Computer-Aided Diagnosis and Clinical Trials of Cardiovascular Diseases Based on Artificial Intelligence Technologies for Risk-Early Warning Model

The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 43; číslo 7; s. 228 - 10
Hlavní autoři: Li, Bin, Ding, Shuai, Song, Guolei, Li, Jiajia, Zhang, Qian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2019
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data analysis is adopted as the research platform for hypertension patients, and artificial intelligence technologies are used to preprocess the data with inconsistency, redundancy, incompleteness, noise and error; Aiming at the unbalanced data sets, the Z-score standard is adopted to convert data into usable form suitable for data mining. And, the application of Logistic, Naive Bayesian regression, and support vector machine based on three groups of different prognosis in severe cases, including stroke, heart failure and renal failure symptoms, establish the risk early warning model for 3 years time. In addition, to select the optimal feature subset based on medicine big-data features, the model simplification and optimization are done in training process, the experimental results show that the feature subset selection can ensure the classification performance similar to the clinical features of the model. Therefore, according to chronic cardiovascular disease, acute cardiovascular events and cardiovascular events caused by critical illness events, we screen out the relevant prognosis of serious illness (stroke, heart failure, renal failure), which is related to the prognosis of serious illness. Targeted prevention has a guiding role and practical significance according to the results of artificial intelligence analysis.
AbstractList The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data analysis is adopted as the research platform for hypertension patients, and artificial intelligence technologies are used to preprocess the data with inconsistency, redundancy, incompleteness, noise and error; Aiming at the unbalanced data sets, the Z-score standard is adopted to convert data into usable form suitable for data mining. And, the application of Logistic, Naive Bayesian regression, and support vector machine based on three groups of different prognosis in severe cases, including stroke, heart failure and renal failure symptoms, establish the risk early warning model for 3 years time. In addition, to select the optimal feature subset based on medicine big-data features, the model simplification and optimization are done in training process, the experimental results show that the feature subset selection can ensure the classification performance similar to the clinical features of the model. Therefore, according to chronic cardiovascular disease, acute cardiovascular events and cardiovascular events caused by critical illness events, we screen out the relevant prognosis of serious illness (stroke, heart failure, renal failure), which is related to the prognosis of serious illness. Targeted prevention has a guiding role and practical significance according to the results of artificial intelligence analysis.The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data analysis is adopted as the research platform for hypertension patients, and artificial intelligence technologies are used to preprocess the data with inconsistency, redundancy, incompleteness, noise and error; Aiming at the unbalanced data sets, the Z-score standard is adopted to convert data into usable form suitable for data mining. And, the application of Logistic, Naive Bayesian regression, and support vector machine based on three groups of different prognosis in severe cases, including stroke, heart failure and renal failure symptoms, establish the risk early warning model for 3 years time. In addition, to select the optimal feature subset based on medicine big-data features, the model simplification and optimization are done in training process, the experimental results show that the feature subset selection can ensure the classification performance similar to the clinical features of the model. Therefore, according to chronic cardiovascular disease, acute cardiovascular events and cardiovascular events caused by critical illness events, we screen out the relevant prognosis of serious illness (stroke, heart failure, renal failure), which is related to the prognosis of serious illness. Targeted prevention has a guiding role and practical significance according to the results of artificial intelligence analysis.
The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data analysis is adopted as the research platform for hypertension patients, and artificial intelligence technologies are used to preprocess the data with inconsistency, redundancy, incompleteness, noise and error; Aiming at the unbalanced data sets, the Z-score standard is adopted to convert data into usable form suitable for data mining. And, the application of Logistic, Naive Bayesian regression, and support vector machine based on three groups of different prognosis in severe cases, including stroke, heart failure and renal failure symptoms, establish the risk early warning model for 3 years time. In addition, to select the optimal feature subset based on medicine big-data features, the model simplification and optimization are done in training process, the experimental results show that the feature subset selection can ensure the classification performance similar to the clinical features of the model. Therefore, according to chronic cardiovascular disease, acute cardiovascular events and cardiovascular events caused by critical illness events, we screen out the relevant prognosis of serious illness (stroke, heart failure, renal failure), which is related to the prognosis of serious illness. Targeted prevention has a guiding role and practical significance according to the results of artificial intelligence analysis.
The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of medical data. In order to achieve the regional medical and public health data analysis through artificial intelligence technologies, spark data analysis is adopted as the research platform for hypertension patients, and artificial intelligence technologies are used to preprocess the data with inconsistency, redundancy, incompleteness, noise and error; Aiming at the unbalanced data sets, the Z-score standard is adopted to convert data into usable form suitable for data mining. And, the application of Logistic, Naive Bayesian regression, and support vector machine based on three groups of different prognosis in severe cases, including stroke, heart failure and renal failure symptoms, establish the risk early warning model for 3 years time. In addition, to select the optimal feature subset based on medicine big-data features, the model simplification and optimization are done in training process, the experimental results show that the feature subset selection can ensure the classification performance similar to the clinical features of the model. Therefore, according to chronic cardiovascular disease, acute cardiovascular events and cardiovascular events caused by critical illness events, we screen out the relevant prognosis of serious illness (stroke, heart failure, renal failure), which is related to the prognosis of serious illness. Targeted prevention has a guiding role and practical significance according to the results of artificial intelligence analysis.
ArticleNumber 228
Author Ding, Shuai
Song, Guolei
Zhang, Qian
Li, Bin
Li, Jiajia
Author_xml – sequence: 1
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  email: libin2010000@163.com
  organization: The First Affiliated Hospital of Bengbu Medical College, School of Management HeFei University of Technology
– sequence: 2
  givenname: Shuai
  surname: Ding
  fullname: Ding, Shuai
  organization: School of Management HeFei University of Technology
– sequence: 3
  givenname: Guolei
  surname: Song
  fullname: Song, Guolei
  organization: The First Affiliated Hospital of Bengbu Medical College
– sequence: 4
  givenname: Jiajia
  surname: Li
  fullname: Li, Jiajia
  organization: The First Affiliated Hospital of Bengbu Medical College
– sequence: 5
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: The First Affiliated Hospital of Bengbu Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31197490$$D View this record in MEDLINE/PubMed
BookMark eNp90UFvFCEYBmBiauy2-gO8GBIvXlBgBhiO61i1SY2JWaO3CQPfrFQWtjBj2r_hL5ZmqyZN9AKX5-X7wnuCjmKKgNBTRl8yStWrwqhmklCmCWtaSa4foBUTqiGy01-P0IqytiNC6O4YnZRySSnVUqpH6LhhTKtW0xX62afdfpkhk7V34PAbb7YxFV-wiQ73wUdvTcCb7E0oOE24N9n59MMUuwSTqy9gChT8up4Op4jXefaTt9Xj8zhDCH4L0QLegP0WU0hbX_WUMv7ky3dyZnK4wV9Mjj5u8YfkIDxGD6c6DJ7c3afo89uzTf-eXHx8d96vL4htFJ_JZDrpuJ46y0Fqo8wEWkg-qlFIrZtmbJVQ0GjOxWgEdNopI2g3UtdJMwnZnKIXh3f3OV0tUOZh54utC5sIaSkD563kbdtqUenze_QyLTnW7apqtGBCcFbVszu1jDtwwz77nck3w-_froAdgM2plAzTH8LocNvocGh0qI0Ot40O1zWj7mWsn83sU5yz8eG_SX5IljolbiH_XfrfoV-Gu7ZK
CitedBy_id crossref_primary_10_1186_s42492_023_00143_6
crossref_primary_10_3390_s22208002
crossref_primary_10_3390_jpm13091421
crossref_primary_10_1016_j_slast_2025_100283
crossref_primary_10_1186_s12889_022_12617_y
crossref_primary_10_1007_s10120_019_00992_2
crossref_primary_10_1080_00365521_2022_2113427
crossref_primary_10_1007_s10489_023_04487_7
crossref_primary_10_1016_j_suscom_2023_100868
crossref_primary_10_1016_j_procs_2025_04_083
crossref_primary_10_1007_s13198_024_02307_w
crossref_primary_10_1155_2021_2425482
crossref_primary_10_3390_life12111933
crossref_primary_10_1002_ett_3838
crossref_primary_10_1155_2021_2621655
crossref_primary_10_3389_fpubh_2025_1609615
crossref_primary_10_3390_informatics8030055
crossref_primary_10_1371_journal_pdig_0000347
Cites_doi 10.1148/radiol.2017171920
10.15439/2017F219
10.1089/dia.2011.0202
10.1007/s10916-013-9934-7
10.1007/s11655-014-1822-6
10.1109/IEMBS.2009.5333597
10.1007/978-3-319-23024-5_43
10.1109/ACCESS.2018.2825352
10.1109/SACI.2014.6840059
10.1016/j.inpa.2016.12.002
10.1016/j.patcog.2015.08.009
10.1111/j.1747-0803.2007.00163.x
10.1016/j.ins.2017.08.093
10.1145/1835804.1835830
10.1016/j.amjmed.2016.09.031
10.1007/978-3-642-02298-2_19
10.1371/journal.pone.0132466
10.1088/1742-6596/787/1/012008
10.1002/ags3.12173
10.1109/RIOS.2016.7529489
10.1142/S0219878910002087
10.1097/01.CCM.0000109444.02324.AD
10.1016/j.artmed.2016.01.004
10.1227/01.neu.0000484053.82181.f6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1007/s10916-019-1346-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 10
ExternalDocumentID 31197490
10_1007_s10916_019_1346_x
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-fa86d29f8c2e69a7afe9562b7b569933b4757e39225ba5e89d7a508b0d86af563
IEDL.DBID M2P
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Thu Oct 02 11:08:25 EDT 2025
Tue Nov 04 22:30:33 EST 2025
Wed Feb 19 02:30:39 EST 2025
Tue Nov 18 21:05:53 EST 2025
Sat Nov 29 05:35:00 EST 2025
Fri Feb 21 02:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Naive Bayesian regression
Clinical feature
Artificial Intelligence
Z-score standard
Chronic cardiovascular disease
Support vector machine
Logistic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-fa86d29f8c2e69a7afe9562b7b569933b4757e39225ba5e89d7a508b0d86af563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31197490
PQID 2239515521
PQPubID 54050
PageCount 10
ParticipantIDs proquest_miscellaneous_2246244495
proquest_journals_2239515521
pubmed_primary_31197490
crossref_primary_10_1007_s10916_019_1346_x
crossref_citationtrail_10_1007_s10916_019_1346_x
springer_journals_10_1007_s10916_019_1346_x
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AhmadFIsaNAMHussainZIntelligent Medical Disease Diagnosis Using Improved Hybrid Genetic Algorithm - Multilayer Perceptron NetworkJ. Med. Syst.2013372993410.1007/s10916-013-9934-7
QianPZhouJJiangYLiangFZhaoKWangSSuK-HMuzicRFJrMulti-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributesIEEE Access20186285942861010.1109/ACCESS.2018.2825352
Peinado, I., Arredondo, M.T., Villalba, E., et al., Patient interaction in homecare systems to treat cardiovascular diseases in the long term. In: International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, pp 308–311, 2009.
SunBLiYZhangLThe Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining. Cutting-Edge Research Topics on Multiple Criteria Decision Making2009Berlin HeidelbergSpringer
LeeHGNohKLeeBJCardiovascular Disease Diagnosis Method by Emerging Patterns. International Conference on Advanced Data Mining & Applications2006BerlinSpringer-Verlag
CanadasJSánchez-MolinaJARodríguezFImproving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoesInformation Processing in Agriculture201741506310.1016/j.inpa.2016.12.002
LeeHGNohKLeeBJCardiovascular Disease Diagnosis Method by Emerging Patterns. Advanced Data Mining and Applications2006Berlin HeidelbergSpringer
ParkSeong HoHanKyunghwaMethodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and PredictionRadiology2018286380080910.1148/radiol.2017171920
Valavanis I K, Mougiakakou S G, Grimaldi K A, et al. Analysis of Postprandial Lipemia as a Cardiovascular Disease Risk Factor using Genetic and Clinical Information: An Artificial Neural Network Perspective. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008:4609-4612, 2008.
BondyCACongenital Cardiovascular Disease in Turner SyndromeCongenit. Heart Dis.20083121510.1111/j.1747-0803.2007.00163.x
Sun, B., Li, Y., and Zhang, L., The Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining. Communications in Computer & Information Science 2008:133–140.
Ghareh BaghiALindénMAn Internet-Based Tool for Pediatric Cardiac Disease Diagnosis using Intelligent Phonocardiography. International Internet of Things Summit2015New YorkSpringer International Publishing
NaganoHBig data, information and communication technology, artificial intelligence, Internet of things: How important are they for gastroenterological surgery?Annals of Gastroenterological Surgery20182316616610.1002/ags3.12173
ShankaracharyaODMallickMJava-based diabetes type 2 prediction tool for better diagnosisDiabetes Technol. Ther.20121432512561:STN:280:DC%2BC383ms1Smtw%3D%3D10.1089/dia.2011.0202
Khosla A, Cao Y, Lin C C Y, et al. An integrated machine learning approach to stroke prediction. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010: 183–192.
Hudson, D. L., and Cohen, M. E., Use of intelligent agents in the diagnosis of cardiac disorders. Comput. Cardiol. IEEE, 2002.
NesBMGutvikCRLavieCJPersonalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical ActivityAm. J. Med.2017130332833610.1016/j.amjmed.2016.09.031
GlassTFKnappJAmburnPUse of artificial intelligence to identify cardiovascular compromise in a model of hemorrhagic shockCrit. Care Med.200432245045610.1097/01.CCM.0000109444.02324.AD
Feshki, M. G., and Shijani, O. S., Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network. Artificial Intelligence & Robotics. IEEE, 2016.
Babič, F., Olejár, J., Vantová, Z. et al., Predictive and Descriptive Analysis for Heart Disease Diagnosis. Comput. Sci. Inf. Syst.. IEEE, 2017.
Alhadidi, T., and Salah, R. B., A new intelligent method for the automatic diagnosis of cardiovascular anomalies. 2015 17th International Conference on E-health Networking, Application & Services (HealthCom). IEEE, 2015.
YanJLuYXuYINTELLIGENT DIAGNOSIS OF CARDIOVASCULAR DISEASES UTILIZING ECG SIGNALSInternational Journal of Information Acquisition20100702819710.1142/S0219878910002087
SekarBDDongMFunction Formula Oriented Construction of Bayesian Inference Nets for Diagnosis of Cardiovascular DiseaseBiomed. Res. Int.201420141376378252471744163461
QianPSunSJiangYKuan-HaoSNiTWangSJrRFMCross-domain, soft-partition clustering with diversity measure and knowledge referencePattern Recogn.20165015517710.1016/j.patcog.2015.08.009
DrotárPMekyskaJRektorováIEvaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s diseaseArtif. Intell. Med.201667394610.1016/j.artmed.2016.01.004
XuZXXuJYanJJAnalysis of the diagnostic consistency of Chinese medicine specialists in cardiovascular disease cases and syndrome identification based on the relevant feature for each label learning methodChinese Journal of Integrative Medicine201521321722210.1007/s11655-014-1822-6
Ríos, S.A., Tenorio, F.G., and Jimenezmolina, A., A benchmark on artificial intelligence techniques for automatic chronic respiratory diseases risk classification. In: Kes-inmed-15 Third International Conference on Innovation in Medicine & Healthcare. Cham: Springer, 2016.
QianPXiCMinXJiangYKuan-HaoSWangSJrRFMSSC-EKE: semi-supervised classification with extensive knowledge exploitationInf. Sci.2018422517610.1016/j.ins.2017.08.093
DysterTimothyShethSameer A.McKhannGuy M.Ready or Not, Here We GoNeurosurgery2016786N11N1210.1227/01.neu.0000484053.82181.f6
Salah, R. B., and Chabchoub, S., Intelligent diagnosis method of cardiovascular anomalies using medical signal processing. World Congress on Information Technology & Computer Applications. IEEE, 2016.
DuSSZhaoMMZhangYScreening for differentially expressed proteins relevant to the differential diagnosis of sarcoidosis and tuberculosisP1oS one2015109e013246610.1371/journal.pone.0132466
Miao, F., Cai, Y. P., and Zhang, Y. T., Risk prediction for heart failure incidence within 1-year using clinical and laboratory factors. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE, 2014: 1790-1793.
Yifeng, X. U., Lijun, L., Qingsong, H. et al., Research on TF-IDF weight improvement algorithm in intelligent guidance system. Computer Engineering & Applications, 2017.
Filimon, D. M., and Albu, A., Skin diseases diagnosis using artificial neural networks. IEEE International Symposium on Applied Computational Intelligence & Informatics., IEEE, 2014.
Tang, Z., Wang, S., Huo, J. et al., Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction. J. Phys. Conf. Ser., 2017.
Yu-GuangYDe-ChangLIHong-YuGApplication of the Artificial Intelligence Technology in Coronary Heart Disease Diagnosis2008ChangchunJournal of Changchun Normal University
H Nagano (1346_CR3) 2018; 2
BD Sekar (1346_CR12) 2014; 2014
F Ahmad (1346_CR10) 2013; 37
1346_CR28
Seong Ho Park (1346_CR2) 2018; 286
HG Lee (1346_CR29) 2006
J Canadas (1346_CR6) 2017; 4
HG Lee (1346_CR17) 2006
1346_CR20
1346_CR4
1346_CR23
1346_CR22
Y Yu-Guang (1346_CR1) 2008
1346_CR25
1346_CR7
1346_CR9
J Yan (1346_CR11) 2010; 07
A Ghareh Baghi (1346_CR15) 2015
B Sun (1346_CR13) 2009
P Drotár (1346_CR5) 2016; 67
CA Bondy (1346_CR24) 2008; 3
OD Shankaracharya (1346_CR27) 2012; 14
P Qian (1346_CR33) 2018; 6
1346_CR18
BM Nes (1346_CR21) 2017; 130
P Qian (1346_CR32) 2016; 50
1346_CR19
TF Glass (1346_CR16) 2004; 32
P Qian (1346_CR34) 2018; 422
SS Du (1346_CR35) 2015; 10
ZX Xu (1346_CR26) 2015; 21
1346_CR31
1346_CR14
1346_CR36
1346_CR30
Timothy Dyster (1346_CR8) 2016; 78
References_xml – reference: ParkSeong HoHanKyunghwaMethodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and PredictionRadiology2018286380080910.1148/radiol.2017171920
– reference: ShankaracharyaODMallickMJava-based diabetes type 2 prediction tool for better diagnosisDiabetes Technol. Ther.20121432512561:STN:280:DC%2BC383ms1Smtw%3D%3D10.1089/dia.2011.0202
– reference: SunBLiYZhangLThe Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining. Cutting-Edge Research Topics on Multiple Criteria Decision Making2009Berlin HeidelbergSpringer
– reference: Sun, B., Li, Y., and Zhang, L., The Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining. Communications in Computer & Information Science 2008:133–140.
– reference: BondyCACongenital Cardiovascular Disease in Turner SyndromeCongenit. Heart Dis.20083121510.1111/j.1747-0803.2007.00163.x
– reference: Peinado, I., Arredondo, M.T., Villalba, E., et al., Patient interaction in homecare systems to treat cardiovascular diseases in the long term. In: International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, pp 308–311, 2009.
– reference: DrotárPMekyskaJRektorováIEvaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s diseaseArtif. Intell. Med.201667394610.1016/j.artmed.2016.01.004
– reference: Tang, Z., Wang, S., Huo, J. et al., Bayesian Framework with Non-local and Low-rank Constraint for Image Reconstruction. J. Phys. Conf. Ser., 2017.
– reference: Yu-GuangYDe-ChangLIHong-YuGApplication of the Artificial Intelligence Technology in Coronary Heart Disease Diagnosis2008ChangchunJournal of Changchun Normal University
– reference: NesBMGutvikCRLavieCJPersonalized Activity Intelligence (PAI) for Prevention of Cardiovascular Disease and Promotion of Physical ActivityAm. J. Med.2017130332833610.1016/j.amjmed.2016.09.031
– reference: Ghareh BaghiALindénMAn Internet-Based Tool for Pediatric Cardiac Disease Diagnosis using Intelligent Phonocardiography. International Internet of Things Summit2015New YorkSpringer International Publishing
– reference: AhmadFIsaNAMHussainZIntelligent Medical Disease Diagnosis Using Improved Hybrid Genetic Algorithm - Multilayer Perceptron NetworkJ. Med. Syst.2013372993410.1007/s10916-013-9934-7
– reference: YanJLuYXuYINTELLIGENT DIAGNOSIS OF CARDIOVASCULAR DISEASES UTILIZING ECG SIGNALSInternational Journal of Information Acquisition20100702819710.1142/S0219878910002087
– reference: NaganoHBig data, information and communication technology, artificial intelligence, Internet of things: How important are they for gastroenterological surgery?Annals of Gastroenterological Surgery20182316616610.1002/ags3.12173
– reference: LeeHGNohKLeeBJCardiovascular Disease Diagnosis Method by Emerging Patterns. International Conference on Advanced Data Mining & Applications2006BerlinSpringer-Verlag
– reference: Feshki, M. G., and Shijani, O. S., Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network. Artificial Intelligence & Robotics. IEEE, 2016.
– reference: LeeHGNohKLeeBJCardiovascular Disease Diagnosis Method by Emerging Patterns. Advanced Data Mining and Applications2006Berlin HeidelbergSpringer
– reference: Khosla A, Cao Y, Lin C C Y, et al. An integrated machine learning approach to stroke prediction. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2010: 183–192.
– reference: Filimon, D. M., and Albu, A., Skin diseases diagnosis using artificial neural networks. IEEE International Symposium on Applied Computational Intelligence & Informatics., IEEE, 2014.
– reference: Valavanis I K, Mougiakakou S G, Grimaldi K A, et al. Analysis of Postprandial Lipemia as a Cardiovascular Disease Risk Factor using Genetic and Clinical Information: An Artificial Neural Network Perspective. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 2008:4609-4612, 2008.
– reference: QianPSunSJiangYKuan-HaoSNiTWangSJrRFMCross-domain, soft-partition clustering with diversity measure and knowledge referencePattern Recogn.20165015517710.1016/j.patcog.2015.08.009
– reference: XuZXXuJYanJJAnalysis of the diagnostic consistency of Chinese medicine specialists in cardiovascular disease cases and syndrome identification based on the relevant feature for each label learning methodChinese Journal of Integrative Medicine201521321722210.1007/s11655-014-1822-6
– reference: Hudson, D. L., and Cohen, M. E., Use of intelligent agents in the diagnosis of cardiac disorders. Comput. Cardiol. IEEE, 2002.
– reference: Babič, F., Olejár, J., Vantová, Z. et al., Predictive and Descriptive Analysis for Heart Disease Diagnosis. Comput. Sci. Inf. Syst.. IEEE, 2017.
– reference: Ríos, S.A., Tenorio, F.G., and Jimenezmolina, A., A benchmark on artificial intelligence techniques for automatic chronic respiratory diseases risk classification. In: Kes-inmed-15 Third International Conference on Innovation in Medicine & Healthcare. Cham: Springer, 2016.
– reference: Salah, R. B., and Chabchoub, S., Intelligent diagnosis method of cardiovascular anomalies using medical signal processing. World Congress on Information Technology & Computer Applications. IEEE, 2016.
– reference: QianPXiCMinXJiangYKuan-HaoSWangSJrRFMSSC-EKE: semi-supervised classification with extensive knowledge exploitationInf. Sci.2018422517610.1016/j.ins.2017.08.093
– reference: DysterTimothyShethSameer A.McKhannGuy M.Ready or Not, Here We GoNeurosurgery2016786N11N1210.1227/01.neu.0000484053.82181.f6
– reference: CanadasJSánchez-MolinaJARodríguezFImproving automatic climate control with decision support techniques to minimize disease effects in greenhouse tomatoesInformation Processing in Agriculture201741506310.1016/j.inpa.2016.12.002
– reference: Miao, F., Cai, Y. P., and Zhang, Y. T., Risk prediction for heart failure incidence within 1-year using clinical and laboratory factors. Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IEEE, 2014: 1790-1793.
– reference: Alhadidi, T., and Salah, R. B., A new intelligent method for the automatic diagnosis of cardiovascular anomalies. 2015 17th International Conference on E-health Networking, Application & Services (HealthCom). IEEE, 2015.
– reference: SekarBDDongMFunction Formula Oriented Construction of Bayesian Inference Nets for Diagnosis of Cardiovascular DiseaseBiomed. Res. Int.201420141376378252471744163461
– reference: GlassTFKnappJAmburnPUse of artificial intelligence to identify cardiovascular compromise in a model of hemorrhagic shockCrit. Care Med.200432245045610.1097/01.CCM.0000109444.02324.AD
– reference: DuSSZhaoMMZhangYScreening for differentially expressed proteins relevant to the differential diagnosis of sarcoidosis and tuberculosisP1oS one2015109e013246610.1371/journal.pone.0132466
– reference: Yifeng, X. U., Lijun, L., Qingsong, H. et al., Research on TF-IDF weight improvement algorithm in intelligent guidance system. Computer Engineering & Applications, 2017.
– reference: QianPZhouJJiangYLiangFZhaoKWangSSuK-HMuzicRFJrMulti-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributesIEEE Access20186285942861010.1109/ACCESS.2018.2825352
– ident: 1346_CR9
– volume: 2014
  start-page: 376378
  issue: 1
  year: 2014
  ident: 1346_CR12
  publication-title: Biomed. Res. Int.
– volume: 286
  start-page: 800
  issue: 3
  year: 2018
  ident: 1346_CR2
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– ident: 1346_CR25
  doi: 10.15439/2017F219
– volume: 14
  start-page: 251
  issue: 3
  year: 2012
  ident: 1346_CR27
  publication-title: Diabetes Technol. Ther.
  doi: 10.1089/dia.2011.0202
– volume: 37
  start-page: 9934
  issue: 2
  year: 2013
  ident: 1346_CR10
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-013-9934-7
– volume-title: Cardiovascular Disease Diagnosis Method by Emerging Patterns. Advanced Data Mining and Applications
  year: 2006
  ident: 1346_CR17
– volume: 21
  start-page: 217
  issue: 3
  year: 2015
  ident: 1346_CR26
  publication-title: Chinese Journal of Integrative Medicine
  doi: 10.1007/s11655-014-1822-6
– ident: 1346_CR30
  doi: 10.1109/IEMBS.2009.5333597
– volume-title: The Intelligent System of Cardiovascular Disease Diagnosis Based on Extension Data Mining. Cutting-Edge Research Topics on Multiple Criteria Decision Making
  year: 2009
  ident: 1346_CR13
– volume-title: An Internet-Based Tool for Pediatric Cardiac Disease Diagnosis using Intelligent Phonocardiography. International Internet of Things Summit
  year: 2015
  ident: 1346_CR15
– ident: 1346_CR4
  doi: 10.1007/978-3-319-23024-5_43
– volume: 6
  start-page: 28594
  year: 2018
  ident: 1346_CR33
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825352
– volume-title: Application of the Artificial Intelligence Technology in Coronary Heart Disease Diagnosis
  year: 2008
  ident: 1346_CR1
– ident: 1346_CR18
  doi: 10.1109/SACI.2014.6840059
– ident: 1346_CR19
– volume: 4
  start-page: 50
  issue: 1
  year: 2017
  ident: 1346_CR6
  publication-title: Information Processing in Agriculture
  doi: 10.1016/j.inpa.2016.12.002
– volume: 50
  start-page: 155
  year: 2016
  ident: 1346_CR32
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2015.08.009
– volume: 3
  start-page: 2
  issue: 1
  year: 2008
  ident: 1346_CR24
  publication-title: Congenit. Heart Dis.
  doi: 10.1111/j.1747-0803.2007.00163.x
– volume: 422
  start-page: 51
  year: 2018
  ident: 1346_CR34
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.093
– ident: 1346_CR36
– ident: 1346_CR31
  doi: 10.1145/1835804.1835830
– volume: 130
  start-page: 328
  issue: 3
  year: 2017
  ident: 1346_CR21
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2016.09.031
– ident: 1346_CR28
  doi: 10.1007/978-3-642-02298-2_19
– volume: 10
  start-page: e0132466
  issue: 9
  year: 2015
  ident: 1346_CR35
  publication-title: P1oS one
  doi: 10.1371/journal.pone.0132466
– ident: 1346_CR22
  doi: 10.1088/1742-6596/787/1/012008
– volume: 2
  start-page: 166
  issue: 3
  year: 2018
  ident: 1346_CR3
  publication-title: Annals of Gastroenterological Surgery
  doi: 10.1002/ags3.12173
– ident: 1346_CR20
  doi: 10.1109/RIOS.2016.7529489
– volume: 07
  start-page: 81
  issue: 02
  year: 2010
  ident: 1346_CR11
  publication-title: International Journal of Information Acquisition
  doi: 10.1142/S0219878910002087
– ident: 1346_CR23
– volume: 32
  start-page: 450
  issue: 2
  year: 2004
  ident: 1346_CR16
  publication-title: Crit. Care Med.
  doi: 10.1097/01.CCM.0000109444.02324.AD
– ident: 1346_CR14
– ident: 1346_CR7
– volume: 67
  start-page: 39
  year: 2016
  ident: 1346_CR5
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2016.01.004
– volume: 78
  start-page: N11
  issue: 6
  year: 2016
  ident: 1346_CR8
  publication-title: Neurosurgery
  doi: 10.1227/01.neu.0000484053.82181.f6
– volume-title: Cardiovascular Disease Diagnosis Method by Emerging Patterns. International Conference on Advanced Data Mining & Applications
  year: 2006
  ident: 1346_CR29
SSID ssj0009667
Score 2.3189719
Snippet The use of artificial intelligence in medicine is currently an issue of great interest, especially with regard to the diagnostic or predictive analysis of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms Acute Disease
Artificial Intelligence
Bayes Theorem
Bayesian analysis
Cardiovascular diseases
Chronic Disease
Clinical trials
Congestive heart failure
Data analysis
Data management
Data mining
Data Mining - methods
Data processing
Diagnosis, Computer-Assisted - methods
Diagnostic systems
Distributed Analytics and Deep Learning in Health Care
Health Informatics
Health Sciences
Heart failure
Heart Failure - diagnosis
Humans
Hypertension
Illnesses
Intelligence (information)
Logistic Models
Medical diagnosis
Medical research
Medicine
Medicine & Public Health
Optimization
Prognosis
Public health
Redundancy
Regional analysis
Regression analysis
Renal failure
Renal Insufficiency - diagnosis
Risk Assessment
Severity of Illness Index
Signs and symptoms
Statistics for Life Sciences
Stroke - diagnosis
Support Vector Machine
Support vector machines
Systems-Level Quality Improvement
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7IJiKMqVNn55Qj-KQE2jRNmsf9ZIIOmVP3VtImgYuXXlnvxL9jf_FOmvbejTlBX_rS06SkJ8138uV8B-CtpRCZVhrLvKLYRAS6tZbes8wXqc91xm0Ucf2ojo_LszP9ecjj7sbT7iMl2f-pryW7EZSh0FezLBeSEXBcpdWuDPUaTr58WyrtShlzpEXJgvr4SGX-qYmbi9EthHmLHe0XncNH__W6j2F9wJi4E53iCdxz7QY8-DSw6BuwFvfqMKYgPYXLsbQD25lYZ3E_Hr-bdGhai4Ny6BRPe1_Fmce9G4dYyb4neTrcpavFWdt3HaUp8MM1zU9cbORTfI4El_Fk0v1gvcgyfo97NBiqs02fwdfDg9O9IzbUamBNrviceVNKy7UvG-6kNsp4R5EXr1VdSIJAeS1UoRyBMV7UpnCltsoQNqxTW0rjC5k_h5V21roXgDlXNtemNlpo4ZQywtSNFDLzPIgX2gTS8aNVzSBkHuppTKulBHMY-4rGvgpjX_1O4N3ikZ9RxeNvxtujJ1TDhO4qQlE6VMPhWQJvFrdpKgZ-xbRudhFshCS0RCFnApvRgxa95YGuFTpN4P3oLsvG73yVrX-yfgkPedrnpJHbbcPK_PzCvYL7za_5pDt_3c-SK3gfDEQ
  priority: 102
  providerName: Springer Nature
Title Computer-Aided Diagnosis and Clinical Trials of Cardiovascular Diseases Based on Artificial Intelligence Technologies for Risk-Early Warning Model
URI https://link.springer.com/article/10.1007/s10916-019-1346-x
https://www.ncbi.nlm.nih.gov/pubmed/31197490
https://www.proquest.com/docview/2239515521
https://www.proquest.com/docview/2246244495
Volume 43
WOSCitedRecordID wos000471604200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSEkxMf4CozKSDyBLBLHseMntI1NIGhVlTIqXiIntqWKKh1Lh_Z38BdzjpOWaWIvvJwUxYkt3dn-3Z39O4BXBl1k3GkMdRJ9E-7TraVwjiYui12qEmYCietnORrls5kadwG3pjtW2a-J7UJtlpWPkb_FbUz5ciQseXf6k_qqUT672pXQ2IIdRDaJP9I1ZOMN6a4Q4bo0z6knIu-zmuHqHAIjdKQVTVIu6MXlfekK2LySKG33n-N7_zvy-3C3Q55kP5jKA7hh6124Nexy67twJ0TwSLiY9BB-9wUf6P7cWEPeh0N584bo2pCOT3RBpq0Fk6Ujh5eOtmL7NvXTkAOUhizrtutAWEE-_sUEStbhffTaCYJoMpk3P2hLvUy-hcgN8TXbFo_g6_HR9PAD7So40CqVbEWdzoVhyuUVs0JpqZ1Ff4yVsswEAqO05DKTFiEay0qd2VwZqRExlrHJhXaZSB_Ddr2s7VMgKZMmVbrUiitupdRcl5XgInHMUxqaCOJef0XV0Zv7KhuLYkPM7FVeoMoLr_LiIoLX609OA7fHdY33eu0W3TRvio1qI3i5fo0T1GdddG2X574NF4ih0BGN4EkwpnVvqU_ichVH8Ka3rs3P_zmUZ9cP5TncZnF7NQ3New-2V2fn9gXcrH6t5s3ZALbk5MTLmWxlPoCdg6PReIJPnyRFOYyng3YeeSm9HGffUU6-nPwBUA0fLw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggAJ8VP-AgWMBBeQxa7j2PEBodJSddXtqkKL6C04sS1FrJLSbKG8Bg_CMzKOk12qit564JJLHNtyPntmPDPfALwwaCKjpDHUSbRNuHe35sI5OnTJwMVqyEwgcR3LySQ9OFD7K_C7z4XxYZX9mdge1KYu_B35GxRjypcjYcN3h9-orxrlvat9CY0Ai1378weabM3b0Rb-35eMbX-Ybu7QrqoALWLJ5tTpVBimXFowK5SW2lm0EVgu80SgsI5zLhNpUW1gSa4TmyojNWox-cCkQrtExNjvJbjMPbOYDxVk-0uSXyFCejZPqSc-772oIVUPFTE03BUdxlzQk9Ny8Ixye8Yx28q77Vv_20rdhpudZk02wla4Ayu2WoOre13swBrcCDeUJCRe3YVffUELulEaa8hWCDosG6IrQzq-1BmZtjuU1I5sngrdxfata6sh7_FpSF21QwdCDjL6i-mULNwXJbZGI4F8LJuvtKWWJp_DzRTxNelm9-DThazQfVit6so-BBIzaWKlc6244lZKzXVeCC6GjnnKRhPBoMdLVnT07b6KyCxbEk97iGUIscxDLDuJ4NXik8PAXXJe4_UeTVl3jDXZEkoRPF-8xgPIe5V0Zetj34YL1BHR0I7gQQDvYrTYO6m5GkTwukfzsvN_TuXR-VN5Btd2pnvjbDya7D6G62zQpuHh1lqH1fnRsX0CV4rv87I5etruTgJfLhrkfwDbWHKH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgiokxE-BslDASHABWU2cxI4PCJUuK1YtqxUqouISnNiWoq6S0myhvAaPw9MxjpNdqoreeuCSSxzbcj57Zjwz3wA812gio6TR1Aq0TWLnbs25tTS0SWAjGTLtSVz3xGSSHhzI6Qr87nNhXFhlfya2B7WuC3dHvoViTLpyJCzcsl1YxHQ4enP0jboKUs7T2pfT8BDZNT9_oPnWvB4P8V-_YGz0bn_nPe0qDNAiEmxOrUq5ZtKmBTNcKqGsQXuB5SJPOAruKI9FIgyqECzJVWJSqYVCjSYPdMqVTXiE_V6BqwJtTBdOOE2-LAl_Ofep2nFKHQl671H1aXuolKERL2kYxZyenpWJ5xTdc07aVvaNbv3Pq3YbbnYaN9n2W-QOrJhqHdY-dDEF63DD31wSn5B1F371hS7odqmNJkMfjFg2RFWadDyqM7Lf7lxSW7JzJqQX27cur4a8xacmddUO7Yk6yPgvBlSycGuU2BqNB_KxbA5pSzlNPvsbK-Jq1c3uwadLWaH7sFrVlXkAJGJCR1LlSsYyNkKoWOUFj3lomaNy1AMIeuxkRUfr7qqLzLIlIbWDW4ZwyxzcstMBvFx8cuQ5TS5qvNkjK-uOtyZbwmoAzxav8WBy3iZVmfrEtYk56o5ogA9gwwN5MVrknNexDAbwqkf2svN_TuXhxVN5CmuI7WxvPNl9BNdZ0Gbn4S7bhNX58Yl5DNeK7_OyOX7SblQCXy8b438A6aB7cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-Aided+Diagnosis+and+Clinical+Trials+of+Cardiovascular+Diseases+Based+on+Artificial+Intelligence+Technologies+for+Risk-Early+Warning+Model&rft.jtitle=Journal+of+medical+systems&rft.au=Li%2C+Bin&rft.au=Ding%2C+Shuai&rft.au=Song%2C+Guolei&rft.au=Li%2C+Jiajia&rft.date=2019-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=7&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs10916-019-1346-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon