DL-Droid: Deep learning based android malware detection using real devices
The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many tradi...
Uloženo v:
| Vydáno v: | Computers & security Ročník 89; s. 101663 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Ltd
01.02.2020
Elsevier Sequoia S.A |
| Témata: | |
| ISSN: | 0167-4048, 1872-6208 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches. |
|---|---|
| AbstractList | The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches. |
| ArticleNumber | 101663 |
| Author | Yerima, Suleiman Y. Sezer, Sakir Alzaylaee, Mohammed K. |
| Author_xml | – sequence: 1 givenname: Mohammed K. surname: Alzaylaee fullname: Alzaylaee, Mohammed K. email: mkzaylaee@uqu.edu.sa organization: College of Computing in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia – sequence: 2 givenname: Suleiman Y. surname: Yerima fullname: Yerima, Suleiman Y. email: syerima@dmu.ac.uk organization: De Montfort University, Leicester, England, LE1 9BH, United Kingdom – sequence: 3 givenname: Sakir surname: Sezer fullname: Sezer, Sakir email: s.sezer@qub.ac.uk organization: Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast BT7 1NN, United Kingdom |
| BookMark | eNp9kD1PwzAURS1UJNrCH2CKxJzij9R2EAtq-VQllu6WYz8jR2lS7LSIf49DmBg6Wbq-x37vzNCk7VpA6JrgBcGE39YL00VYUEzK34CzMzQlUtCcUywnaJoykRe4kBdoFmONMRFcyil6W2_ydei8vcvWAPusAR1a335klY5gM93a4TLb6eZLB8gs9GB637XZIQ6tALpJ4dEbiJfo3OkmwtXfOUfbp8ft6iXfvD-_rh42uWGC9rkrmZPUWcckLSrqBC6BFpxbAiVYgQVJo1ZUsmXKCg4FqZYGcyesI1VF2BzdjM_uQ_d5gNirujuENv2oKCskI4IxnlpybJnQxRjAKeN7PUzeB-0bRbAaPKlaDeLUIE6N4hJK_6H74Hc6fJ-G7kcI0uZHD0FF46E1YH1IxpTt_Cn8BzA0h-w |
| CitedBy_id | crossref_primary_10_1002_cpe_8157 crossref_primary_10_1016_j_jisa_2023_103486 crossref_primary_10_32604_cmc_2022_027212 crossref_primary_10_1016_j_eswa_2023_119593 crossref_primary_10_1093_comjnl_bxae114 crossref_primary_10_1109_ACCESS_2020_3009819 crossref_primary_10_1109_ACCESS_2025_3550124 crossref_primary_10_3390_s25041153 crossref_primary_10_1002_ail2_94 crossref_primary_10_7717_peerj_cs_988 crossref_primary_10_32604_cmc_2023_039721 crossref_primary_10_3390_electronics10040485 crossref_primary_10_1155_2022_6731277 crossref_primary_10_7717_peerj_cs_907 crossref_primary_10_1007_s41870_023_01392_7 crossref_primary_10_1016_j_eswa_2023_121155 crossref_primary_10_1109_ACCESS_2021_3123187 crossref_primary_10_1007_s11277_022_09765_0 crossref_primary_10_1007_s11042_023_16920_7 crossref_primary_10_1007_s11277_024_11366_y crossref_primary_10_1109_ACCESS_2024_3377658 crossref_primary_10_1016_j_csa_2023_100014 crossref_primary_10_1155_2022_2117883 crossref_primary_10_1016_j_cosrev_2021_100373 crossref_primary_10_1016_j_heliyon_2024_e40699 crossref_primary_10_1109_ACCESS_2021_3079370 crossref_primary_10_1145_3544968 crossref_primary_10_1007_s00521_021_06597_0 crossref_primary_10_1109_ACCESS_2024_3486094 crossref_primary_10_1109_ACCESS_2024_3390612 crossref_primary_10_1007_s00500_023_08671_2 crossref_primary_10_1016_j_iswa_2023_200318 crossref_primary_10_1109_TCE_2023_3342644 crossref_primary_10_3390_electronics12040789 crossref_primary_10_1186_s42400_022_00119_8 crossref_primary_10_1016_j_eswa_2023_122255 crossref_primary_10_7717_peerj_cs_1092 crossref_primary_10_1007_s10844_020_00598_6 crossref_primary_10_1016_j_cose_2021_102198 crossref_primary_10_3390_electronics12153253 crossref_primary_10_1007_s10207_023_00679_x crossref_primary_10_1016_j_fsidi_2023_301564 crossref_primary_10_1016_j_cose_2022_102757 crossref_primary_10_1016_j_cose_2021_102514 crossref_primary_10_1109_TIFS_2024_3414339 crossref_primary_10_1016_j_cose_2025_104499 crossref_primary_10_1155_2022_5339926 crossref_primary_10_1155_2024_7382302 crossref_primary_10_1155_2022_6425583 crossref_primary_10_7717_peerj_cs_533 crossref_primary_10_1016_j_eswa_2022_118404 crossref_primary_10_1007_s00521_021_05816_y crossref_primary_10_1016_j_iot_2024_101482 crossref_primary_10_1016_j_eswa_2022_117833 crossref_primary_10_1016_j_knosys_2025_113833 crossref_primary_10_1016_j_comnet_2022_108771 crossref_primary_10_1016_j_asoc_2022_109756 crossref_primary_10_1002_int_22529 crossref_primary_10_1155_2022_2959222 crossref_primary_10_1007_s10586_024_04484_6 crossref_primary_10_1049_ise2_12082 crossref_primary_10_1155_2020_8861639 crossref_primary_10_3390_electronics10202534 crossref_primary_10_1155_2022_8398591 crossref_primary_10_3390_technologies11030076 crossref_primary_10_1016_j_cose_2025_104364 crossref_primary_10_1109_ACCESS_2024_3485706 crossref_primary_10_4018_IJSI_309724 crossref_primary_10_3390_app10113978 crossref_primary_10_1108_IJWIS_03_2024_0095 crossref_primary_10_3390_app132212255 crossref_primary_10_3390_su122410499 crossref_primary_10_3390_s25030670 crossref_primary_10_1007_s11227_021_04020_y crossref_primary_10_3390_fi12090145 crossref_primary_10_1371_journal_pone_0276332 crossref_primary_10_1016_j_cose_2025_104361 crossref_primary_10_3390_info12050185 crossref_primary_10_1016_j_compeleceng_2021_107443 crossref_primary_10_1007_s12083_021_01244_w crossref_primary_10_1049_cmu2_12754 crossref_primary_10_1145_3492327 crossref_primary_10_3390_app13137720 crossref_primary_10_1016_j_cose_2024_103807 crossref_primary_10_3390_electronics10141694 crossref_primary_10_3390_s23167256 crossref_primary_10_1016_j_iot_2024_101258 crossref_primary_10_62465_riif_v4n1_2025_129 crossref_primary_10_1155_2020_8863385 crossref_primary_10_1007_s11042_024_19517_w crossref_primary_10_1007_s10207_024_00822_2 crossref_primary_10_1002_cpe_7025 crossref_primary_10_1002_spe_3112 crossref_primary_10_1007_s11042_024_19390_7 crossref_primary_10_1016_j_cose_2023_103385 crossref_primary_10_1016_j_jestch_2024_101945 crossref_primary_10_3390_math10081298 crossref_primary_10_3390_app112210976 crossref_primary_10_1016_j_jisa_2021_102751 crossref_primary_10_3390_electronics11244079 crossref_primary_10_1007_s10586_024_04397_4 crossref_primary_10_1007_s11042_023_15264_6 crossref_primary_10_1016_j_measen_2023_100955 crossref_primary_10_1109_TDSC_2024_3406699 crossref_primary_10_1155_2022_7245403 crossref_primary_10_1016_j_cose_2021_102449 crossref_primary_10_1109_TIFS_2023_3338469 crossref_primary_10_1155_2020_8630748 crossref_primary_10_1109_TIFS_2024_3350379 crossref_primary_10_1109_TNNLS_2021_3105617 crossref_primary_10_3390_jcp1010008 crossref_primary_10_1007_s11042_024_20455_w crossref_primary_10_1109_ACCESS_2023_3296606 crossref_primary_10_1109_TNSM_2025_3559255 crossref_primary_10_1049_cmu2_12265 crossref_primary_10_1016_j_jisa_2021_103057 crossref_primary_10_1016_j_compeleceng_2024_109948 crossref_primary_10_1016_j_jnca_2024_104035 crossref_primary_10_1109_ACCESS_2022_3155695 crossref_primary_10_1007_s11227_023_05347_4 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1371_journal_pone_0257968 crossref_primary_10_1007_s42979_023_02516_3 crossref_primary_10_1016_j_compeleceng_2024_109544 crossref_primary_10_1145_3484246 crossref_primary_10_1038_s41598_024_60982_y crossref_primary_10_1007_s00521_020_05450_0 crossref_primary_10_3390_info14070374 crossref_primary_10_3390_electronics12234817 crossref_primary_10_1016_j_jisa_2021_102929 crossref_primary_10_1016_j_eswa_2023_121125 crossref_primary_10_1007_s11227_020_03569_4 crossref_primary_10_1109_ACCESS_2021_3055427 crossref_primary_10_1109_ACCESS_2021_3123791 crossref_primary_10_1007_s42454_024_00055_7 crossref_primary_10_1109_ACCESS_2020_3028370 crossref_primary_10_1007_s12008_023_01578_0 crossref_primary_10_1016_j_cose_2022_102670 crossref_primary_10_1007_s11227_025_07055_7 crossref_primary_10_1007_s42979_024_02637_3 crossref_primary_10_1109_ACCESS_2024_3434629 crossref_primary_10_1007_s11277_021_08958_3 crossref_primary_10_1016_j_cose_2021_102399 crossref_primary_10_1016_j_eswa_2023_121617 crossref_primary_10_1016_j_procs_2022_11_027 crossref_primary_10_1155_2021_9099476 crossref_primary_10_3390_electronics10131606 crossref_primary_10_1155_2022_4119500 crossref_primary_10_1007_s10586_021_03459_1 crossref_primary_10_1007_s42979_023_01894_y crossref_primary_10_1007_s11554_023_01311_w crossref_primary_10_3390_app14114772 crossref_primary_10_1016_j_cose_2020_102086 crossref_primary_10_1016_j_cose_2021_102264 crossref_primary_10_1016_j_future_2021_02_015 crossref_primary_10_1007_s13042_020_01238_9 crossref_primary_10_3390_e23020174 crossref_primary_10_1080_01969722_2022_2068226 crossref_primary_10_1007_s00500_021_05893_0 crossref_primary_10_1016_j_cose_2021_102386 crossref_primary_10_1109_ACCESS_2025_3552070 crossref_primary_10_1109_ACCESS_2025_3594087 crossref_primary_10_1016_j_cose_2022_102718 crossref_primary_10_1111_exsy_13482 crossref_primary_10_1016_j_fsidi_2021_301168 crossref_primary_10_1016_j_future_2021_11_030 crossref_primary_10_1016_j_cose_2022_102835 crossref_primary_10_7717_peerj_cs_1043 crossref_primary_10_1109_TIFS_2025_3558592 crossref_primary_10_1016_j_icte_2024_03_005 crossref_primary_10_3390_electronics11010154 |
| Cites_doi | 10.1186/s13635-019-0087-1 10.1109/TDSC.2014.2355839 10.1038/nature14539 10.1109/TCYB.2017.2777960 10.1007/978-3-319-04283-1_6 10.1007/s10207-015-0310-0 10.1109/TIFS.2017.2687880 10.1109/ACCESS.2019.2893871 10.1109/TST.2016.7399288 10.1145/2544173.2509549 10.1007/s10844-010-0148-x 10.1049/iet-ifs.2014.0099 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier Sequoia S.A. Feb 2020 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier Sequoia S.A. Feb 2020 |
| DBID | 6I. AAFTH AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
| DOI | 10.1016/j.cose.2019.101663 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6208 |
| ExternalDocumentID | 10_1016_j_cose_2019_101663 S0167404819300161 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 K7. L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-f93f82fdf3824b2f709e2466d1e9ed7071167b283566d46e41b5c06f7df1bb13 |
| ISICitedReferencesCount | 218 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508490300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4048 |
| IngestDate | Thu Nov 20 01:11:55 EST 2025 Sat Nov 29 05:55:44 EST 2025 Tue Nov 18 22:14:45 EST 2025 Fri Feb 23 02:49:17 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Dynamic analysis Machine learning Static analysis Mobile security Code coverage Malware detection Android |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-f93f82fdf3824b2f709e2466d1e9ed7071167b283566d46e41b5c06f7df1bb13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cose.2019.101663 |
| PQID | 2348317336 |
| PQPubID | 46289 |
| ParticipantIDs | proquest_journals_2348317336 crossref_citationtrail_10_1016_j_cose_2019_101663 crossref_primary_10_1016_j_cose_2019_101663 elsevier_sciencedirect_doi_10_1016_j_cose_2019_101663 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & security |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
| References | Aafer, Du, Yin (bib0001) 2013; 127 Azim, Neamtiu (bib0008) 2013; 48 LeCun, Bengio, Hinton (bib0027) 2015; 521 Li, Yang, Guo, Chen (bib0028) 2017 Tracedroid Westyarian, Rosmansyah, Dabarsyah (bib0044) 2015 Arp, Spreitzenbarth, Hubner, Gascon, Rieck, Siemens (bib0007) 2014; 14 Choi, Necula, Sen (bib0011) 2013; 48 Choudhary, Gorla, Orso (bib0012) 2015 Yerima, Sezer, Muttik (bib0049) 2015; 9 Anand, Naik, Harrold, Yang (bib0006) 2012 Yuan, Lu, Xue (bib0052) 2016; 21 Amalfitano, Fasolino, Tramontana, De Carmine, Memon (bib0004) 2012 Yerima, Sezer, Muttik (bib0048) 2015 Candel, Parmar, LeDell, Arora (bib0009) 2016 Rastogi, Chen, Enck (bib0039) 2013 Yerima, Alzaylaee, Sezer (bib0045) 2019; 2019 Cen, Gates, Si, Li (bib0010) 2015; 12 Genymotion, Fast & Easy Android Emulator. (2018). Genymotion, Android Emulator for app testing. . Yuan, Lu, Wang, Xue (bib0051) 2014; 44 Enck, Gilbert, Chun, Cox, Jung, McDaniel, Sheth (bib0017) 2010; 49 Global smartphone shipments by OS 2016–2022 | Statistic. McLaughlin, Martinez del Rincon, Kang, Yerima, Miller, Sezer, Safaei, Trickel, Zhao, Doupe (bib0032) 2017 Tam, Khan, Fattori, Cavallaro (bib0043) 2015 Hao, Liu, Nath, Halfond, Govindan (bib0021) 2014 Shabtai, Kanonov, Elovici, Glezer, Weiss (bib0041) 2012; 38 Start the emulator from the command line | Android Developers. (2018). Android Developers. Alzaylaee, Yerima, Sezer (bib0002) 2017 DroidBox, Google Archive Machiry, Tahiliani, Naik (bib0030) 2013 Rasthofer, Arzt, Bodden (bib0038) 2014 Yerima, Sezer (bib0046) 2019; 49 Dini, Martinelli, Saracino, Sgandurra (bib0015) 2012; 7531 LNCS Hou, Saas, Chen, Ye (bib0022) 2016 Peiravian, Zhu (bib0037) 2013 Karbab, Debbabi, Derhab, Mouheb (bib0026) 2017 Smartphone OS market share worldwide 2009–2017 | Statistic, Statista McAfee Labs Threats Predictions Report | McAfee Labs. Alzaylaee, Yerima, Sezer (bib0003) 2017 Anagnostopoulos, Kambourakis, Gritzalis (bib0005) 2016; 15 Alzaylaee, M.K., Yerima, S.Y., and Sezer, S. (bib0029) 2016 NVISO ApkScan Scan Android applications for malware Yerima, Sezer, Muttik (bib0050) 2016 Kang, Yerima, Sezer, McLaughlin (bib0025) 2016; abs/1612.01445 Developers, A., 2012. Ui/application exerciser monkey. Yerima, Sezer, McWilliams, Muttik (bib0047) 2016 Hou, Saas, Chen, Ye, Bourlai (bib0023) 2017 Kang, Yerima, Mclaughlin, Sezer (bib0024) 2016 Papamartzivanos, Gasmez MAarmol, Kambourakis (bib0036) 2019; 7 Oberheide, Miller (bib0034) 2012 Google Play Protect. Android2018. Fan, Liu, Wang, Li, Tian, Liu (bib0018) 2017; 12 Dini (10.1016/j.cose.2019.101663_bib0015) 2012; 7531 LNCS Rastogi (10.1016/j.cose.2019.101663_bib0039) 2013 10.1016/j.cose.2019.101663_bib0042 Papamartzivanos (10.1016/j.cose.2019.101663_bib0036) 2019; 7 10.1016/j.cose.2019.101663_bib0040 Kang (10.1016/j.cose.2019.101663_bib0024) 2016 Cen (10.1016/j.cose.2019.101663_bib0010) 2015; 12 Yerima (10.1016/j.cose.2019.101663_bib0048) 2015 Kang (10.1016/j.cose.2019.101663_bib0025) 2016; abs/1612.01445 Alzaylaee (10.1016/j.cose.2019.101663_bib0003) 2017 10.1016/j.cose.2019.101663_bib0035 10.1016/j.cose.2019.101663_bib0033 Hou (10.1016/j.cose.2019.101663_bib0023) 2017 10.1016/j.cose.2019.101663_bib0031 Machiry (10.1016/j.cose.2019.101663_bib0030) 2013 Anand (10.1016/j.cose.2019.101663_bib0006) 2012 Yerima (10.1016/j.cose.2019.101663_bib0049) 2015; 9 Amalfitano (10.1016/j.cose.2019.101663_bib0004) 2012 Hao (10.1016/j.cose.2019.101663_bib0021) 2014 Choudhary (10.1016/j.cose.2019.101663_bib0012) 2015 Anagnostopoulos (10.1016/j.cose.2019.101663_bib0005) 2016; 15 Enck (10.1016/j.cose.2019.101663_bib0017) 2010; 49 Peiravian (10.1016/j.cose.2019.101663_bib0037) 2013 Yerima (10.1016/j.cose.2019.101663_bib0047) 2016 Choi (10.1016/j.cose.2019.101663_bib0011) 2013; 48 Candel (10.1016/j.cose.2019.101663_bib0009) 2016 Arp (10.1016/j.cose.2019.101663_bib0007) 2014; 14 Yuan (10.1016/j.cose.2019.101663_bib0052) 2016; 21 Yuan (10.1016/j.cose.2019.101663_bib0051) 2014; 44 10.1016/j.cose.2019.101663_bib0020 McLaughlin (10.1016/j.cose.2019.101663_bib0032) 2017 LeCun (10.1016/j.cose.2019.101663_bib0027) 2015; 521 Shabtai (10.1016/j.cose.2019.101663_bib0041) 2012; 38 Yerima (10.1016/j.cose.2019.101663_bib0046) 2019; 49 Yerima (10.1016/j.cose.2019.101663_bib0045) 2019; 2019 Fan (10.1016/j.cose.2019.101663_bib0018) 2017; 12 Aafer (10.1016/j.cose.2019.101663_bib0001) 2013; 127 Azim (10.1016/j.cose.2019.101663_bib0008) 2013; 48 Yerima (10.1016/j.cose.2019.101663_bib0050) 2016 Karbab (10.1016/j.cose.2019.101663_bib0026) 2017 Tam (10.1016/j.cose.2019.101663_bib0043) 2015 10.1016/j.cose.2019.101663_bib0013 10.1016/j.cose.2019.101663_bib0019 10.1016/j.cose.2019.101663_bib0016 10.1016/j.cose.2019.101663_bib0014 Oberheide (10.1016/j.cose.2019.101663_bib0034) 2012 Alzaylaee (10.1016/j.cose.2019.101663_bib0002) 2017 Westyarian (10.1016/j.cose.2019.101663_bib0044) 2015 Hou (10.1016/j.cose.2019.101663_bib0022) 2016 Alzaylaee, M.K., Yerima, S.Y., and Sezer, S. (10.1016/j.cose.2019.101663_bib0029) 2016 Li (10.1016/j.cose.2019.101663_bib0028) 2017 Rasthofer (10.1016/j.cose.2019.101663_bib0038) 2014 |
| References_xml | – start-page: 294 year: 2015 end-page: 297 ident: bib0044 article-title: Malware detection on android smartphones using api class and machine learning publication-title: 2015 International Conference on Electrical Engineering and Informatics (ICEEI) – start-page: 258 year: 2012 end-page: 261 ident: bib0004 article-title: Using gui ripping for automated testing of android applications publication-title: Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering – volume: 12 start-page: 1772 year: 2017 end-page: 1785 ident: bib0018 article-title: Dapasa: detecting android piggybacked apps through sensitive subgraph analysis publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 127 start-page: 86 year: 2013 end-page: 103 ident: bib0001 article-title: Droidapiminer: mining API-Level features for robust malware detection in android publication-title: Secur. Priv. Commun. Netw. – start-page: 300 year: 2013 end-page: 305 ident: bib0037 article-title: Machine learning for android malware detection using permission and api calls publication-title: Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on – reference: Tracedroid – volume: 49 start-page: 1 year: 2010 end-page: 6 ident: bib0017 article-title: Taintdroid: an information-Flow tracking system for realtime privacy monitoring on smartphones publication-title: Osdi ’10 – start-page: 104 year: 2016 end-page: 111 ident: bib0022 article-title: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs publication-title: 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW) – year: 2017 ident: bib0026 publication-title: Android malware detection using deep learning on api method sequences – volume: 12 start-page: 400 year: 2015 end-page: 412 ident: bib0010 article-title: A probabilistic discriminative model for android malware detection with decompiled source code publication-title: IEEE Trans Dependable Secure Comput – start-page: 803 year: 2017 end-page: 810 ident: bib0023 article-title: Deep neural networks for automatic android malware detection publication-title: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017 – start-page: 23 year: 2017 end-page: 26 ident: bib0028 article-title: Droidbot: a lightweight ui-guided test input generator for android publication-title: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C) – volume: 14 start-page: 23 year: 2014 end-page: 26 ident: bib0007 article-title: Drebin: effective and explainable detection of android malware in your pocket. publication-title: Ndss – reference: Google Play Protect. Android2018. – reference: DroidBox, Google Archive – start-page: 59 year: 2012 ident: bib0006 article-title: Automated concolic testing of smartphone apps publication-title: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering – volume: 48 start-page: 623 year: 2013 end-page: 640 ident: bib0011 article-title: Guided gui testing of android apps with minimal restart and approximate learning publication-title: ACM SIGPLAN Notices – start-page: 301 year: 2017 end-page: 308 ident: bib0032 article-title: Deep android malware detection publication-title: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy – start-page: 1 year: 2016 end-page: 7 ident: bib0024 article-title: N-opcode analysis for android malware classification and categorization publication-title: 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security) – volume: 44 start-page: 371 year: 2014 end-page: 372 ident: bib0051 article-title: Droid-sec: deep learning in android malware detection publication-title: ACM SIGCOMM Computer Communication Review – start-page: 1 year: 2017 end-page: 8 ident: bib0003 article-title: Improving dynamic analysis of android apps using hybrid test input generation publication-title: 2017 International Conference on Cyber Security And Protection Of Digital Services (Cyber Security) – reference: McAfee Labs Threats Predictions Report | McAfee Labs. – start-page: 65 year: 2017 end-page: 72 ident: bib0002 article-title: Emulator vs real phone: android malware detection using machine learning publication-title: Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics – reference: NVISO ApkScan Scan Android applications for malware – volume: 48 start-page: 641 year: 2013 end-page: 660 ident: bib0008 article-title: Targeted and depth-first exploration for systematic testing of android apps publication-title: SIGPLAN Not. – reference: Developers, A., 2012. Ui/application exerciser monkey. – year: 2012 ident: bib0034 article-title: Dissecting the android bouncer publication-title: Summercon 2012 – volume: 38 start-page: 161 year: 2012 end-page: 190 ident: bib0041 article-title: ”Andromaly”: a behavioral malware detection framework for android devices publication-title: J. Intell. Inf. Syst. – year: 2016 ident: bib0050 publication-title: Android malware detection using parallel machine learning classifiers – start-page: 209 year: 2013 end-page: 220 ident: bib0039 article-title: Appsplayground : automatic security analysis of smartphone applications publication-title: CODASPY ’13 (3rd ACM conference on Data and Application Security and Privac) – start-page: 224 year: 2013 end-page: 234 ident: bib0030 article-title: Dynodroid: an input generation system for android apps publication-title: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering – reference: Start the emulator from the command line | Android Developers. (2018). Android Developers. – volume: 521 start-page: 436 year: 2015 ident: bib0027 article-title: Deep learning publication-title: Nature – year: 2016 ident: bib0047 publication-title: A new android malware detection approach using bayesian classification – volume: 9 start-page: 313 year: 2015 end-page: 320 ident: bib0049 article-title: High accuracy android malware detection using ensemble learning publication-title: IET Inf. Secur. – volume: 7 start-page: 13546 year: 2019 end-page: 13560 ident: bib0036 article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems publication-title: IEEE Access – year: 2016 ident: bib0009 article-title: Deep learning with h2o publication-title: H2O. ai Inc – reference: Genymotion, Fast & Easy Android Emulator. (2018). Genymotion, Android Emulator for app testing. – volume: 49 start-page: 453 year: 2019 end-page: 466 ident: bib0046 article-title: Droidfusion: a novel multilevel classifier fusion approach for android malware detection publication-title: IEEE Trans. Cybern. – start-page: 8 year: 2015 end-page: 11 ident: bib0043 article-title: Copperdroid: automatic reconstruction of android malware behaviors publication-title: Ndss – volume: 7531 LNCS start-page: 240 year: 2012 end-page: 253 ident: bib0015 article-title: MADAM: A multi-level anomaly detector for android malware publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 15 start-page: 455 year: 2016 end-page: 473 ident: bib0005 article-title: New facets of mobile botnet: architecture and evaluation publication-title: Int. J. Inf. Secur. – year: 2014 ident: bib0038 article-title: A machine-learning approach for classifying and categorizing android sources and sinks. publication-title: NDSS – reference: Smartphone OS market share worldwide 2009–2017 | Statistic, Statista – volume: 2019 start-page: 4 year: 2019 ident: bib0045 article-title: Machine learning-based dynamic analysis of android apps with improved code coverage publication-title: EURASIP J. Inf. Secur. – volume: 21 start-page: 114 year: 2016 end-page: 123 ident: bib0052 article-title: Droiddetector: android malware characterization and detection using deep learning publication-title: Tsinghua Sci. Technol. – volume: abs/1612.01445 year: 2016 ident: bib0025 article-title: N-gram opcode analysis for android malware detection publication-title: CoRR – start-page: 1236 year: 2015 end-page: 1242 ident: bib0048 article-title: Android malware detection: an eigenspace analysis approach publication-title: Science and Information Conference (SAI), 2015 – reference: . – start-page: 1 year: 2016 end-page: 8 ident: bib0029 article-title: Dynalog: an automated dynamic analysis framework for characterizing android applications publication-title: 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security) – reference: Global smartphone shipments by OS 2016–2022 | Statistic. – start-page: 204 year: 2014 end-page: 217 ident: bib0021 article-title: Puma: programmable ui-automation for large-scale dynamic analysis of mobile apps publication-title: Proceedings of the 12th annual international conference on Mobile systems, applications, and services – start-page: 429 year: 2015 end-page: 440 ident: bib0012 article-title: Automated test input generation for android: Are we there yet? publication-title: Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on – start-page: 429 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0012 article-title: Automated test input generation for android: Are we there yet? – ident: 10.1016/j.cose.2019.101663_bib0040 – start-page: 204 year: 2014 ident: 10.1016/j.cose.2019.101663_bib0021 article-title: Puma: programmable ui-automation for large-scale dynamic analysis of mobile apps – ident: 10.1016/j.cose.2019.101663_bib0019 – year: 2016 ident: 10.1016/j.cose.2019.101663_bib0050 publication-title: Android malware detection using parallel machine learning classifiers – year: 2012 ident: 10.1016/j.cose.2019.101663_bib0034 article-title: Dissecting the android bouncer publication-title: Summercon 2012 – start-page: 224 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0030 article-title: Dynodroid: an input generation system for android apps – volume: 2019 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.cose.2019.101663_bib0045 article-title: Machine learning-based dynamic analysis of android apps with improved code coverage publication-title: EURASIP J. Inf. Secur. doi: 10.1186/s13635-019-0087-1 – start-page: 65 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0002 article-title: Emulator vs real phone: android malware detection using machine learning – year: 2017 ident: 10.1016/j.cose.2019.101663_bib0026 publication-title: Android malware detection using deep learning on api method sequences – year: 2016 ident: 10.1016/j.cose.2019.101663_bib0009 article-title: Deep learning with h2o publication-title: H2O. ai Inc – volume: 12 start-page: 400 issue: 4 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0010 article-title: A probabilistic discriminative model for android malware detection with decompiled source code publication-title: IEEE Trans Dependable Secure Comput doi: 10.1109/TDSC.2014.2355839 – ident: 10.1016/j.cose.2019.101663_bib0020 – volume: 7531 LNCS start-page: 240 year: 2012 ident: 10.1016/j.cose.2019.101663_bib0015 article-title: MADAM: A multi-level anomaly detector for android malware publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – start-page: 1 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0024 article-title: N-opcode analysis for android malware classification and categorization – ident: 10.1016/j.cose.2019.101663_bib0016 – ident: 10.1016/j.cose.2019.101663_bib0033 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0027 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 49 start-page: 453 issue: 2 year: 2019 ident: 10.1016/j.cose.2019.101663_bib0046 article-title: Droidfusion: a novel multilevel classifier fusion approach for android malware detection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2777960 – volume: 44 start-page: 371 year: 2014 ident: 10.1016/j.cose.2019.101663_bib0051 article-title: Droid-sec: deep learning in android malware detection – volume: 127 start-page: 86 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0001 article-title: Droidapiminer: mining API-Level features for robust malware detection in android publication-title: Secur. Priv. Commun. Netw. doi: 10.1007/978-3-319-04283-1_6 – start-page: 803 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0023 article-title: Deep neural networks for automatic android malware detection – start-page: 59 year: 2012 ident: 10.1016/j.cose.2019.101663_bib0006 article-title: Automated concolic testing of smartphone apps – ident: 10.1016/j.cose.2019.101663_bib0013 – start-page: 104 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0022 article-title: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs – volume: 15 start-page: 455 issue: 5 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0005 article-title: New facets of mobile botnet: architecture and evaluation publication-title: Int. J. Inf. Secur. doi: 10.1007/s10207-015-0310-0 – start-page: 301 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0032 article-title: Deep android malware detection – ident: 10.1016/j.cose.2019.101663_bib0042 – start-page: 1 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0003 article-title: Improving dynamic analysis of android apps using hybrid test input generation – year: 2014 ident: 10.1016/j.cose.2019.101663_bib0038 article-title: A machine-learning approach for classifying and categorizing android sources and sinks. – start-page: 209 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0039 article-title: Appsplayground : automatic security analysis of smartphone applications – year: 2016 ident: 10.1016/j.cose.2019.101663_bib0047 publication-title: A new android malware detection approach using bayesian classification – start-page: 1 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0029 article-title: Dynalog: an automated dynamic analysis framework for characterizing android applications – volume: 12 start-page: 1772 issue: 8 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0018 article-title: Dapasa: detecting android piggybacked apps through sensitive subgraph analysis publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2687880 – volume: abs/1612.01445 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0025 article-title: N-gram opcode analysis for android malware detection publication-title: CoRR – start-page: 1236 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0048 article-title: Android malware detection: an eigenspace analysis approach – start-page: 258 year: 2012 ident: 10.1016/j.cose.2019.101663_bib0004 article-title: Using gui ripping for automated testing of android applications – volume: 7 start-page: 13546 year: 2019 ident: 10.1016/j.cose.2019.101663_bib0036 article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2893871 – volume: 14 start-page: 23 year: 2014 ident: 10.1016/j.cose.2019.101663_bib0007 article-title: Drebin: effective and explainable detection of android malware in your pocket. – ident: 10.1016/j.cose.2019.101663_bib0014 – volume: 21 start-page: 114 issue: 1 year: 2016 ident: 10.1016/j.cose.2019.101663_bib0052 article-title: Droiddetector: android malware characterization and detection using deep learning publication-title: Tsinghua Sci. Technol. doi: 10.1109/TST.2016.7399288 – volume: 48 start-page: 623 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0011 article-title: Guided gui testing of android apps with minimal restart and approximate learning – ident: 10.1016/j.cose.2019.101663_bib0035 – start-page: 300 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0037 article-title: Machine learning for android malware detection using permission and api calls – volume: 49 start-page: 1 year: 2010 ident: 10.1016/j.cose.2019.101663_bib0017 article-title: Taintdroid: an information-Flow tracking system for realtime privacy monitoring on smartphones publication-title: Osdi ’10 – volume: 48 start-page: 641 issue: 10 year: 2013 ident: 10.1016/j.cose.2019.101663_bib0008 article-title: Targeted and depth-first exploration for systematic testing of android apps publication-title: SIGPLAN Not. doi: 10.1145/2544173.2509549 – ident: 10.1016/j.cose.2019.101663_bib0031 – start-page: 8 issue: February year: 2015 ident: 10.1016/j.cose.2019.101663_bib0043 article-title: Copperdroid: automatic reconstruction of android malware behaviors publication-title: Ndss – start-page: 294 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0044 article-title: Malware detection on android smartphones using api class and machine learning – start-page: 23 year: 2017 ident: 10.1016/j.cose.2019.101663_bib0028 article-title: Droidbot: a lightweight ui-guided test input generator for android – volume: 38 start-page: 161 issue: 1 year: 2012 ident: 10.1016/j.cose.2019.101663_bib0041 article-title: ”Andromaly”: a behavioral malware detection framework for android devices publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-010-0148-x – volume: 9 start-page: 313 issue: 6 year: 2015 ident: 10.1016/j.cose.2019.101663_bib0049 article-title: High accuracy android malware detection using ensemble learning publication-title: IET Inf. Secur. doi: 10.1049/iet-ifs.2014.0099 |
| SSID | ssj0017688 |
| Score | 2.6639602 |
| Snippet | The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101663 |
| SubjectTerms | Android Code coverage Deep learning Dynamic analysis Experiments Machine learning Malware Malware detection Mobile operating systems Mobile security Popularity Smartphones Sophistication Static analysis Tablet computers |
| Title | DL-Droid: Deep learning based android malware detection using real devices |
| URI | https://dx.doi.org/10.1016/j.cose.2019.101663 https://www.proquest.com/docview/2348317336 |
| Volume | 89 |
| WOSCitedRecordID | wos000508490300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5cAFypcotJUP3FZZJXE2jrlVbBEUqJDYw3KyknhMt1qyq2QLVX89469s2aoVPXCJIiexLM_LeDx5mUfIm6LkoCs1iphKeZQJzSIBcRnVCbAMqrwSKrZiE_zkpJhOxVfP0-2snABvmuLiQiz_q6mxDY1tfp29g7n7TrEBz9HoeESz4_GfDD_-HI3bxcxqN48BlkEY4sfArFi2Mqu5PPhZzn8b2peCFTi98HObN2hNqWEF1oNcDV2D_kNn0dJ53bseMPNL3PuXjtbzZXFqEuJq8Gm4zsmashaOBzSHmfly8L2_-A0uvf4XxrPt1UQE7jrjntThc5OmhHrsCmcG5-r0gbx3NJkC586uOW6XQzgbGpa-IdyJ4frmv6tkb6xePacw0NXOpOlDmj6k6-M-2U75SKDb3j78eDQ97r8y4Var6Gu_48D9T1WO_7c5kpsCl40l3MYlkx3yyG8o6KEDwhNyD5qn5HEwFvW--xk5Drh4Sw0qaEAFtaigHhXUo4L2qKAWFdSggnpUPCeT90eTdx8iL6QR1Yynq0gLpotUK82KNKtSzWMBaZbnKgEBimOUiTNQmcp72JblkCXVqI5zzZVOqiphL8hWs2jgJaGcQcF1XOqsxEBbgChFGlclYNhca13UuyQJkyRrX2TeaJ3M5c3m2SWD_pmlK7Fy692jMPfSB4ku-JMIpVuf2wuGkv5t7WTKsgIDaMbyV3caxGvycP0G7JGtVXsO--RB_Ws169oDD7M_p2eQYg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DL-Droid%3A+Deep+learning+based+android+malware+detection+using+real+devices&rft.jtitle=Computers+%26+security&rft.au=Alzaylaee%2C+Mohammed+K.&rft.au=Yerima%2C+Suleiman+Y.&rft.au=Sezer%2C+Sakir&rft.date=2020-02-01&rft.issn=0167-4048&rft.volume=89&rft.spage=101663&rft_id=info:doi/10.1016%2Fj.cose.2019.101663&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2019_101663 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |