DL-Droid: Deep learning based android malware detection using real devices

The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many tradi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & security Ročník 89; s. 101663
Hlavní autoři: Alzaylaee, Mohammed K., Yerima, Suleiman Y., Sezer, Sakir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Ltd 01.02.2020
Elsevier Sequoia S.A
Témata:
ISSN:0167-4048, 1872-6208
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches.
AbstractList The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in recent years. The sophistication of Android malware obfuscation and detection avoidance methods have significantly improved, making many traditional malware detection methods obsolete. In this paper, we propose DL-Droid, a deep learning system to detect malicious Android applications through dynamic analysis using stateful input generation. Experiments performed with over 30,000 applications (benign and malware) on real devices are presented. Furthermore, experiments were also conducted to compare the detection performance and code coverage of the stateful input generation method with the commonly used stateless approach using the deep learning system. Our study reveals that DL-Droid can achieve up to 97.8% detection rate (with dynamic features only) and 99.6% detection rate (with dynamic + static features) respectively which outperforms traditional machine learning techniques. Furthermore, the results highlight the significance of enhanced input generation for dynamic analysis as DL-Droid with the state-based input generation is shown to outperform the existing state-of-the-art approaches.
ArticleNumber 101663
Author Yerima, Suleiman Y.
Sezer, Sakir
Alzaylaee, Mohammed K.
Author_xml – sequence: 1
  givenname: Mohammed K.
  surname: Alzaylaee
  fullname: Alzaylaee, Mohammed K.
  email: mkzaylaee@uqu.edu.sa
  organization: College of Computing in Al-Qunfudah, Umm Al-Qura University, Saudi Arabia
– sequence: 2
  givenname: Suleiman Y.
  surname: Yerima
  fullname: Yerima, Suleiman Y.
  email: syerima@dmu.ac.uk
  organization: De Montfort University, Leicester, England, LE1 9BH, United Kingdom
– sequence: 3
  givenname: Sakir
  surname: Sezer
  fullname: Sezer, Sakir
  email: s.sezer@qub.ac.uk
  organization: Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast BT7 1NN, United Kingdom
BookMark eNp9kD1PwzAURS1UJNrCH2CKxJzij9R2EAtq-VQllu6WYz8jR2lS7LSIf49DmBg6Wbq-x37vzNCk7VpA6JrgBcGE39YL00VYUEzK34CzMzQlUtCcUywnaJoykRe4kBdoFmONMRFcyil6W2_ydei8vcvWAPusAR1a335klY5gM93a4TLb6eZLB8gs9GB637XZIQ6tALpJ4dEbiJfo3OkmwtXfOUfbp8ft6iXfvD-_rh42uWGC9rkrmZPUWcckLSrqBC6BFpxbAiVYgQVJo1ZUsmXKCg4FqZYGcyesI1VF2BzdjM_uQ_d5gNirujuENv2oKCskI4IxnlpybJnQxRjAKeN7PUzeB-0bRbAaPKlaDeLUIE6N4hJK_6H74Hc6fJ-G7kcI0uZHD0FF46E1YH1IxpTt_Cn8BzA0h-w
CitedBy_id crossref_primary_10_1002_cpe_8157
crossref_primary_10_1016_j_jisa_2023_103486
crossref_primary_10_32604_cmc_2022_027212
crossref_primary_10_1016_j_eswa_2023_119593
crossref_primary_10_1093_comjnl_bxae114
crossref_primary_10_1109_ACCESS_2020_3009819
crossref_primary_10_1109_ACCESS_2025_3550124
crossref_primary_10_3390_s25041153
crossref_primary_10_1002_ail2_94
crossref_primary_10_7717_peerj_cs_988
crossref_primary_10_32604_cmc_2023_039721
crossref_primary_10_3390_electronics10040485
crossref_primary_10_1155_2022_6731277
crossref_primary_10_7717_peerj_cs_907
crossref_primary_10_1007_s41870_023_01392_7
crossref_primary_10_1016_j_eswa_2023_121155
crossref_primary_10_1109_ACCESS_2021_3123187
crossref_primary_10_1007_s11277_022_09765_0
crossref_primary_10_1007_s11042_023_16920_7
crossref_primary_10_1007_s11277_024_11366_y
crossref_primary_10_1109_ACCESS_2024_3377658
crossref_primary_10_1016_j_csa_2023_100014
crossref_primary_10_1155_2022_2117883
crossref_primary_10_1016_j_cosrev_2021_100373
crossref_primary_10_1016_j_heliyon_2024_e40699
crossref_primary_10_1109_ACCESS_2021_3079370
crossref_primary_10_1145_3544968
crossref_primary_10_1007_s00521_021_06597_0
crossref_primary_10_1109_ACCESS_2024_3486094
crossref_primary_10_1109_ACCESS_2024_3390612
crossref_primary_10_1007_s00500_023_08671_2
crossref_primary_10_1016_j_iswa_2023_200318
crossref_primary_10_1109_TCE_2023_3342644
crossref_primary_10_3390_electronics12040789
crossref_primary_10_1186_s42400_022_00119_8
crossref_primary_10_1016_j_eswa_2023_122255
crossref_primary_10_7717_peerj_cs_1092
crossref_primary_10_1007_s10844_020_00598_6
crossref_primary_10_1016_j_cose_2021_102198
crossref_primary_10_3390_electronics12153253
crossref_primary_10_1007_s10207_023_00679_x
crossref_primary_10_1016_j_fsidi_2023_301564
crossref_primary_10_1016_j_cose_2022_102757
crossref_primary_10_1016_j_cose_2021_102514
crossref_primary_10_1109_TIFS_2024_3414339
crossref_primary_10_1016_j_cose_2025_104499
crossref_primary_10_1155_2022_5339926
crossref_primary_10_1155_2024_7382302
crossref_primary_10_1155_2022_6425583
crossref_primary_10_7717_peerj_cs_533
crossref_primary_10_1016_j_eswa_2022_118404
crossref_primary_10_1007_s00521_021_05816_y
crossref_primary_10_1016_j_iot_2024_101482
crossref_primary_10_1016_j_eswa_2022_117833
crossref_primary_10_1016_j_knosys_2025_113833
crossref_primary_10_1016_j_comnet_2022_108771
crossref_primary_10_1016_j_asoc_2022_109756
crossref_primary_10_1002_int_22529
crossref_primary_10_1155_2022_2959222
crossref_primary_10_1007_s10586_024_04484_6
crossref_primary_10_1049_ise2_12082
crossref_primary_10_1155_2020_8861639
crossref_primary_10_3390_electronics10202534
crossref_primary_10_1155_2022_8398591
crossref_primary_10_3390_technologies11030076
crossref_primary_10_1016_j_cose_2025_104364
crossref_primary_10_1109_ACCESS_2024_3485706
crossref_primary_10_4018_IJSI_309724
crossref_primary_10_3390_app10113978
crossref_primary_10_1108_IJWIS_03_2024_0095
crossref_primary_10_3390_app132212255
crossref_primary_10_3390_su122410499
crossref_primary_10_3390_s25030670
crossref_primary_10_1007_s11227_021_04020_y
crossref_primary_10_3390_fi12090145
crossref_primary_10_1371_journal_pone_0276332
crossref_primary_10_1016_j_cose_2025_104361
crossref_primary_10_3390_info12050185
crossref_primary_10_1016_j_compeleceng_2021_107443
crossref_primary_10_1007_s12083_021_01244_w
crossref_primary_10_1049_cmu2_12754
crossref_primary_10_1145_3492327
crossref_primary_10_3390_app13137720
crossref_primary_10_1016_j_cose_2024_103807
crossref_primary_10_3390_electronics10141694
crossref_primary_10_3390_s23167256
crossref_primary_10_1016_j_iot_2024_101258
crossref_primary_10_62465_riif_v4n1_2025_129
crossref_primary_10_1155_2020_8863385
crossref_primary_10_1007_s11042_024_19517_w
crossref_primary_10_1007_s10207_024_00822_2
crossref_primary_10_1002_cpe_7025
crossref_primary_10_1002_spe_3112
crossref_primary_10_1007_s11042_024_19390_7
crossref_primary_10_1016_j_cose_2023_103385
crossref_primary_10_1016_j_jestch_2024_101945
crossref_primary_10_3390_math10081298
crossref_primary_10_3390_app112210976
crossref_primary_10_1016_j_jisa_2021_102751
crossref_primary_10_3390_electronics11244079
crossref_primary_10_1007_s10586_024_04397_4
crossref_primary_10_1007_s11042_023_15264_6
crossref_primary_10_1016_j_measen_2023_100955
crossref_primary_10_1109_TDSC_2024_3406699
crossref_primary_10_1155_2022_7245403
crossref_primary_10_1016_j_cose_2021_102449
crossref_primary_10_1109_TIFS_2023_3338469
crossref_primary_10_1155_2020_8630748
crossref_primary_10_1109_TIFS_2024_3350379
crossref_primary_10_1109_TNNLS_2021_3105617
crossref_primary_10_3390_jcp1010008
crossref_primary_10_1007_s11042_024_20455_w
crossref_primary_10_1109_ACCESS_2023_3296606
crossref_primary_10_1109_TNSM_2025_3559255
crossref_primary_10_1049_cmu2_12265
crossref_primary_10_1016_j_jisa_2021_103057
crossref_primary_10_1016_j_compeleceng_2024_109948
crossref_primary_10_1016_j_jnca_2024_104035
crossref_primary_10_1109_ACCESS_2022_3155695
crossref_primary_10_1007_s11227_023_05347_4
crossref_primary_10_1016_j_cose_2023_103654
crossref_primary_10_1371_journal_pone_0257968
crossref_primary_10_1007_s42979_023_02516_3
crossref_primary_10_1016_j_compeleceng_2024_109544
crossref_primary_10_1145_3484246
crossref_primary_10_1038_s41598_024_60982_y
crossref_primary_10_1007_s00521_020_05450_0
crossref_primary_10_3390_info14070374
crossref_primary_10_3390_electronics12234817
crossref_primary_10_1016_j_jisa_2021_102929
crossref_primary_10_1016_j_eswa_2023_121125
crossref_primary_10_1007_s11227_020_03569_4
crossref_primary_10_1109_ACCESS_2021_3055427
crossref_primary_10_1109_ACCESS_2021_3123791
crossref_primary_10_1007_s42454_024_00055_7
crossref_primary_10_1109_ACCESS_2020_3028370
crossref_primary_10_1007_s12008_023_01578_0
crossref_primary_10_1016_j_cose_2022_102670
crossref_primary_10_1007_s11227_025_07055_7
crossref_primary_10_1007_s42979_024_02637_3
crossref_primary_10_1109_ACCESS_2024_3434629
crossref_primary_10_1007_s11277_021_08958_3
crossref_primary_10_1016_j_cose_2021_102399
crossref_primary_10_1016_j_eswa_2023_121617
crossref_primary_10_1016_j_procs_2022_11_027
crossref_primary_10_1155_2021_9099476
crossref_primary_10_3390_electronics10131606
crossref_primary_10_1155_2022_4119500
crossref_primary_10_1007_s10586_021_03459_1
crossref_primary_10_1007_s42979_023_01894_y
crossref_primary_10_1007_s11554_023_01311_w
crossref_primary_10_3390_app14114772
crossref_primary_10_1016_j_cose_2020_102086
crossref_primary_10_1016_j_cose_2021_102264
crossref_primary_10_1016_j_future_2021_02_015
crossref_primary_10_1007_s13042_020_01238_9
crossref_primary_10_3390_e23020174
crossref_primary_10_1080_01969722_2022_2068226
crossref_primary_10_1007_s00500_021_05893_0
crossref_primary_10_1016_j_cose_2021_102386
crossref_primary_10_1109_ACCESS_2025_3552070
crossref_primary_10_1109_ACCESS_2025_3594087
crossref_primary_10_1016_j_cose_2022_102718
crossref_primary_10_1111_exsy_13482
crossref_primary_10_1016_j_fsidi_2021_301168
crossref_primary_10_1016_j_future_2021_11_030
crossref_primary_10_1016_j_cose_2022_102835
crossref_primary_10_7717_peerj_cs_1043
crossref_primary_10_1109_TIFS_2025_3558592
crossref_primary_10_1016_j_icte_2024_03_005
crossref_primary_10_3390_electronics11010154
Cites_doi 10.1186/s13635-019-0087-1
10.1109/TDSC.2014.2355839
10.1038/nature14539
10.1109/TCYB.2017.2777960
10.1007/978-3-319-04283-1_6
10.1007/s10207-015-0310-0
10.1109/TIFS.2017.2687880
10.1109/ACCESS.2019.2893871
10.1109/TST.2016.7399288
10.1145/2544173.2509549
10.1007/s10844-010-0148-x
10.1049/iet-ifs.2014.0099
ContentType Journal Article
Copyright 2019
Copyright Elsevier Sequoia S.A. Feb 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier Sequoia S.A. Feb 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
DOI 10.1016/j.cose.2019.101663
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Criminal Justice (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Criminal Justice (Alumni)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
ProQuest Criminal Justice (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
ExternalDocumentID 10_1016_j_cose_2019_101663
S0167404819300161
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-f93f82fdf3824b2f709e2466d1e9ed7071167b283566d46e41b5c06f7df1bb13
ISICitedReferencesCount 218
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000508490300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4048
IngestDate Thu Nov 20 01:11:55 EST 2025
Sat Nov 29 05:55:44 EST 2025
Tue Nov 18 22:14:45 EST 2025
Fri Feb 23 02:49:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Dynamic analysis
Machine learning
Static analysis
Mobile security
Code coverage
Malware detection
Android
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-f93f82fdf3824b2f709e2466d1e9ed7071167b283566d46e41b5c06f7df1bb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1016/j.cose.2019.101663
PQID 2348317336
PQPubID 46289
ParticipantIDs proquest_journals_2348317336
crossref_citationtrail_10_1016_j_cose_2019_101663
crossref_primary_10_1016_j_cose_2019_101663
elsevier_sciencedirect_doi_10_1016_j_cose_2019_101663
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & security
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Sequoia S.A
References Aafer, Du, Yin (bib0001) 2013; 127
Azim, Neamtiu (bib0008) 2013; 48
LeCun, Bengio, Hinton (bib0027) 2015; 521
Li, Yang, Guo, Chen (bib0028) 2017
Tracedroid
Westyarian, Rosmansyah, Dabarsyah (bib0044) 2015
Arp, Spreitzenbarth, Hubner, Gascon, Rieck, Siemens (bib0007) 2014; 14
Choi, Necula, Sen (bib0011) 2013; 48
Choudhary, Gorla, Orso (bib0012) 2015
Yerima, Sezer, Muttik (bib0049) 2015; 9
Anand, Naik, Harrold, Yang (bib0006) 2012
Yuan, Lu, Xue (bib0052) 2016; 21
Amalfitano, Fasolino, Tramontana, De Carmine, Memon (bib0004) 2012
Yerima, Sezer, Muttik (bib0048) 2015
Candel, Parmar, LeDell, Arora (bib0009) 2016
Rastogi, Chen, Enck (bib0039) 2013
Yerima, Alzaylaee, Sezer (bib0045) 2019; 2019
Cen, Gates, Si, Li (bib0010) 2015; 12
Genymotion, Fast & Easy Android Emulator. (2018). Genymotion, Android Emulator for app testing.
.
Yuan, Lu, Wang, Xue (bib0051) 2014; 44
Enck, Gilbert, Chun, Cox, Jung, McDaniel, Sheth (bib0017) 2010; 49
Global smartphone shipments by OS 2016–2022 | Statistic.
McLaughlin, Martinez del Rincon, Kang, Yerima, Miller, Sezer, Safaei, Trickel, Zhao, Doupe (bib0032) 2017
Tam, Khan, Fattori, Cavallaro (bib0043) 2015
Hao, Liu, Nath, Halfond, Govindan (bib0021) 2014
Shabtai, Kanonov, Elovici, Glezer, Weiss (bib0041) 2012; 38
Start the emulator from the command line | Android Developers. (2018). Android Developers.
Alzaylaee, Yerima, Sezer (bib0002) 2017
DroidBox, Google Archive
Machiry, Tahiliani, Naik (bib0030) 2013
Rasthofer, Arzt, Bodden (bib0038) 2014
Yerima, Sezer (bib0046) 2019; 49
Dini, Martinelli, Saracino, Sgandurra (bib0015) 2012; 7531 LNCS
Hou, Saas, Chen, Ye (bib0022) 2016
Peiravian, Zhu (bib0037) 2013
Karbab, Debbabi, Derhab, Mouheb (bib0026) 2017
Smartphone OS market share worldwide 2009–2017 | Statistic, Statista
McAfee Labs Threats Predictions Report | McAfee Labs.
Alzaylaee, Yerima, Sezer (bib0003) 2017
Anagnostopoulos, Kambourakis, Gritzalis (bib0005) 2016; 15
Alzaylaee, M.K., Yerima, S.Y., and Sezer, S. (bib0029) 2016
NVISO ApkScan Scan Android applications for malware
Yerima, Sezer, Muttik (bib0050) 2016
Kang, Yerima, Sezer, McLaughlin (bib0025) 2016; abs/1612.01445
Developers, A., 2012. Ui/application exerciser monkey.
Yerima, Sezer, McWilliams, Muttik (bib0047) 2016
Hou, Saas, Chen, Ye, Bourlai (bib0023) 2017
Kang, Yerima, Mclaughlin, Sezer (bib0024) 2016
Papamartzivanos, Gasmez MAarmol, Kambourakis (bib0036) 2019; 7
Oberheide, Miller (bib0034) 2012
Google Play Protect. Android2018.
Fan, Liu, Wang, Li, Tian, Liu (bib0018) 2017; 12
Dini (10.1016/j.cose.2019.101663_bib0015) 2012; 7531 LNCS
Rastogi (10.1016/j.cose.2019.101663_bib0039) 2013
10.1016/j.cose.2019.101663_bib0042
Papamartzivanos (10.1016/j.cose.2019.101663_bib0036) 2019; 7
10.1016/j.cose.2019.101663_bib0040
Kang (10.1016/j.cose.2019.101663_bib0024) 2016
Cen (10.1016/j.cose.2019.101663_bib0010) 2015; 12
Yerima (10.1016/j.cose.2019.101663_bib0048) 2015
Kang (10.1016/j.cose.2019.101663_bib0025) 2016; abs/1612.01445
Alzaylaee (10.1016/j.cose.2019.101663_bib0003) 2017
10.1016/j.cose.2019.101663_bib0035
10.1016/j.cose.2019.101663_bib0033
Hou (10.1016/j.cose.2019.101663_bib0023) 2017
10.1016/j.cose.2019.101663_bib0031
Machiry (10.1016/j.cose.2019.101663_bib0030) 2013
Anand (10.1016/j.cose.2019.101663_bib0006) 2012
Yerima (10.1016/j.cose.2019.101663_bib0049) 2015; 9
Amalfitano (10.1016/j.cose.2019.101663_bib0004) 2012
Hao (10.1016/j.cose.2019.101663_bib0021) 2014
Choudhary (10.1016/j.cose.2019.101663_bib0012) 2015
Anagnostopoulos (10.1016/j.cose.2019.101663_bib0005) 2016; 15
Enck (10.1016/j.cose.2019.101663_bib0017) 2010; 49
Peiravian (10.1016/j.cose.2019.101663_bib0037) 2013
Yerima (10.1016/j.cose.2019.101663_bib0047) 2016
Choi (10.1016/j.cose.2019.101663_bib0011) 2013; 48
Candel (10.1016/j.cose.2019.101663_bib0009) 2016
Arp (10.1016/j.cose.2019.101663_bib0007) 2014; 14
Yuan (10.1016/j.cose.2019.101663_bib0052) 2016; 21
Yuan (10.1016/j.cose.2019.101663_bib0051) 2014; 44
10.1016/j.cose.2019.101663_bib0020
McLaughlin (10.1016/j.cose.2019.101663_bib0032) 2017
LeCun (10.1016/j.cose.2019.101663_bib0027) 2015; 521
Shabtai (10.1016/j.cose.2019.101663_bib0041) 2012; 38
Yerima (10.1016/j.cose.2019.101663_bib0046) 2019; 49
Yerima (10.1016/j.cose.2019.101663_bib0045) 2019; 2019
Fan (10.1016/j.cose.2019.101663_bib0018) 2017; 12
Aafer (10.1016/j.cose.2019.101663_bib0001) 2013; 127
Azim (10.1016/j.cose.2019.101663_bib0008) 2013; 48
Yerima (10.1016/j.cose.2019.101663_bib0050) 2016
Karbab (10.1016/j.cose.2019.101663_bib0026) 2017
Tam (10.1016/j.cose.2019.101663_bib0043) 2015
10.1016/j.cose.2019.101663_bib0013
10.1016/j.cose.2019.101663_bib0019
10.1016/j.cose.2019.101663_bib0016
10.1016/j.cose.2019.101663_bib0014
Oberheide (10.1016/j.cose.2019.101663_bib0034) 2012
Alzaylaee (10.1016/j.cose.2019.101663_bib0002) 2017
Westyarian (10.1016/j.cose.2019.101663_bib0044) 2015
Hou (10.1016/j.cose.2019.101663_bib0022) 2016
Alzaylaee, M.K., Yerima, S.Y., and Sezer, S. (10.1016/j.cose.2019.101663_bib0029) 2016
Li (10.1016/j.cose.2019.101663_bib0028) 2017
Rasthofer (10.1016/j.cose.2019.101663_bib0038) 2014
References_xml – start-page: 294
  year: 2015
  end-page: 297
  ident: bib0044
  article-title: Malware detection on android smartphones using api class and machine learning
  publication-title: 2015 International Conference on Electrical Engineering and Informatics (ICEEI)
– start-page: 258
  year: 2012
  end-page: 261
  ident: bib0004
  article-title: Using gui ripping for automated testing of android applications
  publication-title: Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering
– volume: 12
  start-page: 1772
  year: 2017
  end-page: 1785
  ident: bib0018
  article-title: Dapasa: detecting android piggybacked apps through sensitive subgraph analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 127
  start-page: 86
  year: 2013
  end-page: 103
  ident: bib0001
  article-title: Droidapiminer: mining API-Level features for robust malware detection in android
  publication-title: Secur. Priv. Commun. Netw.
– start-page: 300
  year: 2013
  end-page: 305
  ident: bib0037
  article-title: Machine learning for android malware detection using permission and api calls
  publication-title: Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th International Conference on
– reference: Tracedroid
– volume: 49
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib0017
  article-title: Taintdroid: an information-Flow tracking system for realtime privacy monitoring on smartphones
  publication-title: Osdi ’10
– start-page: 104
  year: 2016
  end-page: 111
  ident: bib0022
  article-title: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs
  publication-title: 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW)
– year: 2017
  ident: bib0026
  publication-title: Android malware detection using deep learning on api method sequences
– volume: 12
  start-page: 400
  year: 2015
  end-page: 412
  ident: bib0010
  article-title: A probabilistic discriminative model for android malware detection with decompiled source code
  publication-title: IEEE Trans Dependable Secure Comput
– start-page: 803
  year: 2017
  end-page: 810
  ident: bib0023
  article-title: Deep neural networks for automatic android malware detection
  publication-title: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017
– start-page: 23
  year: 2017
  end-page: 26
  ident: bib0028
  article-title: Droidbot: a lightweight ui-guided test input generator for android
  publication-title: 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C)
– volume: 14
  start-page: 23
  year: 2014
  end-page: 26
  ident: bib0007
  article-title: Drebin: effective and explainable detection of android malware in your pocket.
  publication-title: Ndss
– reference: Google Play Protect. Android2018.
– reference: DroidBox, Google Archive
– start-page: 59
  year: 2012
  ident: bib0006
  article-title: Automated concolic testing of smartphone apps
  publication-title: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering
– volume: 48
  start-page: 623
  year: 2013
  end-page: 640
  ident: bib0011
  article-title: Guided gui testing of android apps with minimal restart and approximate learning
  publication-title: ACM SIGPLAN Notices
– start-page: 301
  year: 2017
  end-page: 308
  ident: bib0032
  article-title: Deep android malware detection
  publication-title: Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy
– start-page: 1
  year: 2016
  end-page: 7
  ident: bib0024
  article-title: N-opcode analysis for android malware classification and categorization
  publication-title: 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security)
– volume: 44
  start-page: 371
  year: 2014
  end-page: 372
  ident: bib0051
  article-title: Droid-sec: deep learning in android malware detection
  publication-title: ACM SIGCOMM Computer Communication Review
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib0003
  article-title: Improving dynamic analysis of android apps using hybrid test input generation
  publication-title: 2017 International Conference on Cyber Security And Protection Of Digital Services (Cyber Security)
– reference: McAfee Labs Threats Predictions Report | McAfee Labs.
– start-page: 65
  year: 2017
  end-page: 72
  ident: bib0002
  article-title: Emulator vs real phone: android malware detection using machine learning
  publication-title: Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics
– reference: NVISO ApkScan Scan Android applications for malware
– volume: 48
  start-page: 641
  year: 2013
  end-page: 660
  ident: bib0008
  article-title: Targeted and depth-first exploration for systematic testing of android apps
  publication-title: SIGPLAN Not.
– reference: Developers, A., 2012. Ui/application exerciser monkey.
– year: 2012
  ident: bib0034
  article-title: Dissecting the android bouncer
  publication-title: Summercon 2012
– volume: 38
  start-page: 161
  year: 2012
  end-page: 190
  ident: bib0041
  article-title: ”Andromaly”: a behavioral malware detection framework for android devices
  publication-title: J. Intell. Inf. Syst.
– year: 2016
  ident: bib0050
  publication-title: Android malware detection using parallel machine learning classifiers
– start-page: 209
  year: 2013
  end-page: 220
  ident: bib0039
  article-title: Appsplayground : automatic security analysis of smartphone applications
  publication-title: CODASPY ’13 (3rd ACM conference on Data and Application Security and Privac)
– start-page: 224
  year: 2013
  end-page: 234
  ident: bib0030
  article-title: Dynodroid: an input generation system for android apps
  publication-title: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
– reference: Start the emulator from the command line | Android Developers. (2018). Android Developers.
– volume: 521
  start-page: 436
  year: 2015
  ident: bib0027
  article-title: Deep learning
  publication-title: Nature
– year: 2016
  ident: bib0047
  publication-title: A new android malware detection approach using bayesian classification
– volume: 9
  start-page: 313
  year: 2015
  end-page: 320
  ident: bib0049
  article-title: High accuracy android malware detection using ensemble learning
  publication-title: IET Inf. Secur.
– volume: 7
  start-page: 13546
  year: 2019
  end-page: 13560
  ident: bib0036
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
– year: 2016
  ident: bib0009
  article-title: Deep learning with h2o
  publication-title: H2O. ai Inc
– reference: Genymotion, Fast & Easy Android Emulator. (2018). Genymotion, Android Emulator for app testing.
– volume: 49
  start-page: 453
  year: 2019
  end-page: 466
  ident: bib0046
  article-title: Droidfusion: a novel multilevel classifier fusion approach for android malware detection
  publication-title: IEEE Trans. Cybern.
– start-page: 8
  year: 2015
  end-page: 11
  ident: bib0043
  article-title: Copperdroid: automatic reconstruction of android malware behaviors
  publication-title: Ndss
– volume: 7531 LNCS
  start-page: 240
  year: 2012
  end-page: 253
  ident: bib0015
  article-title: MADAM: A multi-level anomaly detector for android malware
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 15
  start-page: 455
  year: 2016
  end-page: 473
  ident: bib0005
  article-title: New facets of mobile botnet: architecture and evaluation
  publication-title: Int. J. Inf. Secur.
– year: 2014
  ident: bib0038
  article-title: A machine-learning approach for classifying and categorizing android sources and sinks.
  publication-title: NDSS
– reference: Smartphone OS market share worldwide 2009–2017 | Statistic, Statista
– volume: 2019
  start-page: 4
  year: 2019
  ident: bib0045
  article-title: Machine learning-based dynamic analysis of android apps with improved code coverage
  publication-title: EURASIP J. Inf. Secur.
– volume: 21
  start-page: 114
  year: 2016
  end-page: 123
  ident: bib0052
  article-title: Droiddetector: android malware characterization and detection using deep learning
  publication-title: Tsinghua Sci. Technol.
– volume: abs/1612.01445
  year: 2016
  ident: bib0025
  article-title: N-gram opcode analysis for android malware detection
  publication-title: CoRR
– start-page: 1236
  year: 2015
  end-page: 1242
  ident: bib0048
  article-title: Android malware detection: an eigenspace analysis approach
  publication-title: Science and Information Conference (SAI), 2015
– reference: .
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0029
  article-title: Dynalog: an automated dynamic analysis framework for characterizing android applications
  publication-title: 2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security)
– reference: Global smartphone shipments by OS 2016–2022 | Statistic.
– start-page: 204
  year: 2014
  end-page: 217
  ident: bib0021
  article-title: Puma: programmable ui-automation for large-scale dynamic analysis of mobile apps
  publication-title: Proceedings of the 12th annual international conference on Mobile systems, applications, and services
– start-page: 429
  year: 2015
  end-page: 440
  ident: bib0012
  article-title: Automated test input generation for android: Are we there yet?
  publication-title: Automated Software Engineering (ASE), 2015 30th IEEE/ACM International Conference on
– start-page: 429
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0012
  article-title: Automated test input generation for android: Are we there yet?
– ident: 10.1016/j.cose.2019.101663_bib0040
– start-page: 204
  year: 2014
  ident: 10.1016/j.cose.2019.101663_bib0021
  article-title: Puma: programmable ui-automation for large-scale dynamic analysis of mobile apps
– ident: 10.1016/j.cose.2019.101663_bib0019
– year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0050
  publication-title: Android malware detection using parallel machine learning classifiers
– year: 2012
  ident: 10.1016/j.cose.2019.101663_bib0034
  article-title: Dissecting the android bouncer
  publication-title: Summercon 2012
– start-page: 224
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0030
  article-title: Dynodroid: an input generation system for android apps
– volume: 2019
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.cose.2019.101663_bib0045
  article-title: Machine learning-based dynamic analysis of android apps with improved code coverage
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-019-0087-1
– start-page: 65
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0002
  article-title: Emulator vs real phone: android malware detection using machine learning
– year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0026
  publication-title: Android malware detection using deep learning on api method sequences
– year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0009
  article-title: Deep learning with h2o
  publication-title: H2O. ai Inc
– volume: 12
  start-page: 400
  issue: 4
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0010
  article-title: A probabilistic discriminative model for android malware detection with decompiled source code
  publication-title: IEEE Trans Dependable Secure Comput
  doi: 10.1109/TDSC.2014.2355839
– ident: 10.1016/j.cose.2019.101663_bib0020
– volume: 7531 LNCS
  start-page: 240
  year: 2012
  ident: 10.1016/j.cose.2019.101663_bib0015
  article-title: MADAM: A multi-level anomaly detector for android malware
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– start-page: 1
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0024
  article-title: N-opcode analysis for android malware classification and categorization
– ident: 10.1016/j.cose.2019.101663_bib0016
– ident: 10.1016/j.cose.2019.101663_bib0033
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0027
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 49
  start-page: 453
  issue: 2
  year: 2019
  ident: 10.1016/j.cose.2019.101663_bib0046
  article-title: Droidfusion: a novel multilevel classifier fusion approach for android malware detection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2777960
– volume: 44
  start-page: 371
  year: 2014
  ident: 10.1016/j.cose.2019.101663_bib0051
  article-title: Droid-sec: deep learning in android malware detection
– volume: 127
  start-page: 86
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0001
  article-title: Droidapiminer: mining API-Level features for robust malware detection in android
  publication-title: Secur. Priv. Commun. Netw.
  doi: 10.1007/978-3-319-04283-1_6
– start-page: 803
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0023
  article-title: Deep neural networks for automatic android malware detection
– start-page: 59
  year: 2012
  ident: 10.1016/j.cose.2019.101663_bib0006
  article-title: Automated concolic testing of smartphone apps
– ident: 10.1016/j.cose.2019.101663_bib0013
– start-page: 104
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0022
  article-title: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs
– volume: 15
  start-page: 455
  issue: 5
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0005
  article-title: New facets of mobile botnet: architecture and evaluation
  publication-title: Int. J. Inf. Secur.
  doi: 10.1007/s10207-015-0310-0
– start-page: 301
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0032
  article-title: Deep android malware detection
– ident: 10.1016/j.cose.2019.101663_bib0042
– start-page: 1
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0003
  article-title: Improving dynamic analysis of android apps using hybrid test input generation
– year: 2014
  ident: 10.1016/j.cose.2019.101663_bib0038
  article-title: A machine-learning approach for classifying and categorizing android sources and sinks.
– start-page: 209
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0039
  article-title: Appsplayground : automatic security analysis of smartphone applications
– year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0047
  publication-title: A new android malware detection approach using bayesian classification
– start-page: 1
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0029
  article-title: Dynalog: an automated dynamic analysis framework for characterizing android applications
– volume: 12
  start-page: 1772
  issue: 8
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0018
  article-title: Dapasa: detecting android piggybacked apps through sensitive subgraph analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2687880
– volume: abs/1612.01445
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0025
  article-title: N-gram opcode analysis for android malware detection
  publication-title: CoRR
– start-page: 1236
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0048
  article-title: Android malware detection: an eigenspace analysis approach
– start-page: 258
  year: 2012
  ident: 10.1016/j.cose.2019.101663_bib0004
  article-title: Using gui ripping for automated testing of android applications
– volume: 7
  start-page: 13546
  year: 2019
  ident: 10.1016/j.cose.2019.101663_bib0036
  article-title: Introducing deep learning self-adaptive misuse network intrusion detection systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2893871
– volume: 14
  start-page: 23
  year: 2014
  ident: 10.1016/j.cose.2019.101663_bib0007
  article-title: Drebin: effective and explainable detection of android malware in your pocket.
– ident: 10.1016/j.cose.2019.101663_bib0014
– volume: 21
  start-page: 114
  issue: 1
  year: 2016
  ident: 10.1016/j.cose.2019.101663_bib0052
  article-title: Droiddetector: android malware characterization and detection using deep learning
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2016.7399288
– volume: 48
  start-page: 623
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0011
  article-title: Guided gui testing of android apps with minimal restart and approximate learning
– ident: 10.1016/j.cose.2019.101663_bib0035
– start-page: 300
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0037
  article-title: Machine learning for android malware detection using permission and api calls
– volume: 49
  start-page: 1
  year: 2010
  ident: 10.1016/j.cose.2019.101663_bib0017
  article-title: Taintdroid: an information-Flow tracking system for realtime privacy monitoring on smartphones
  publication-title: Osdi ’10
– volume: 48
  start-page: 641
  issue: 10
  year: 2013
  ident: 10.1016/j.cose.2019.101663_bib0008
  article-title: Targeted and depth-first exploration for systematic testing of android apps
  publication-title: SIGPLAN Not.
  doi: 10.1145/2544173.2509549
– ident: 10.1016/j.cose.2019.101663_bib0031
– start-page: 8
  issue: February
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0043
  article-title: Copperdroid: automatic reconstruction of android malware behaviors
  publication-title: Ndss
– start-page: 294
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0044
  article-title: Malware detection on android smartphones using api class and machine learning
– start-page: 23
  year: 2017
  ident: 10.1016/j.cose.2019.101663_bib0028
  article-title: Droidbot: a lightweight ui-guided test input generator for android
– volume: 38
  start-page: 161
  issue: 1
  year: 2012
  ident: 10.1016/j.cose.2019.101663_bib0041
  article-title: ”Andromaly”: a behavioral malware detection framework for android devices
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-010-0148-x
– volume: 9
  start-page: 313
  issue: 6
  year: 2015
  ident: 10.1016/j.cose.2019.101663_bib0049
  article-title: High accuracy android malware detection using ensemble learning
  publication-title: IET Inf. Secur.
  doi: 10.1049/iet-ifs.2014.0099
SSID ssj0017688
Score 2.6639602
Snippet The Android operating system has been the most popular for smartphones and tablets since 2012. This popularity has led to a rapid raise of Android malware in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101663
SubjectTerms Android
Code coverage
Deep learning
Dynamic analysis
Experiments
Machine learning
Malware
Malware detection
Mobile operating systems
Mobile security
Popularity
Smartphones
Sophistication
Static analysis
Tablet computers
Title DL-Droid: Deep learning based android malware detection using real devices
URI https://dx.doi.org/10.1016/j.cose.2019.101663
https://www.proquest.com/docview/2348317336
Volume 89
WOSCitedRecordID wos000508490300006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5cAFypcotJUP3FZZJXE2jrlVbBEUqJDYw3KyknhMt1qyq2QLVX89469s2aoVPXCJIiexLM_LeDx5mUfIm6LkoCs1iphKeZQJzSIBcRnVCbAMqrwSKrZiE_zkpJhOxVfP0-2snABvmuLiQiz_q6mxDY1tfp29g7n7TrEBz9HoeESz4_GfDD_-HI3bxcxqN48BlkEY4sfArFi2Mqu5PPhZzn8b2peCFTi98HObN2hNqWEF1oNcDV2D_kNn0dJ53bseMPNL3PuXjtbzZXFqEuJq8Gm4zsmashaOBzSHmfly8L2_-A0uvf4XxrPt1UQE7jrjntThc5OmhHrsCmcG5-r0gbx3NJkC586uOW6XQzgbGpa-IdyJ4frmv6tkb6xePacw0NXOpOlDmj6k6-M-2U75SKDb3j78eDQ97r8y4Var6Gu_48D9T1WO_7c5kpsCl40l3MYlkx3yyG8o6KEDwhNyD5qn5HEwFvW--xk5Drh4Sw0qaEAFtaigHhXUo4L2qKAWFdSggnpUPCeT90eTdx8iL6QR1Yynq0gLpotUK82KNKtSzWMBaZbnKgEBimOUiTNQmcp72JblkCXVqI5zzZVOqiphL8hWs2jgJaGcQcF1XOqsxEBbgChFGlclYNhca13UuyQJkyRrX2TeaJ3M5c3m2SWD_pmlK7Fy692jMPfSB4ku-JMIpVuf2wuGkv5t7WTKsgIDaMbyV3caxGvycP0G7JGtVXsO--RB_Ws169oDD7M_p2eQYg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DL-Droid%3A+Deep+learning+based+android+malware+detection+using+real+devices&rft.jtitle=Computers+%26+security&rft.au=Alzaylaee%2C+Mohammed+K.&rft.au=Yerima%2C+Suleiman+Y.&rft.au=Sezer%2C+Sakir&rft.date=2020-02-01&rft.issn=0167-4048&rft.volume=89&rft.spage=101663&rft_id=info:doi/10.1016%2Fj.cose.2019.101663&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2019_101663
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon