Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques

The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of medical systems Ročník 43; číslo 9; s. 302 - 14
Hlavní autori: Acharya, U. Rajendra, Fernandes, Steven Lawrence, WeiKoh, Joel En, Ciaccio, Edward J., Fabell, Mohd Kamil Mohd, Tanik, U. John, Rajinikanth, V., Yeong, Chai Hong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.09.2019
Springer Nature B.V
Predmet:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
AbstractList The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
ArticleNumber 302
Author Fernandes, Steven Lawrence
Rajinikanth, V.
Ciaccio, Edward J.
Fabell, Mohd Kamil Mohd
Tanik, U. John
Yeong, Chai Hong
Acharya, U. Rajendra
WeiKoh, Joel En
Author_xml – sequence: 1
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University, Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences
– sequence: 2
  givenname: Steven Lawrence
  surname: Fernandes
  fullname: Fernandes, Steven Lawrence
  organization: Department of Electronics and Communication Engineering, Sahyadri College of Engineering & Management
– sequence: 3
  givenname: Joel En
  surname: WeiKoh
  fullname: WeiKoh, Joel En
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic
– sequence: 4
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
  organization: Department of Medicine, Columbia University
– sequence: 5
  givenname: Mohd Kamil Mohd
  surname: Fabell
  fullname: Fabell, Mohd Kamil Mohd
  organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya
– sequence: 6
  givenname: U. John
  surname: Tanik
  fullname: Tanik, U. John
  organization: Department of Computer Science and Information Systems, Texas A&M University-Commerce
– sequence: 7
  givenname: V.
  orcidid: 0000-0003-3897-4460
  surname: Rajinikanth
  fullname: Rajinikanth, V.
  email: v.rajinikanth@ieee.org
  organization: Department of Electronics and Instrumentation, St. Joseph’s College of Engineering
– sequence: 8
  givenname: Chai Hong
  surname: Yeong
  fullname: Yeong, Chai Hong
  organization: School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31396722$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFB2CDLLFhE7CT-G859I-RiipBi9hZjnMz4ypxiu2ona76Dqx4vT4JidKqUiVYefOdc4_P2UM7vveA0FtKPlJCxKdIiaI8I1RltMxlpl6gBWWiyLhUP3fQgtBSZowpuYv2YrwkhCjOxSu0W9BCcZHnC7RdDqnvTIIaH0ICm1zvcd_gZXu7AddBuL_7E_Ghi2Ai4Ivo_Bp_DsZ5_PXbCq86s4Z4f_cbL_H3NNRbfO3SBv8wwfVDxMdg0hAAH92kYGbrc7Ab734NEF-jl41pI7x5ePfRxfHR-cGX7PTsZHWwPM1sIfKUNaISpalKCTkFW9cSCguyAGUJFVwyKyqmKtY0NWOcMJI3UBlQpDZlU4haFvvow-x7FfrpbtKdixba1ngYQ-o8F2MxQpIJff8MveyH4Md0I8WVZFzRiXr3QA1VB7W-Cq4zYasfSx0BMQM29DEGaLR1yUzfH2twraZET_PpeT49zqen-bQalfSZ8tH8f5p81sSR9WsIT6H_LfoLgJ6ujw
CitedBy_id crossref_primary_10_1007_s12652_023_04662_1
crossref_primary_10_3390_make6010024
crossref_primary_10_1007_s11042_023_16519_y
crossref_primary_10_1007_s11831_021_09674_8
crossref_primary_10_1016_j_patrec_2019_11_014
crossref_primary_10_1111_exsy_12569
crossref_primary_10_1016_j_patrec_2019_11_017
crossref_primary_10_1016_j_patrec_2019_11_019
crossref_primary_10_1111_exsy_12963
crossref_primary_10_1155_2021_6078524
crossref_primary_10_1007_s11042_024_19077_z
crossref_primary_10_1016_j_bspc_2024_106212
crossref_primary_10_1155_2022_9554768
crossref_primary_10_3390_app14093879
crossref_primary_10_1007_s13198_025_02956_5
crossref_primary_10_1007_s41870_020_00606_6
crossref_primary_10_1111_exsy_13651
crossref_primary_10_1007_s13369_021_06131_3
crossref_primary_10_32604_cmc_2023_039164
crossref_primary_10_1016_j_compbiomed_2023_107723
crossref_primary_10_1016_j_bspc_2022_103974
crossref_primary_10_3389_fpsyt_2022_970993
crossref_primary_10_1016_j_bspc_2021_102525
crossref_primary_10_3390_diagnostics14212363
crossref_primary_10_3233_JIFS_230090
crossref_primary_10_1007_s13735_021_00210_9
crossref_primary_10_1038_s41598_020_71294_2
crossref_primary_10_1109_ACCESS_2023_3294981
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1016_j_cmpb_2021_106503
crossref_primary_10_1155_2021_9523039
crossref_primary_10_1038_s41598_021_93543_8
crossref_primary_10_1109_ACCESS_2025_3593254
crossref_primary_10_3390_jpm12050815
crossref_primary_10_1007_s00521_020_05082_4
crossref_primary_10_1016_j_procs_2023_01_162
crossref_primary_10_1016_j_ijleo_2022_170212
crossref_primary_10_1016_j_patrec_2020_03_014
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_3390_diagnostics11122208
crossref_primary_10_1016_j_patrec_2020_03_015
crossref_primary_10_1145_3492865
crossref_primary_10_1109_JBHI_2022_3155705
crossref_primary_10_1109_ACCESS_2025_3533638
crossref_primary_10_1002_cnm_3599
crossref_primary_10_1007_s12559_020_09751_3
crossref_primary_10_1016_j_patrec_2020_12_010
crossref_primary_10_3390_app15084516
crossref_primary_10_1016_j_mtchem_2024_102482
crossref_primary_10_1007_s40846_023_00785_0
crossref_primary_10_3389_fnins_2021_653130
crossref_primary_10_1007_s00521_019_04514_0
crossref_primary_10_1007_s11571_024_10104_1
crossref_primary_10_1007_s40747_021_00310_3
crossref_primary_10_4018_IJSI_309720
crossref_primary_10_1007_s13721_024_00443_8
crossref_primary_10_3390_app10103429
crossref_primary_10_1016_j_jneumeth_2022_109745
crossref_primary_10_1007_s11042_022_13506_7
crossref_primary_10_1016_j_cagd_2024_102364
crossref_primary_10_3389_fgene_2021_784814
crossref_primary_10_3390_math12091296
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1155_2021_9528664
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1016_j_cmpb_2021_105954
crossref_primary_10_1016_j_bspc_2023_105216
crossref_primary_10_1002_ima_22622
crossref_primary_10_1016_j_eswa_2020_114121
crossref_primary_10_1111_exsy_13200
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_3389_fneur_2020_576194
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_3390_app10186296
crossref_primary_10_1186_s12938_024_01305_0
crossref_primary_10_1007_s40747_021_00321_0
crossref_primary_10_1155_2022_3783977
crossref_primary_10_3390_ai5010017
crossref_primary_10_1016_j_patrec_2019_11_020
crossref_primary_10_1016_j_bspc_2024_107184
crossref_primary_10_1007_s12065_020_00539_w
crossref_primary_10_1016_j_cogsys_2019_10_002
crossref_primary_10_1371_journal_pone_0307461
crossref_primary_10_1016_j_cogsys_2019_10_001
crossref_primary_10_1109_ACCESS_2021_3095312
crossref_primary_10_1016_j_engappai_2025_111594
crossref_primary_10_6000_1929_6029_2025_14_39
crossref_primary_10_1016_j_patrec_2020_10_017
crossref_primary_10_3390_s22051960
crossref_primary_10_1109_ACCESS_2021_3072559
crossref_primary_10_1016_j_media_2021_102057
crossref_primary_10_1007_s11760_023_02586_z
crossref_primary_10_3390_electronics11070981
crossref_primary_10_1016_j_dsp_2025_105503
crossref_primary_10_57197_JDR_2025_0735
crossref_primary_10_1016_j_procs_2024_04_316
crossref_primary_10_1007_s10341_024_01196_4
crossref_primary_10_1088_1742_6596_1892_1_012009
crossref_primary_10_1007_s11042_024_19425_z
crossref_primary_10_1002_mp_17833
crossref_primary_10_1016_j_medengphy_2023_103971
crossref_primary_10_1051_bioconf_20249700102
crossref_primary_10_1007_s42452_025_07492_2
crossref_primary_10_1007_s10916_022_01857_5
crossref_primary_10_1016_j_cmpb_2020_105348
crossref_primary_10_1007_s12065_021_00581_2
crossref_primary_10_1016_j_cmpb_2020_105582
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1155_2021_9973277
crossref_primary_10_1111_exsy_13510
crossref_primary_10_1007_s00521_022_07583_w
crossref_primary_10_1007_s12652_021_03676_x
crossref_primary_10_1016_j_cmpb_2019_105134
crossref_primary_10_1016_j_compbiomed_2021_104879
crossref_primary_10_1177_09544119211060989
crossref_primary_10_33920_med_03_2412_13
crossref_primary_10_1016_j_abst_2024_08_004
crossref_primary_10_1007_s12243_025_01073_5
crossref_primary_10_3390_e22020239
crossref_primary_10_1007_s42979_025_04339_w
crossref_primary_10_1155_2021_7788491
crossref_primary_10_3390_foods13142289
crossref_primary_10_1016_j_jmva_2022_105126
crossref_primary_10_1007_s42044_025_00282_4
crossref_primary_10_1016_j_bspc_2022_103571
crossref_primary_10_1016_j_bspc_2023_105655
crossref_primary_10_1007_s11831_024_10176_6
crossref_primary_10_4316_AECE_2020_03007
crossref_primary_10_1016_j_artmed_2024_102928
crossref_primary_10_1007_s10916_019_1466_3
crossref_primary_10_1007_s11042_021_11786_z
crossref_primary_10_1016_j_knosys_2020_105949
crossref_primary_10_1007_s10278_023_00889_8
crossref_primary_10_1002_jemt_23779
crossref_primary_10_1007_s42452_024_06440_w
crossref_primary_10_1155_2021_5527698
crossref_primary_10_1007_s00521_022_08187_0
crossref_primary_10_1371_journal_pone_0226990
crossref_primary_10_3233_IDT_220256
crossref_primary_10_3390_life12111848
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1093_cercor_bhad499
crossref_primary_10_1016_j_ipm_2022_102952
crossref_primary_10_1007_s10462_021_10084_2
Cites_doi 10.1016/j.neuroscience.2015.08.013
10.1016/j.patrec.2017.05.028
10.1016/j.nic.2011.11.002
10.1159/000438457
10.1016/j.jbi.2011.01.001
10.1038/s41598-018-27337-w
10.1109/CETIC4.2018.8530910
10.1016/j.neuroimage.2009.11.046
10.1016/j.future.2018.03.023
10.1016/j.neuroimage.2013.06.033
10.7785/tcrt.2012.500214
10.1007/s00415-017-8395-1
10.1016/j.ins.2017.08.050
10.1016/j.neuroimage.2016.12.026
10.1016/j.dsp.2009.07.002
10.1016/j.compbiomed.2017.02.011
10.1016/j.jalz.2018.06.2498
10.1001/jama.2015.4669
10.1109/TIP.2010.2041410
10.1109/MSP.2005.1550194
10.1016/j.bspc.2006.05.002
10.3233/JAD-2012-129016
10.1109/SPICES.2015.7091517
10.1016/j.bspc.2018.10.010
10.1016/j.jneumeth.2017.12.010
10.1016/j.jalz.2016.02.010
10.1016/j.cmpb.2016.10.007
10.1016/j.neuroimage.2012.04.056
10.1007/978-981-10-3274-5_1
10.1109/TIP.2013.2244223
10.1016/j.neuroimage.2018.08.040
10.3233/JAD-150848
10.2528/PIER12061410
10.1002/msj.20279
10.1016/j.jneumeth.2018.01.003
10.1007/s11042-016-4222-4
10.1016/j.jneumeth.2011.01.027
10.1016/S0140-6736(11)60582-5
10.2214/ajr.182.1.1820003
10.3390/app6060169
10.1016/j.compmedimag.2018.08.002
10.1016/j.phpro.2012.03.133
10.1142/S0129065712500025
10.1016/j.knosys.2017.06.003
10.1016/j.future.2018.08.008
10.3233/JAD-170069
10.7717/peerj.1251
10.1016/j.ins.2018.01.051
10.1016/S1672-0229(08)60011-X
10.1007/s12652-018-0854-8
10.1371/journal.pone.0177044
10.1212/WNL.0b013e3182166e96
10.1016/j.neuroimage.2010.03.051
10.2528/PIER13121310
10.1186/alzrt276
10.1016/j.jocs.2017.02.006
10.1007/s10586-017-0977-2
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1428-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 14
ExternalDocumentID 31396722
10_1007_s10916_019_1428_9
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c372t-f7b74ab48e21ecdd8e3ce83e9c017685c7b59b5ffd5560502febae90da4f37d83
IEDL.DBID RSV
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480479100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Sun Nov 09 13:53:18 EST 2025
Tue Nov 04 23:05:05 EST 2025
Wed Feb 19 02:32:13 EST 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 20:48:39 EST 2025
Fri Feb 21 02:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Performance evaluation
Feature extraction
KNN classifier
Brain MRI
Alzheimer’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f7b74ab48e21ecdd8e3ce83e9c017685c7b59b5ffd5560502febae90da4f37d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3897-4460
PMID 31396722
PQID 2269856918
PQPubID 54050
PageCount 14
ParticipantIDs proquest_miscellaneous_2270007808
proquest_journals_2269856918
pubmed_primary_31396722
crossref_citationtrail_10_1007_s10916_019_1428_9
crossref_primary_10_1007_s10916_019_1428_9
springer_journals_10_1007_s10916_019_1428_9
PublicationCentury 2000
PublicationDate 20190900
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190900
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BeheshtiIDemirelHMatsudaHClassification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithmComput. Biol. Med.20178310911910.1016/j.compbiomed.2017.02.01128260614
RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028
ZhangYLenanWAn MR brain images classifier via principal component analysis and kernel support vector machineProg. Electromagn. Res.201213036938810.2528/PIER12061410
RaghavendraUBhatNSGudigarAAcharyaURAutomated system for the detection of thoracolumbar fractures using a CNN architectureFutur. Gener. Comput. Syst.20188518418910.1016/j.future.2018.03.023
HeadEPowellDGoldBTSchmittFAAlzheimer's disease in down syndromeEuropean Journal of Neurodegenerative Diseases201213353364
ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310
CalsolaroVEdisonPNeuroinflammation in Alzheimer's disease: Current evidence and future directionsAlzheimer's and Dementia201612671973210.1016/j.jalz.2016.02.01027179961
MalikGARobertsonNPTreatments in Alzheimer’s diseaseJ. Neurol.201726424164181:STN:280:DC%2BC1c7ptVSitw%3D%3D10.1007/s00415-017-8395-1281200415306064
NorfrayJFProvenzaleJMAlzheimer’s disease: neuropathologic findings and recent advances in imagingAm. J. Roentgenol.2004182131310.2214/ajr.182.1.1820003
ZhangYWangSSuiYYangMLiuBChengHMultivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimizationJ. Alzheimers Dis.20186585586910.3233/JAD-17006928731432
KrishnanKGVanathiPTAbinayaRTexture classification using Shearlet transform energy featuresCommunications in Computer and Information Science201667931310.1007/978-981-10-3274-5_1
ChaplotSPatnaikLMJagannathanNRClassification of magnetic resonance brain images using wavelets as input to support vector machine and neural networkBiomedical Signal Processing and Control200611869210.1016/j.bspc.2006.05.002
WangS-HZhangYLiY-JJiaW-JLiuF-YYangM-MSingle slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimizationMultimed. Tools Appl.2016779103931041710.1007/s11042-016-4222-4
Raja, N. S. M., Fernandes, S. L., Dey, N., Satapathy, S. C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput.:1–12, 2018. https://doi.org/10.1007/s12652-018-0854-8.
SotensenLNielsenMEnsemble support vector machine classification of dementia using structural MRI and mini-mental state examinationJ. Neurosci. Methods2018302667410.1016/j.jneumeth.2018.01.003
HaaksmaMiriam L.VilelaLara R.MarengoniAlessandraCalderón-LarrañagaAmaiaLeoutsakosJeannie-Marie S.Olde RikkertMarcel G. M.MelisRené J. F.Comorbidity and progression of late onset Alzheimer’s disease: A systematic reviewPLOS ONE2017125e017704410.1371/journal.pone.0177044284722005417646
EditorialThe three stages of Alzheimer's diseaseLancet20113779776146510.1016/S0140-6736(11)60582-5
JhaDKwonG-RContourlet-based feature extraction for computer-aided classification of Alzheimer’s diseaseAlzheimers and Dementia2018147147310.1016/j.jalz.2018.06.2498
GorjiHTHaddadniaJA novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRINeuroscience20153053613711:CAS:528:DC%2BC2MXhtlCru73L10.1016/j.neuroscience.2015.08.01326265552
WangSZhangYLiuGPhillipsPYuanT-FDetection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imagingJ. Alzheimers Dis.2016502332481:CAS:528:DC%2BC28XnvVGltA%3D%3D10.3233/JAD-15084826682696
El-DahshanE-SAHosnyTSalemA-BMHybrid intelligent techniques for MRI brain images classificationDigital Signal Processing20102043344110.1016/j.dsp.2009.07.002
ZhangYDongZPhillipsPWangSJiGYangJDetection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learningFront. Comput. Neurosci.2015966260827134451357
SelesnickIWBaraniukRGKingsburyNCThe dual-tree complex wavelet transformIEEE Signal Process. Mag.200522612315110.1109/MSP.2005.1550194
LiuXLocally linear embedding (LLE) for MRI based Alzheimer's disease classificationNeuroImage20138314815710.1016/j.neuroimage.2013.06.03323792982
GudigarARaghavendraUSanTRCiaccioEJAcharyaURApplication of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative studyFutur. Gener. Comput. Syst.20199035936710.1016/j.future.2018.08.008
ChandraBGuptaMAn efficient statistical feature selection approach for classification of gene expression dataJ. Biomed. Inform.20114445295351:STN:280:DC%2BC3Mjgt1GqsQ%3D%3D10.1016/j.jbi.2011.01.00121241823
BraskieMNTogaAWThompsonPMRecent advances in imaging alzheimer’s diseaseJ. Alzheimers Dis.2013331S313S32710.3233/JAD-2012-129016226728804110110
ZhouNWangLA Modified T-test Feature Selection Method and Its Application on the Hap Map Genotype DataGenomics Proteomics Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X18267305
WangS-HDuSZhangYPhillipsPWuL-NChenX-QAlzheimer’s disease detection by pseudo Zernike moment and linear regression classificationCNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)2017161115
LimW-QThe discrete Shearlet transform: a new directional transform and compactly supported Shearlet framesIEEE Trans. Image Process.20101951166118010.1109/TIP.2010.204141020106737
OssenkoppeleRPrevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysisJ. Am. Med. Assoc.2015313191939194910.1001/jama.2015.4669
GaoXWHuiRTianZClassification of CT brain images based on deep learning networksComput. Methods Prog. Biomed.2017138495610.1016/j.cmpb.2016.10.007
World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
Johnson, K.A., and Becker J.A. The whole brain atlas. Available from Harvard Medical School, USA http://www.med.harvard.edu/aanlib
TanJHAcharyaURBhandarySVChuaKCSivaprasadSSegmentation of optic disc, fovea and retinal vasculature using a single convolutional neural networkJ. Comput. Sci.2017207079
NeugroschlJWangSAlzheimer’s disease: Diagnosis and treatment across the spectrum of disease severityMt Sinai J. Med.201178459661210.1002/msj.20279217487483315348
WestmanEMuehlboeckJ-SSimmonsACombining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversionNeuroImage20126222923810.1016/j.neuroimage.2012.04.05622580170
SankariZAdeliHProbabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherenceJ. Neurosci. Methods2011197116517010.1016/j.jneumeth.2011.01.02721310177
HettKTaV-TManjónJVCoupéPAdaptive fusion of texture-based grading for Alzheimer's disease classificationComput. Med. Imaging Graph.20187081610.1016/j.compmedimag.2018.08.00230273832
AcharyaURFaustOSreeSVMolinariFGarberoglioRSuriJSCost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ AlgorithmsTechnology in Cancer Research & treatment20111043713801:STN:280:DC%2BC3MnlslKjsg%3D%3D10.7785/tcrt.2012.500214
LimW-QNonseparable Shearlet transformIEEE Trans. Image Process.20132252056206510.1109/TIP.2013.224422323372085
PichMImaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology?Alzheimers Res. Ther.20146511:CAS:528:DC%2BC2cXhvVGnsLbN10.1186/alzrt276
StonningtonCMPredicting clinical scores from magnetic resonance scans in Alzheimer's diseaseNeuroImage2010541405141310.1016/j.neuroimage.2010.03.051
AcharyaURFujitaHLihOSAdamMTanJHChuaCKAutomated detection of coronary artery disease using different durations of ECG segments with convolutional neural networkKnowl.-Based Syst.2017132627110.1016/j.knosys.2017.06.003
DimitriadisSILiparasDTsolakiMNRandom forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) databaseJ. Neurosci. Methods201830214231:STN:280:DC%2BC1MzktlSjtw%3D%3D10.1016/j.jneumeth.2017.12.01029269320
WhalleyLJSpatial distribution and secular trends in the epidemiology of Alzheimer’s diseaseNeuroimaging Clin. N. Am.201222111010.1016/j.nic.2011.11.00222284729
DickersonBStoubTShahRSperlingRKillianyRAlbertMAlzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adultsNeurology201176139514021:CAS:528:DC%2BC3MXkvValtbw%3D10.1212/WNL.0b013e3182166e96214903233087406
AyadiWElhamziWCharfiIAtriMA hybrid feature extraction approach for brain MRI classification based on Bag-of-wordsBiomedical Signal Processing and Control20194814415210.1016/j.bspc.2018.10.010
C. Patil, M. Mathura, S. Madhumitha, S. S. David, M. Fernandes, A. Venugopal, et al., Using Image Processing on MRI Scans, in Signal Processing, Informatics, IEEE International Conference on Communication and Energy Systems (SPICES), pp. 1–5, 2015, 2015. https://doi.org/10.1109/SPICES.2015.7091517.
PlantCTeipelSJOswaldABöhmCMeindlTMourao-MirandaJAutomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's diseaseNeuroimage20105016217410.1016/j.neuroimage.2009.11.046199619382838472
ZhuYHuangCAn improved median filtering algorithm for image noise reductionPhys. Procedia20122560961610.1016/j.phpro.2012.03.133
AcharyaU. RajendraSudarshanVidya K.AdeliHojjatSanthoshJayasreeKohJoel E.W.PuthankattiSubha D.AdeliAmirA Novel Depres
R Ossenkoppele (1428_CR10) 2015; 313
B Dickerson (1428_CR23) 2011; 76
Z Sankari (1428_CR27) 2011; 197
S Chaplot (1428_CR59) 2006; 1
V Rajinikanth (1428_CR46) 2017; 94
J Neugroschl (1428_CR7) 2011; 78
S Wang (1428_CR57) 2016; 6
U Raghavendra (1428_CR63) 2018; 441
S-H Wang (1428_CR34) 2017; 16
LJ Whalley (1428_CR12) 2012; 22
Y Zhu (1428_CR42) 2012; 25
S Wang (1428_CR36) 2016; 50
V Calsolaro (1428_CR20) 2016; 12
JF Norfray (1428_CR11) 2004; 182
N Zhou (1428_CR44) 2007; 5
X Liu (1428_CR14) 2013; 83
R Casanova (1428_CR19) 2018; 183
E-SA El-Dahshan (1428_CR33) 2010; 20
Miriam L. Haaksma (1428_CR4) 2017; 12
1428_CR41
KG Krishnan (1428_CR53) 2016; 679
E Head (1428_CR2) 2012; 1
Y Zhao (1428_CR26) 2017; 148
Y Zhang (1428_CR60) 2012; 130
UR Acharya (1428_CR51) 2017; 132
T Wang (1428_CR3) 2018; 8
1428_CR47
M Pich (1428_CR8) 2014; 6
Y Zhang (1428_CR38) 2015; 26
U. Rajendra Acharya (1428_CR48) 2015; 74
A Gudigar (1428_CR50) 2019; 90
GA Malik (1428_CR5) 2017; 264
CM Stonnington (1428_CR13) 2010; 5
Y Zhang (1428_CR29) 2018; 65
UR Acharya (1428_CR49) 2011; 10
JH Tan (1428_CR61) 2017; 20
B Chandra (1428_CR45) 2011; 44
W Ayadi (1428_CR58) 2019; 48
Editorial (1428_CR6) 2011; 377
R Varatharajan (1428_CR22) 2017; 21
U Raghavendra (1428_CR64) 2018; 85
IW Selesnick (1428_CR56) 2005; 22
K Hett (1428_CR39) 2018; 70
D Jha (1428_CR52) 2018; 14
Y Zhang (1428_CR37) 2015; 9
XW Gao (1428_CR40) 2017; 138
I Beheshti (1428_CR16) 2017; 83
W-Q Lim (1428_CR54) 2010; 19
L Sotensen (1428_CR18) 2018; 302
Y Zhang (1428_CR32) 2015; 3
MN Braskie (1428_CR9) 2013; 33
W-Q Lim (1428_CR55) 2013; 22
E Westman (1428_CR17) 2012; 62
1428_CR24
UR Acharya (1428_CR43) 2012; 22
C Plant (1428_CR28) 2010; 50
S-H Wang (1428_CR30) 2016; 77
1428_CR21
Y Zhang (1428_CR31) 2014; 144
JH Tan (1428_CR62) 2017; 420
HT Gorji (1428_CR35) 2015; 305
A Kaur (1428_CR25) 2016; 46
SI Dimitriadis (1428_CR15) 2018; 302
1428_CR1
References_xml – reference: C. Patil, M. Mathura, S. Madhumitha, S. S. David, M. Fernandes, A. Venugopal, et al., Using Image Processing on MRI Scans, in Signal Processing, Informatics, IEEE International Conference on Communication and Energy Systems (SPICES), pp. 1–5, 2015, 2015. https://doi.org/10.1109/SPICES.2015.7091517.
– reference: SotensenLNielsenMEnsemble support vector machine classification of dementia using structural MRI and mini-mental state examinationJ. Neurosci. Methods2018302667410.1016/j.jneumeth.2018.01.003
– reference: TanJHAcharyaURBhandarySVChuaKCSivaprasadSSegmentation of optic disc, fovea and retinal vasculature using a single convolutional neural networkJ. Comput. Sci.2017207079
– reference: World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
– reference: AcharyaU. RajendraSudarshanVidya K.AdeliHojjatSanthoshJayasreeKohJoel E.W.PuthankattiSubha D.AdeliAmirA Novel Depression Diagnosis Index Using Nonlinear Features in EEG SignalsEuropean Neurology2015741-2798310.1159/00043845726303033
– reference: HaaksmaMiriam L.VilelaLara R.MarengoniAlessandraCalderón-LarrañagaAmaiaLeoutsakosJeannie-Marie S.Olde RikkertMarcel G. M.MelisRené J. F.Comorbidity and progression of late onset Alzheimer’s disease: A systematic reviewPLOS ONE2017125e017704410.1371/journal.pone.0177044284722005417646
– reference: SelesnickIWBaraniukRGKingsburyNCThe dual-tree complex wavelet transformIEEE Signal Process. Mag.200522612315110.1109/MSP.2005.1550194
– reference: ZhangYWangSSunPPhillipsPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed. Mater. Eng.201526S1283S129026405888
– reference: ZhangYWangSSuiYYangMLiuBChengHMultivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimizationJ. Alzheimers Dis.20186585586910.3233/JAD-17006928731432
– reference: OssenkoppeleRPrevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysisJ. Am. Med. Assoc.2015313191939194910.1001/jama.2015.4669
– reference: Johnson, K.A., and Becker J.A. The whole brain atlas. Available from Harvard Medical School, USA http://www.med.harvard.edu/aanlib/
– reference: TanJHAutomated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural networkInf. Sci.2017420667610.1016/j.ins.2017.08.050
– reference: SankariZAdeliHProbabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherenceJ. Neurosci. Methods2011197116517010.1016/j.jneumeth.2011.01.02721310177
– reference: ChandraBGuptaMAn efficient statistical feature selection approach for classification of gene expression dataJ. Biomed. Inform.20114445295351:STN:280:DC%2BC3Mjgt1GqsQ%3D%3D10.1016/j.jbi.2011.01.00121241823
– reference: WangS-HZhangYLiY-JJiaW-JLiuF-YYangM-MSingle slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimizationMultimed. Tools Appl.2016779103931041710.1007/s11042-016-4222-4
– reference: El-DahshanE-SAHosnyTSalemA-BMHybrid intelligent techniques for MRI brain images classificationDigital Signal Processing20102043344110.1016/j.dsp.2009.07.002
– reference: DimitriadisSILiparasDTsolakiMNRandom forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) databaseJ. Neurosci. Methods201830214231:STN:280:DC%2BC1MzktlSjtw%3D%3D10.1016/j.jneumeth.2017.12.01029269320
– reference: StonningtonCMPredicting clinical scores from magnetic resonance scans in Alzheimer's diseaseNeuroImage2010541405141310.1016/j.neuroimage.2010.03.051
– reference: HettKTaV-TManjónJVCoupéPAdaptive fusion of texture-based grading for Alzheimer's disease classificationComput. Med. Imaging Graph.20187081610.1016/j.compmedimag.2018.08.00230273832
– reference: CalsolaroVEdisonPNeuroinflammation in Alzheimer's disease: Current evidence and future directionsAlzheimer's and Dementia201612671973210.1016/j.jalz.2016.02.01027179961
– reference: WangTQiuRGYuMPredictive modeling of the progression of Alzheimer’s disease with recurrent neural networksSci. Rep.2018891611:CAS:528:DC%2BC1cXhvVGit7rI10.1038/s41598-018-27337-w299077476003986
– reference: GaoXWHuiRTianZClassification of CT brain images based on deep learning networksComput. Methods Prog. Biomed.2017138495610.1016/j.cmpb.2016.10.007
– reference: WestmanEMuehlboeckJ-SSimmonsACombining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversionNeuroImage20126222923810.1016/j.neuroimage.2012.04.05622580170
– reference: CasanovaRUsing high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databasesNeuroImage201818340141110.1016/j.neuroimage.2018.08.04030130645
– reference: GorjiHTHaddadniaJA novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRINeuroscience20153053613711:CAS:528:DC%2BC2MXhtlCru73L10.1016/j.neuroscience.2015.08.01326265552
– reference: ZhangYDongZPhillipsPWangSJiGYangJDetection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learningFront. Comput. Neurosci.2015966260827134451357
– reference: WangS-HDuSZhangYPhillipsPWuL-NChenX-QAlzheimer’s disease detection by pseudo Zernike moment and linear regression classificationCNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)2017161115
– reference: ZhouNWangLA Modified T-test Feature Selection Method and Its Application on the Hap Map Genotype DataGenomics Proteomics Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X18267305
– reference: PlantCTeipelSJOswaldABöhmCMeindlTMourao-MirandaJAutomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's diseaseNeuroimage20105016217410.1016/j.neuroimage.2009.11.046199619382838472
– reference: RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028
– reference: ZhangYLenanWAn MR brain images classifier via principal component analysis and kernel support vector machineProg. Electromagn. Res.201213036938810.2528/PIER12061410
– reference: ZhaoYRaichleMEWenJBenzingerTLFaganAMHassenstabJIn vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imagingNeuroimage201714829630410.1016/j.neuroimage.2016.12.02627989773
– reference: RaghavendraUBhatNSGudigarAAcharyaURAutomated system for the detection of thoracolumbar fractures using a CNN architectureFutur. Gener. Comput. Syst.20188518418910.1016/j.future.2018.03.023
– reference: VaratharajanRManogaranGPriyanMSundarasekarRWearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithmClust. Comput.201721168169010.1007/s10586-017-0977-2
– reference: EditorialThe three stages of Alzheimer's diseaseLancet20113779776146510.1016/S0140-6736(11)60582-5
– reference: LimW-QThe discrete Shearlet transform: a new directional transform and compactly supported Shearlet framesIEEE Trans. Image Process.20101951166118010.1109/TIP.2010.204141020106737
– reference: Raja, N. S. M., Fernandes, S. L., Dey, N., Satapathy, S. C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput.:1–12, 2018. https://doi.org/10.1007/s12652-018-0854-8.
– reference: NeugroschlJWangSAlzheimer’s disease: Diagnosis and treatment across the spectrum of disease severityMt Sinai J. Med.201178459661210.1002/msj.20279217487483315348
– reference: KrishnanKGVanathiPTAbinayaRTexture classification using Shearlet transform energy featuresCommunications in Computer and Information Science201667931310.1007/978-981-10-3274-5_1
– reference: BraskieMNTogaAWThompsonPMRecent advances in imaging alzheimer’s diseaseJ. Alzheimers Dis.2013331S313S32710.3233/JAD-2012-129016226728804110110
– reference: WhalleyLJSpatial distribution and secular trends in the epidemiology of Alzheimer’s diseaseNeuroimaging Clin. N. Am.201222111010.1016/j.nic.2011.11.00222284729
– reference: NorfrayJFProvenzaleJMAlzheimer’s disease: neuropathologic findings and recent advances in imagingAm. J. Roentgenol.2004182131310.2214/ajr.182.1.1820003
– reference: HeadEPowellDGoldBTSchmittFAAlzheimer's disease in down syndromeEuropean Journal of Neurodegenerative Diseases201213353364
– reference: RaghavendraUDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051
– reference: BeheshtiIDemirelHMatsudaHClassification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithmComput. Biol. Med.20178310911910.1016/j.compbiomed.2017.02.01128260614
– reference: PichMImaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology?Alzheimers Res. Ther.20146511:CAS:528:DC%2BC2cXhvVGnsLbN10.1186/alzrt276
– reference: AcharyaURSreeSVAngPCAYantiRSuriJSApplication of non-linear and wavelet based features for the automated identification of epileptic EEG signalsInt. J. Neural Syst.20122202125000210.1142/S012906571250002523627588
– reference: AcharyaURFaustOSreeSVMolinariFGarberoglioRSuriJSCost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ AlgorithmsTechnology in Cancer Research & treatment20111043713801:STN:280:DC%2BC3MnlslKjsg%3D%3D10.7785/tcrt.2012.500214
– reference: GudigarARaghavendraUSanTRCiaccioEJAcharyaURApplication of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative studyFutur. Gener. Comput. Syst.20199035936710.1016/j.future.2018.08.008
– reference: WangSDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl. Sci.20166616910.3390/app6060169
– reference: LiuXLocally linear embedding (LLE) for MRI based Alzheimer's disease classificationNeuroImage20138314815710.1016/j.neuroimage.2013.06.03323792982
– reference: KaurAKaurPA comparative study of various exudate segmentation techniques for diagnosis of diabetic retinopathyInternational Journal of Current Engineering and Technology201646142146
– reference: ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310
– reference: AcharyaURFujitaHLihOSAdamMTanJHChuaCKAutomated detection of coronary artery disease using different durations of ECG segments with convolutional neural networkKnowl.-Based Syst.2017132627110.1016/j.knosys.2017.06.003
– reference: JhaDKwonG-RContourlet-based feature extraction for computer-aided classification of Alzheimer’s diseaseAlzheimers and Dementia2018147147310.1016/j.jalz.2018.06.2498
– reference: MalikGARobertsonNPTreatments in Alzheimer’s diseaseJ. Neurol.201726424164181:STN:280:DC%2BC1c7ptVSitw%3D%3D10.1007/s00415-017-8395-1281200415306064
– reference: ZhuYHuangCAn improved median filtering algorithm for image noise reductionPhys. Procedia20122560961610.1016/j.phpro.2012.03.133
– reference: N. A. Mathew, R. Vivek, and P. Anurenjan, Early Diagnosis of Alzheimer's Disease from MRI Images Using PNN, in 2018 International CET Conference on Control, Communication, and Computing (IC4), pp. 161–164, 2018.
– reference: DickersonBStoubTShahRSperlingRKillianyRAlbertMAlzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adultsNeurology201176139514021:CAS:528:DC%2BC3MXkvValtbw%3D10.1212/WNL.0b013e3182166e96214903233087406
– reference: LimW-QNonseparable Shearlet transformIEEE Trans. Image Process.20132252056206510.1109/TIP.2013.224422323372085
– reference: AyadiWElhamziWCharfiIAtriMA hybrid feature extraction approach for brain MRI classification based on Bag-of-wordsBiomedical Signal Processing and Control20194814415210.1016/j.bspc.2018.10.010
– reference: ChaplotSPatnaikLMJagannathanNRClassification of magnetic resonance brain images using wavelets as input to support vector machine and neural networkBiomedical Signal Processing and Control200611869210.1016/j.bspc.2006.05.002
– reference: ZhangYWangSDetection of Alzheimer’s disease by displacement field and machine learningPeer J20153e125110.7717/peerj.125126401461
– reference: WangSZhangYLiuGPhillipsPYuanT-FDetection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imagingJ. Alzheimers Dis.2016502332481:CAS:528:DC%2BC28XnvVGltA%3D%3D10.3233/JAD-15084826682696
– volume: 305
  start-page: 361
  year: 2015
  ident: 1428_CR35
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2015.08.013
– volume: 94
  start-page: 87
  year: 2017
  ident: 1428_CR46
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.05.028
– volume: 22
  start-page: 1
  issue: 1
  year: 2012
  ident: 1428_CR12
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2011.11.002
– volume: 74
  start-page: 79
  issue: 1-2
  year: 2015
  ident: 1428_CR48
  publication-title: European Neurology
  doi: 10.1159/000438457
– volume: 44
  start-page: 529
  issue: 4
  year: 2011
  ident: 1428_CR45
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2011.01.001
– volume: 16
  start-page: 11
  year: 2017
  ident: 1428_CR34
  publication-title: CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)
– volume: 8
  start-page: 9161
  year: 2018
  ident: 1428_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27337-w
– ident: 1428_CR21
  doi: 10.1109/CETIC4.2018.8530910
– volume: 50
  start-page: 162
  year: 2010
  ident: 1428_CR28
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.11.046
– volume: 85
  start-page: 184
  year: 2018
  ident: 1428_CR64
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.023
– volume: 83
  start-page: 148
  year: 2013
  ident: 1428_CR14
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.06.033
– volume: 10
  start-page: 371
  issue: 4
  year: 2011
  ident: 1428_CR49
  publication-title: Technology in Cancer Research & treatment
  doi: 10.7785/tcrt.2012.500214
– volume: 264
  start-page: 416
  issue: 2
  year: 2017
  ident: 1428_CR5
  publication-title: J. Neurol.
  doi: 10.1007/s00415-017-8395-1
– volume: 420
  start-page: 66
  year: 2017
  ident: 1428_CR62
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.08.050
– volume: 26
  start-page: S1283
  year: 2015
  ident: 1428_CR38
  publication-title: Biomed. Mater. Eng.
– volume: 148
  start-page: 296
  year: 2017
  ident: 1428_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.12.026
– volume: 20
  start-page: 433
  year: 2010
  ident: 1428_CR33
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2009.07.002
– volume: 83
  start-page: 109
  year: 2017
  ident: 1428_CR16
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.02.011
– volume: 14
  start-page: 1473
  issue: 7
  year: 2018
  ident: 1428_CR52
  publication-title: Alzheimers and Dementia
  doi: 10.1016/j.jalz.2018.06.2498
– volume: 313
  start-page: 1939
  issue: 19
  year: 2015
  ident: 1428_CR10
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2015.4669
– volume: 19
  start-page: 1166
  issue: 5
  year: 2010
  ident: 1428_CR54
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2041410
– volume: 22
  start-page: 123
  issue: 6
  year: 2005
  ident: 1428_CR56
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2005.1550194
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  ident: 1428_CR59
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2006.05.002
– volume: 33
  start-page: S313
  issue: 1
  year: 2013
  ident: 1428_CR9
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2012-129016
– ident: 1428_CR24
  doi: 10.1109/SPICES.2015.7091517
– volume: 48
  start-page: 144
  year: 2019
  ident: 1428_CR58
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2018.10.010
– volume: 302
  start-page: 14
  year: 2018
  ident: 1428_CR15
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.12.010
– volume: 12
  start-page: 719
  issue: 6
  year: 2016
  ident: 1428_CR20
  publication-title: Alzheimer's and Dementia
  doi: 10.1016/j.jalz.2016.02.010
– volume: 138
  start-page: 49
  year: 2017
  ident: 1428_CR40
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
– volume: 62
  start-page: 229
  year: 2012
  ident: 1428_CR17
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.04.056
– volume: 679
  start-page: 3
  year: 2016
  ident: 1428_CR53
  publication-title: Communications in Computer and Information Science
  doi: 10.1007/978-981-10-3274-5_1
– volume: 22
  start-page: 2056
  issue: 5
  year: 2013
  ident: 1428_CR55
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244223
– volume: 183
  start-page: 401
  year: 2018
  ident: 1428_CR19
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.08.040
– volume: 50
  start-page: 233
  year: 2016
  ident: 1428_CR36
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-150848
– volume: 130
  start-page: 369
  year: 2012
  ident: 1428_CR60
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER12061410
– volume: 78
  start-page: 596
  issue: 4
  year: 2011
  ident: 1428_CR7
  publication-title: Mt Sinai J. Med.
  doi: 10.1002/msj.20279
– volume: 1
  start-page: 353
  issue: 3
  year: 2012
  ident: 1428_CR2
  publication-title: European Journal of Neurodegenerative Diseases
– volume: 302
  start-page: 66
  year: 2018
  ident: 1428_CR18
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2018.01.003
– volume: 77
  start-page: 10393
  issue: 9
  year: 2016
  ident: 1428_CR30
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4222-4
– volume: 197
  start-page: 165
  issue: 1
  year: 2011
  ident: 1428_CR27
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.01.027
– volume: 377
  start-page: 1465
  issue: 9776
  year: 2011
  ident: 1428_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60582-5
– volume: 182
  start-page: 3
  issue: 1
  year: 2004
  ident: 1428_CR11
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.182.1.1820003
– ident: 1428_CR41
– volume: 6
  start-page: 169
  issue: 6
  year: 2016
  ident: 1428_CR57
  publication-title: Appl. Sci.
  doi: 10.3390/app6060169
– volume: 70
  start-page: 8
  year: 2018
  ident: 1428_CR39
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2018.08.002
– volume: 25
  start-page: 609
  year: 2012
  ident: 1428_CR42
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2012.03.133
– volume: 22
  start-page: 1250002
  issue: 02
  year: 2012
  ident: 1428_CR43
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065712500025
– volume: 132
  start-page: 62
  year: 2017
  ident: 1428_CR51
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.06.003
– ident: 1428_CR1
– volume: 90
  start-page: 359
  year: 2019
  ident: 1428_CR50
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.08.008
– volume: 65
  start-page: 855
  year: 2018
  ident: 1428_CR29
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-170069
– volume: 3
  start-page: e1251
  year: 2015
  ident: 1428_CR32
  publication-title: Peer J
  doi: 10.7717/peerj.1251
– volume: 441
  start-page: 41
  year: 2018
  ident: 1428_CR63
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 5
  start-page: 242
  issue: 3–4
  year: 2007
  ident: 1428_CR44
  publication-title: Genomics Proteomics Bioinformatics
  doi: 10.1016/S1672-0229(08)60011-X
– ident: 1428_CR47
  doi: 10.1007/s12652-018-0854-8
– volume: 9
  start-page: 66
  year: 2015
  ident: 1428_CR37
  publication-title: Front. Comput. Neurosci.
– volume: 12
  start-page: e0177044
  issue: 5
  year: 2017
  ident: 1428_CR4
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0177044
– volume: 76
  start-page: 1395
  year: 2011
  ident: 1428_CR23
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182166e96
– volume: 5
  start-page: 1405
  issue: 4
  year: 2010
  ident: 1428_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.03.051
– volume: 144
  start-page: 171
  year: 2014
  ident: 1428_CR31
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER13121310
– volume: 6
  start-page: 51
  year: 2014
  ident: 1428_CR8
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/alzrt276
– volume: 20
  start-page: 70
  year: 2017
  ident: 1428_CR61
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.02.006
– volume: 21
  start-page: 681
  issue: 1
  year: 2017
  ident: 1428_CR22
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-017-0977-2
– volume: 46
  start-page: 142
  year: 2016
  ident: 1428_CR25
  publication-title: International Journal of Current Engineering and Technology
SSID ssj0009667
Score 2.6263988
Snippet The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The...
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 302
SubjectTerms Abnormalities
Alzheimer Disease - classification
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Brain
Brain - pathology
Classification
Cognitive ability
Comparative analysis
Diagnosis
Diagnosis, Computer-Assisted - methods
Feature extraction
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Humans
Image & Signal Processing
Image acquisition
Image detection
Image Interpretation, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine
Medicine & Public Health
Neuroimaging
NMR
Nuclear magnetic resonance
Pattern Recognition, Automated - methods
Recent Advances in Deep Learning for Biomedical Signal Processing
Sensitivity
Series (mathematics)
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9VAFB60igjio76urXIEV8rQJJNkZlbl2gcWbRGppbswM5nBQpvUJFesq_4HV_17_SWeyST3IsVuXGeSDDmP-XIe3yHkjc6YyhRnFNGvof6EpiqJUypKK0yO3lH1bJ8Hn_jenjg8lJ-HgFs7lFWOPrF31GVtfIx8DWGCFFkuY7F--p36qVE-uzqM0LhJbsVJEns9_8jpgnQ3z0O7dCqoJyIfs5qhdQ6BEf5IS-o5x6j8-1y6AjavJEr782f7wf_u_CG5PyBPmAZVeURu2GqZ3NkdcuvL5F6I4EFoTHpMzqazrkY8a0vYtF1fsVVB7WB6_OubPTqxzeX5RQubIcEDfekBvPcDJ2D3yw7snKCjai_Pf8MUfK3iGfiILxzgr3k9a8Ejz1ljYetn14TWCtgf2WTbJ-Tr9tb-xgc6DGqghvGko45rniqdCpvE1pSlsMxYwaw0aO-5yAzXmdSZc2WGACuLEme1sjIqVeoYLwV7SpaqurLPCQjGcmVSrXJn0kin0ukY9QwVSUQmNm5ColFMhRlYzP0wjeNiwb_sJVugZAsv2UJOyNv5LaeBwuO6xaujEIvBmttiIcEJeT2_jHbokyuqsvjdcA3v8VaEa54FnZm_jSHMznmSTMi7UYkWD__nVl5cv5UVcjfx6tvXu62Spa6Z2ZfktvnRHbXNq94Q_gDaWA8X
  priority: 102
  providerName: ProQuest
Title Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques
URI https://link.springer.com/article/10.1007/s10916-019-1428-9
https://www.ncbi.nlm.nih.gov/pubmed/31396722
https://www.proquest.com/docview/2269856918
https://www.proquest.com/docview/2270007808
Volume 43
WOSCitedRecordID wos000480479100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSEkxMcYUBiVkXgCWUriJLYfO9aJCVpVpVQVL5HtOGLSlqIkRYyn_Q888e_tL-GcjxY0QIKXk6JcHOt8Z__s-zDAcx0xFSnOKKJfQ90KTVXgh1SkVpgYZ0dVV_ucv-XjsVgs5KTN4y67aPfOJVnP1D8luyGUwa2vpK5KGJVbsIOrnXDWOH0331TajeMmRzoU1FUf71yZv2vi18XoCsK84h2tF52jO__V3btwu8WYZNAoxT24ZvNduDFqvei7cKs5qyNNCtJ9OB-sqiUiV5uSQ1vVsVk5WWZkcPr1oz05s8XlxfeSHDauHFIHGZADd7UEGU2PyfEZTknl5cU3MiAuKvGcuLNdMsdN-HJVEocxV4Ulwy9V0SRRkFlXN7bcg_dHw9mr17S9koEaxoOKZlzzUOlQ2MC3Jk2FZcYKZqVBy45FZLiOpI6yLI0QSkVekFmtrPRSFWaMp4I9gO18mdtHQARjsTKhVnFmQk-HMtM-ahSqjPCMb7IeeN3YJKatV-6uzThNNpWWnYgTFHHiRJzIHrxYf_KpKdbxN-b9bsCT1m7LBMGoFFEsfdGDZ-vXaHHOjaJyi3JDHl4jKw95HjaKsv4bQ0Ad8yDowctOKzaN_7Erj_-J-wncDJxa1YFu-7BdFSv7FK6bz9VJWfRhi0_nji54TUUfdg6G48kUn95winTkzRwNJo5yRyfRh35tRD8AYsINxw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgqAS4qctsFDASHChsprE-bEPCC1sq666u0JoqXoLjuOISm22TbLAcuo7cOIleKg-CeM42RWq6K0HznF-5Hwz_uyZ-QbgZRIwGciIUWS_ipoVmkrP9SlPNVchekdZq33uD6LRiB8ciA9L8LuthTFpla1PrB11OlHmjHwLaYLgQShc_vbklJquUSa62rbQsLDY07NvuGUr3_R7-H9fed7O9vj9Lm26ClDFIq-iWZREvkx8rj1XqzTlminNmRYKwRnyQEVJIJIgy9IA2UDgeJlOpBZOKv2MRSln-NxrcN3o6pkUwqEzXoj8hqEtz_Y5NcLnbRTVluohEcONu6BG44yKv9fBC-T2QmC2Xu927v5vM3UP7jTMmnStKdyHJZ2vws1hkzuwCrftCSWxhVdrMOtOqwnydZ2Snq7qjLScTDLSPfrxRR8e6-L87FdJejaARerUCvLONNQgw4990j9GR1yen_0kXWJyMWfEnGiTfVmYpGJimPW00GT7e1XY0hEybtVyy3X4dCUT8QCW80muHwHhjIVS-YkMM-U7iS-yxEU7QkPhjnJV1gGnhUWsGpV20yzkKF7oSxskxYik2CApFh14Pb_lxEqUXDZ4owVN3HirMl4gpgMv5pfRz5jgkcw1zhuOiWo-6eCYhxaj87cx3EaEked1YLMF7eLh__yUx5d_ynO4tTseDuJBf7T3BFY8Yzp1bt8GLFfFVD-FG-prdVgWz2ojJPD5qrH8B_MNbwg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgiokxE-BslDASHChspqNk9g-ILSwXbHadlWhUvUWHMdWK7XZkmSB5dR34MSr8Dh9Esb52RWq6K0HznEcy_lm5rPnD-BlEjIVKs4osl9NnYWmyu8GVKRG6Ai1o6qqfe5v8_FYHBzI3SX43ebCuLDKVidWijqdaHdHvok0QYowkl2xaZuwiN3-4O3pF-o6SDlPa9tOo4bIyMy-4fGteDPs479-5fuDrb33H2jTYYBqxv2SWp7wQCWBMH7X6DQVhmkjmJEagRqJUPMklElobRoiMwg935pEGemlKrCMp4LhvNfgOlrh0MnYiNNFwd8oqlO1A0FdEfTWo1qn7SEpw0O8pK7eGZV_28QLRPeCk7ayfYM7__Ou3YXbDeMmvVpE7sGSyVZhZaeJKViFW_XNJakTsu7DrDctJ8jjTUr6pqwi1TIysaR3_OPQHJ2Y_PzsV0H6tWOLVCEX5J1rtEF2Pg7J8AQVdHF-9pP0iIvRnBF30032Ve6CjYlj3NPckK3vZV6nlJC9topu8QA-XclGPITlbJKZR0AEY5HSQaIiqwMvCaRNuihfKEDC011tO-C1EIl1U73dNRE5jhd1px2qYkRV7FAVyw68nr9yWpcuuWzweguguNFiRbxATwdezB-j_nFOJZUZ3Dccwyue6eGYtRqv868xPF5E3Pc7sNECeDH5P5fy-PKlPIcVhHC8PRyPnsBN30lRFfK3DstlPjVP4Yb-Wh4V-bNKHgl8vmoo_wEwfneH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Alzheimer%E2%80%99s+Disease+Using+Brain+MRI+Images%E2%80%93+A+Study+with+Various+Feature+Extraction+Techniques&rft.jtitle=Journal+of+medical+systems&rft.au=Acharya%2C+U.+Rajendra&rft.au=Fernandes%2C+Steven+Lawrence&rft.au=WeiKoh%2C+Joel+En&rft.au=Ciaccio%2C+Edward+J.&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft_id=info:doi/10.1007%2Fs10916-019-1428-9&rft.externalDocID=10_1007_s10916_019_1428_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon