1021/nl500452p
10.1364/OE.19.022167
10.1021/nl3000453
10.1146/annurev-physchem-040215-112347
10.1103/RevModPhys.82.2257
10.1016/S1369-7021(12)70017-2
10.1021/acs.analchem.6b01597
10.1073/pnas.1220304110
10.1103/PhysRevB.88.085425
10.1038/nmat2810
10.1016/j.vibspec.2011.08.003
10.1364/AOP.9.000315
10.1103/PhysRevB.6.4370
10.1364/OME.1.001409
10.1016/j.sigpro.2005.02.002
10.1007/BF02958288
10.1364/OE.21.002236
10.1016/j.colsurfa.2016.07.020
10.1098/rstb.2012.0026
10.1007/s11468-014-9743-y
10.1080/01442358809353216
10.1021/nn203173r
10.1016/S1748-0132(08)70042-2
10.1146/annurev-physchem-032511-143757
10.1088/0031-8949/74/2/020
10.1039/C7CS00172J
10.1103/PhysRevLett.103.053602
10.1021/jp0490150
10.1002/lpor.201200021
10.1021/nl1029732
10.1021/nl101938p
10.1021/acs.analchem.5b04131
10.1103/PhysRev.124.1866
10.1021/nl3003683
10.1007/s00339-011-6732-2
10.1002/anie.201205748
10.1002/jrs.1747
10.1021/nn103172t
10.1021/acs.chemrev.6b00552
10.1016/0009-2614(74)85388-1
10.1021/acsphotonics.6b00482
10.1021/jp903126f
10.1038/nphoton.2017.142
10.1021/nl204303d
10.1021/nl202143j
10.1039/c3cp44463e
10.1039/C4AY00068D
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.27.030031
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_27_030031
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ABGOQ
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c372t-fb63a271b5bbb9a45640dba6a26cd5ed3ed17d1a8e82860041b52c4a59817c753
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489954500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1094-4087
IngestDate Fri Jul 11 12:21:47 EDT 2025
Sat Nov 29 06:13:34 EST 2025
Tue Nov 18 21:59:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-fb63a271b5bbb9a45640dba6a26cd5ed3ed17d1a8e82860041b52c4a59817c753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0139-2611
0000-0001-6486-4893
OpenAccessLink https://doi.org/10.1364/oe.27.030031
PQID 2312279432
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2312279432
crossref_primary_10_1364_OE_27_030031
crossref_citationtrail_10_1364_OE_27_030031
PublicationCentury 2000
PublicationDate 2019-10-14
PublicationDateYYYYMMDD 2019-10-14
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-14
  day: 14
PublicationDecade 2010
PublicationTitle Optics express
PublicationYear 2019
References Lassiter (oe-27-21-30031-R35) 2012; 12
Luk’yanchuk (oe-27-21-30031-R25) 2010; 9
Wang (oe-27-21-30031-R49) 2013; 21
Ding (oe-27-21-30031-R11) 2017; 46
Zhang (oe-27-21-30031-R36) 2008; 101
Cialla-May (oe-27-21-30031-R12) 2017; 46
Miroshnichenko (oe-27-21-30031-R26) 2010; 82
Kneipp (oe-27-21-30031-R65) 1994; 48
Luo (oe-27-21-30031-R61) 2005; 85
Wu (oe-27-21-30031-R53) 2016; 506
Wang (oe-27-21-30031-R19) 2013; 368
Gallinet (oe-27-21-30031-R39) 2011; 19
Hakala (oe-27-21-30031-R58) 2009; 103
Lovera (oe-27-21-30031-R41) 2013; 7
Rahmani (oe-27-21-30031-R46) 2011; 19
Fano (oe-27-21-30031-R24) 1935; 12
Rahmani (oe-27-21-30031-R42) 2011; 22
Das (oe-27-21-30031-R5) 2011; 57
Ye (oe-27-21-30031-R22) 2012; 12
He (oe-27-21-30031-R60) 2014; 6
Gallinet (oe-27-21-30031-R45) 2011; 83
Sharma (oe-27-21-30031-R9) 2012; 15
Madzharova (oe-27-21-30031-R54) 2016; 120
Sheikholeslami (oe-27-21-30031-R50) 2011; 11
Rahmani (oe-27-21-30031-R23) 2013; 7
Fleischmann (oe-27-21-30031-R7) 1974; 26
Koponen (oe-27-21-30031-R59) 2013; 88
Rahmani (oe-27-21-30031-R43) 2012; 12
Johnson (oe-27-21-30031-R56) 1972; 6
Haynes (oe-27-21-30031-R6) 2005; 77
Kohr (oe-27-21-30031-R66) 2017; 19
Le Ru (oe-27-21-30031-R18) 2012; 63
Muehlethaler (oe-27-21-30031-R13) 2016; 88
Attaran (oe-27-21-30031-R44) 2014; 9
Chulhai (oe-27-21-30031-R14) 2016; 67
Zhang (oe-27-21-30031-R48) 2014; 5
He (oe-27-21-30031-R51) 2016; 6
Baieva (oe-27-21-30031-R57) 2017; 4
Hentschel (oe-27-21-30031-R30) 2011; 5
Joe (oe-27-21-30031-R40) 2006; 74
Clupek (oe-27-21-30031-R62) 2007; 38
Hentschel (oe-27-21-30031-R31) 2010; 10
Bantz (oe-27-21-30031-R17) 2011; 13
Limonov (oe-27-21-30031-R27) 2017; 11
Zrimsek (oe-27-21-30031-R21) 2017; 117
Suzuki (oe-27-21-30031-R67) 2004; 108
Rahmani (oe-27-21-30031-R47) 2011; 1
Gallinet (oe-27-21-30031-R34) 2011; 5
Shipp (oe-27-21-30031-R4) 2017; 9
Henry (oe-27-21-30031-R15) 2016; 88
Zhang (oe-27-21-30031-R32) 2013; 110
Schlücker (oe-27-21-30031-R8) 2014; 53
Tripp (oe-27-21-30031-R16) 2008; 3
Fano (oe-27-21-30031-R28) 1961; 124
Lee (oe-27-21-30031-R20) 2013; 15
Rahmani (oe-27-21-30031-R38) 2012; 107
Nazir (oe-27-21-30031-R52) 2014; 14
Kundu (oe-27-21-30031-R64) 2009; 113
Lassiter (oe-27-21-30031-R37) 2010; 10
Long (oe-27-21-30031-R1) 1988; 7
Fan (oe-27-21-30031-R33) 2010; 10
References_xml – volume: 19
  start-page: 27074
  year: 2017
  ident: oe-27-21-30031-R66
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP05569B
– volume: 77
  start-page: 338A
  year: 2005
  ident: oe-27-21-30031-R6
  publication-title: Anal. Chem.
  doi: 10.1021/ac053456d
– volume: 83
  start-page: 2354271
  year: 2011
  ident: oe-27-21-30031-R45
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.235427
– volume: 7
  start-page: 4527
  year: 2013
  ident: oe-27-21-30031-R41
  publication-title: ACS Nano
  doi: 10.1021/nn401175j
– volume: 22
  start-page: 245204
  year: 2011
  ident: oe-27-21-30031-R42
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/24/245204
– volume: 19
  start-page: 4949
  year: 2011
  ident: oe-27-21-30031-R46
  publication-title: Opt. Express
  doi: 10.1364/OE.19.004949
– volume: 13
  start-page: 11551
  year: 2011
  ident: oe-27-21-30031-R17
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp01841d
– volume: 101
  start-page: 047401
  year: 2008
  ident: oe-27-21-30031-R36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.047401
– volume: 10
  start-page: 3184
  year: 2010
  ident: oe-27-21-30031-R37
  publication-title: Nano Lett.
  doi: 10.1021/nl102108u
– volume: 120
  start-page: 15415
  year: 2016
  ident: oe-27-21-30031-R54
  publication-title: J Phys Chem C Nanomater Interfaces
  doi: 10.1021/acs.jpcc.6b02753
– volume: 5
  start-page: 4424
  year: 2014
  ident: oe-27-21-30031-R48
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5424
– volume: 6
  start-page: 20777
  year: 2016
  ident: oe-27-21-30031-R51
  publication-title: Sci. Rep.
  doi: 10.1038/srep20777
– volume: 48
  start-page: 951
  year: 1994
  ident: oe-27-21-30031-R65
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702944029776
– volume: 46
  start-page: 4042
  year: 2017
  ident: oe-27-21-30031-R11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00238F
– volume: 14
  start-page: 3166
  year: 2014
  ident: oe-27-21-30031-R52
  publication-title: Nano Lett.
  doi: 10.1021/nl500452p
– volume: 19
  start-page: 22167
  year: 2011
  ident: oe-27-21-30031-R39
  publication-title: Opt. Express
  doi: 10.1364/OE.19.022167
– volume: 12
  start-page: 1660
  year: 2012
  ident: oe-27-21-30031-R22
  publication-title: Nano Lett.
  doi: 10.1021/nl3000453
– volume: 67
  start-page: 541
  year: 2016
  ident: oe-27-21-30031-R14
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040215-112347
– volume: 82
  start-page: 2257
  year: 2010
  ident: oe-27-21-30031-R26
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2257
– volume: 15
  start-page: 16
  year: 2012
  ident: oe-27-21-30031-R9
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(12)70017-2
– volume: 88
  start-page: 6638
  year: 2016
  ident: oe-27-21-30031-R15
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01597
– volume: 110
  start-page: 9215
  year: 2013
  ident: oe-27-21-30031-R32
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1220304110
– volume: 88
  start-page: 0854251
  year: 2013
  ident: oe-27-21-30031-R59
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.88.085425
– volume: 9
  start-page: 707
  year: 2010
  ident: oe-27-21-30031-R25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2810
– volume: 57
  start-page: 163
  year: 2011
  ident: oe-27-21-30031-R5
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2011.08.003
– volume: 9
  start-page: 315
  year: 2017
  ident: oe-27-21-30031-R4
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.9.000315
– volume: 6
  start-page: 4370
  year: 1972
  ident: oe-27-21-30031-R56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.6.4370
– volume: 1
  start-page: 1409
  year: 2011
  ident: oe-27-21-30031-R47
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.1.001409
– volume: 85
  start-page: 1429
  year: 2005
  ident: oe-27-21-30031-R61
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2005.02.002
– volume: 12
  start-page: 154
  year: 1935
  ident: oe-27-21-30031-R24
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02958288
– volume: 21
  start-page: 2236
  year: 2013
  ident: oe-27-21-30031-R49
  publication-title: Opt. Express
  doi: 10.1364/OE.21.002236
– volume: 506
  start-page: 450
  year: 2016
  ident: oe-27-21-30031-R53
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2016.07.020
– volume: 368
  start-page: 20120026
  year: 2013
  ident: oe-27-21-30031-R19
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.2012.0026
– volume: 9
  start-page: 1303
  year: 2014
  ident: oe-27-21-30031-R44
  publication-title: Plasmonics
  doi: 10.1007/s11468-014-9743-y
– volume: 7
  start-page: 317
  year: 1988
  ident: oe-27-21-30031-R1
  publication-title: Int. Rev. Phys. Chem.
  doi: 10.1080/01442358809353216
– volume: 5
  start-page: 8999
  year: 2011
  ident: oe-27-21-30031-R34
  publication-title: ACS Nano
  doi: 10.1021/nn203173r
– volume: 3
  start-page: 31
  year: 2008
  ident: oe-27-21-30031-R16
  publication-title: Nano Today
  doi: 10.1016/S1748-0132(08)70042-2
– volume: 63
  start-page: 65
  year: 2012
  ident: oe-27-21-30031-R18
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143757
– volume: 74
  start-page: 259
  year: 2006
  ident: oe-27-21-30031-R40
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/74/2/020
– volume: 46
  start-page: 3945
  year: 2017
  ident: oe-27-21-30031-R12
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00172J
– volume: 103
  start-page: 053602
  year: 2009
  ident: oe-27-21-30031-R58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.053602
– volume: 108
  start-page: 11660
  year: 2004
  ident: oe-27-21-30031-R67
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0490150
– volume: 7
  start-page: 329
  year: 2013
  ident: oe-27-21-30031-R23
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201200021
– volume: 10
  start-page: 4680
  year: 2010
  ident: oe-27-21-30031-R33
  publication-title: Nano Lett.
  doi: 10.1021/nl1029732
– volume: 10
  start-page: 2721
  year: 2010
  ident: oe-27-21-30031-R31
  publication-title: Nano Lett.
  doi: 10.1021/nl101938p
– volume: 88
  start-page: 152
  year: 2016
  ident: oe-27-21-30031-R13
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04131
– volume: 124
  start-page: 1866
  year: 1961
  ident: oe-27-21-30031-R28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.1866
– volume: 12
  start-page: 2101
  year: 2012
  ident: oe-27-21-30031-R43
  publication-title: Nano Lett.
  doi: 10.1021/nl3003683
– volume: 107
  start-page: 23
  year: 2012
  ident: oe-27-21-30031-R38
  publication-title: Appl. Phys., A Mater. Sci. Process.
  doi: 10.1007/s00339-011-6732-2
– volume: 53
  start-page: 4756
  year: 2014
  ident: oe-27-21-30031-R8
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201205748
– volume: 38
  start-page: 1174
  year: 2007
  ident: oe-27-21-30031-R62
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.1747
– volume: 5
  start-page: 2042
  year: 2011
  ident: oe-27-21-30031-R30
  publication-title: ACS Nano
  doi: 10.1021/nn103172t
– volume: 117
  start-page: 7583
  year: 2017
  ident: oe-27-21-30031-R21
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00552
– volume: 26
  start-page: 163
  year: 1974
  ident: oe-27-21-30031-R7
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 4
  start-page: 28
  year: 2017
  ident: oe-27-21-30031-R57
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.6b00482
– volume: 113
  start-page: 14390
  year: 2009
  ident: oe-27-21-30031-R64
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp903126f
– volume: 11
  start-page: 543
  year: 2017
  ident: oe-27-21-30031-R27
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2017.142
– volume: 12
  start-page: 1058
  year: 2012
  ident: oe-27-21-30031-R35
  publication-title: Nano Lett.
  doi: 10.1021/nl204303d
– volume: 11
  start-page: 3927
  year: 2011
  ident: oe-27-21-30031-R50
  publication-title: Nano Lett.
  doi: 10.1021/nl202143j
– volume: 15
  start-page: 5276
  year: 2013
  ident: oe-27-21-30031-R20
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp44463e
– volume: 6
  start-page: 4402
  year: 2014
  ident: oe-27-21-30031-R60
  publication-title: Anal. Methods
  doi: 10.1039/C4AY00068D
SSID ssj0014797
Score 2.4248033
Snippet Plasmonic oligomers can provide profound Fano resonance in their scattering responses. The sub-radiant mode of Fano resonance can result in significant...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 30031
Title Influence of Fano resonance on SERS enhancement in Fano-plasmonic oligomers
URI https://www.proquest.com/docview/2312279432
Volume 27
WOSCitedRecordID wos000489954500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: DOA
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1094-4087
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014797
  issn: 1094-4087
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6C0hcEE-xPCojwWmVpbHjODlWKCvQQsuhSL1FtuOw0bZ2lLarnvjt2I6TtqhIy4FLlFhO2ni-jGfsmW8AeC8ta7gUJAgZKoMIUxFwmpCAcMwkT9NoJB1l_lc6mSTzefp9MKi7XJjbBVUq2W7T-r-K2rQZYdvU2X8Qd_9Q02DOjdDN0YjdHO8k-C9d2RFrB14ypc-NR62VSw2wysHmFEh1ba9dIEClXK-gNnb00tXD0Yvqp1760PjOcp3WjtBZbus-aMPZv-vW_Bw39Q5nYw-zq2tWNbvIw8nGvLZq9dyMNUu9w9Ti5sat2Way0fsLEWFqNXibAOp1p_EUjTvq5095pM0r3JYMwAOrzY_26hNbHXNUseM4MgM_zS4QvRj13Q75s_-Y1_poQ7dpF0f5NMsRzdu7T8A9RElq9eC3X1m_7xTRthxP97d9qoS5--P-bx8aMYdzuDNMZo_BI-9RwHGLhCdgINVT8MBF9orVM3DV4wHqElpJwx4PUCto8QD38AArBQ_xAHs8PAc_LrPZp8-Br6ARCEzROih5jBmiISec85RZ6qBRwVnMUCwKIgssi5AWIUukZROw3GucIBExkiYhFcaTfQFOlVbyJYBE4IQTW12h4BFiJS_D0lJ2cYEL80UnZ-C8G5JceHp5W-VkkR8b_jPwoe9dt7Qqf-n3rhvd3Og9u5nFlNSbVW78Ekt-GWH06o7Peg0e7mD7Bpyum418C-6L23W1aobghM6ToVuSGTpM_AanPng7
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Fano+resonance+on+SERS+enhancement+in+Fano-plasmonic+oligomers&rft.jtitle=Optics+express&rft.au=Dutta%2C+Arpan&rft.au=Alam%2C+Khairul&rft.au=Nuutinen%2C+Tarmo&rft.au=Hulkko%2C+Eero&rft.date=2019-10-14&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=27&rft.issue=21&rft.spage=30031&rft_id=info:doi/10.1364%2FOE.27.030031&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_27_030031
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon