Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure...
Uložené v:
| Vydané v: | Journal of medical systems Ročník 43; číslo 9; s. 302 - 14 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided
accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%.
Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database. |
|---|---|
| AbstractList | The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database. The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database. The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database. |
| ArticleNumber | 302 |
| Author | Fernandes, Steven Lawrence Rajinikanth, V. Ciaccio, Edward J. Fabell, Mohd Kamil Mohd Tanik, U. John Yeong, Chai Hong Acharya, U. Rajendra WeiKoh, Joel En |
| Author_xml | – sequence: 1 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University, Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences – sequence: 2 givenname: Steven Lawrence surname: Fernandes fullname: Fernandes, Steven Lawrence organization: Department of Electronics and Communication Engineering, Sahyadri College of Engineering & Management – sequence: 3 givenname: Joel En surname: WeiKoh fullname: WeiKoh, Joel En organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic – sequence: 4 givenname: Edward J. surname: Ciaccio fullname: Ciaccio, Edward J. organization: Department of Medicine, Columbia University – sequence: 5 givenname: Mohd Kamil Mohd surname: Fabell fullname: Fabell, Mohd Kamil Mohd organization: Department of Biomedical Imaging, Faculty of Medicine, University of Malaya – sequence: 6 givenname: U. John surname: Tanik fullname: Tanik, U. John organization: Department of Computer Science and Information Systems, Texas A&M University-Commerce – sequence: 7 givenname: V. orcidid: 0000-0003-3897-4460 surname: Rajinikanth fullname: Rajinikanth, V. email: v.rajinikanth@ieee.org organization: Department of Electronics and Instrumentation, St. Joseph’s College of Engineering – sequence: 8 givenname: Chai Hong surname: Yeong fullname: Yeong, Chai Hong organization: School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31396722$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFB2CDLLFhE7CT-G859I-RiipBi9hZjnMz4ypxiu2ona76Dqx4vT4JidKqUiVYefOdc4_P2UM7vveA0FtKPlJCxKdIiaI8I1RltMxlpl6gBWWiyLhUP3fQgtBSZowpuYv2YrwkhCjOxSu0W9BCcZHnC7RdDqnvTIIaH0ICm1zvcd_gZXu7AddBuL_7E_Ghi2Ai4Ivo_Bp_DsZ5_PXbCq86s4Z4f_cbL_H3NNRbfO3SBv8wwfVDxMdg0hAAH92kYGbrc7Ab734NEF-jl41pI7x5ePfRxfHR-cGX7PTsZHWwPM1sIfKUNaISpalKCTkFW9cSCguyAGUJFVwyKyqmKtY0NWOcMJI3UBlQpDZlU4haFvvow-x7FfrpbtKdixba1ngYQ-o8F2MxQpIJff8MveyH4Md0I8WVZFzRiXr3QA1VB7W-Cq4zYasfSx0BMQM29DEGaLR1yUzfH2twraZET_PpeT49zqen-bQalfSZ8tH8f5p81sSR9WsIT6H_LfoLgJ6ujw |
| CitedBy_id | crossref_primary_10_1007_s12652_023_04662_1 crossref_primary_10_3390_make6010024 crossref_primary_10_1007_s11042_023_16519_y crossref_primary_10_1007_s11831_021_09674_8 crossref_primary_10_1016_j_patrec_2019_11_014 crossref_primary_10_1111_exsy_12569 crossref_primary_10_1016_j_patrec_2019_11_017 crossref_primary_10_1016_j_patrec_2019_11_019 crossref_primary_10_1111_exsy_12963 crossref_primary_10_1155_2021_6078524 crossref_primary_10_1007_s11042_024_19077_z crossref_primary_10_1016_j_bspc_2024_106212 crossref_primary_10_1155_2022_9554768 crossref_primary_10_3390_app14093879 crossref_primary_10_1007_s13198_025_02956_5 crossref_primary_10_1007_s41870_020_00606_6 crossref_primary_10_1111_exsy_13651 crossref_primary_10_1007_s13369_021_06131_3 crossref_primary_10_32604_cmc_2023_039164 crossref_primary_10_1016_j_compbiomed_2023_107723 crossref_primary_10_1016_j_bspc_2022_103974 crossref_primary_10_3389_fpsyt_2022_970993 crossref_primary_10_1016_j_bspc_2021_102525 crossref_primary_10_3390_diagnostics14212363 crossref_primary_10_3233_JIFS_230090 crossref_primary_10_1007_s13735_021_00210_9 crossref_primary_10_1038_s41598_020_71294_2 crossref_primary_10_1109_ACCESS_2023_3294981 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1016_j_cmpb_2021_106503 crossref_primary_10_1155_2021_9523039 crossref_primary_10_1038_s41598_021_93543_8 crossref_primary_10_1109_ACCESS_2025_3593254 crossref_primary_10_3390_jpm12050815 crossref_primary_10_1007_s00521_020_05082_4 crossref_primary_10_1016_j_procs_2023_01_162 crossref_primary_10_1016_j_ijleo_2022_170212 crossref_primary_10_1016_j_patrec_2020_03_014 crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_3390_diagnostics11122208 crossref_primary_10_1016_j_patrec_2020_03_015 crossref_primary_10_1145_3492865 crossref_primary_10_1109_JBHI_2022_3155705 crossref_primary_10_1109_ACCESS_2025_3533638 crossref_primary_10_1002_cnm_3599 crossref_primary_10_1007_s12559_020_09751_3 crossref_primary_10_1016_j_patrec_2020_12_010 crossref_primary_10_3390_app15084516 crossref_primary_10_1016_j_mtchem_2024_102482 crossref_primary_10_1007_s40846_023_00785_0 crossref_primary_10_3389_fnins_2021_653130 crossref_primary_10_1007_s00521_019_04514_0 crossref_primary_10_1007_s11571_024_10104_1 crossref_primary_10_1007_s40747_021_00310_3 crossref_primary_10_4018_IJSI_309720 crossref_primary_10_1007_s13721_024_00443_8 crossref_primary_10_3390_app10103429 crossref_primary_10_1016_j_jneumeth_2022_109745 crossref_primary_10_1007_s11042_022_13506_7 crossref_primary_10_1016_j_cagd_2024_102364 crossref_primary_10_3389_fgene_2021_784814 crossref_primary_10_3390_math12091296 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1155_2021_9528664 crossref_primary_10_1111_exsy_13569 crossref_primary_10_1016_j_cmpb_2021_105954 crossref_primary_10_1016_j_bspc_2023_105216 crossref_primary_10_1002_ima_22622 crossref_primary_10_1016_j_eswa_2020_114121 crossref_primary_10_1111_exsy_13200 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_3389_fneur_2020_576194 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_3390_app10186296 crossref_primary_10_1186_s12938_024_01305_0 crossref_primary_10_1007_s40747_021_00321_0 crossref_primary_10_1155_2022_3783977 crossref_primary_10_3390_ai5010017 crossref_primary_10_1016_j_patrec_2019_11_020 crossref_primary_10_1016_j_bspc_2024_107184 crossref_primary_10_1007_s12065_020_00539_w crossref_primary_10_1016_j_cogsys_2019_10_002 crossref_primary_10_1371_journal_pone_0307461 crossref_primary_10_1016_j_cogsys_2019_10_001 crossref_primary_10_1109_ACCESS_2021_3095312 crossref_primary_10_1016_j_engappai_2025_111594 crossref_primary_10_6000_1929_6029_2025_14_39 crossref_primary_10_1016_j_patrec_2020_10_017 crossref_primary_10_3390_s22051960 crossref_primary_10_1109_ACCESS_2021_3072559 crossref_primary_10_1016_j_media_2021_102057 crossref_primary_10_1007_s11760_023_02586_z crossref_primary_10_3390_electronics11070981 crossref_primary_10_1016_j_dsp_2025_105503 crossref_primary_10_57197_JDR_2025_0735 crossref_primary_10_1016_j_procs_2024_04_316 crossref_primary_10_1007_s10341_024_01196_4 crossref_primary_10_1088_1742_6596_1892_1_012009 crossref_primary_10_1007_s11042_024_19425_z crossref_primary_10_1002_mp_17833 crossref_primary_10_1016_j_medengphy_2023_103971 crossref_primary_10_1051_bioconf_20249700102 crossref_primary_10_1007_s42452_025_07492_2 crossref_primary_10_1007_s10916_022_01857_5 crossref_primary_10_1016_j_cmpb_2020_105348 crossref_primary_10_1007_s12065_021_00581_2 crossref_primary_10_1016_j_cmpb_2020_105582 crossref_primary_10_1109_ACCESS_2021_3062484 crossref_primary_10_1155_2021_9973277 crossref_primary_10_1111_exsy_13510 crossref_primary_10_1007_s00521_022_07583_w crossref_primary_10_1007_s12652_021_03676_x crossref_primary_10_1016_j_cmpb_2019_105134 crossref_primary_10_1016_j_compbiomed_2021_104879 crossref_primary_10_1177_09544119211060989 crossref_primary_10_33920_med_03_2412_13 crossref_primary_10_1016_j_abst_2024_08_004 crossref_primary_10_1007_s12243_025_01073_5 crossref_primary_10_3390_e22020239 crossref_primary_10_1007_s42979_025_04339_w crossref_primary_10_1155_2021_7788491 crossref_primary_10_3390_foods13142289 crossref_primary_10_1016_j_jmva_2022_105126 crossref_primary_10_1007_s42044_025_00282_4 crossref_primary_10_1016_j_bspc_2022_103571 crossref_primary_10_1016_j_bspc_2023_105655 crossref_primary_10_1007_s11831_024_10176_6 crossref_primary_10_4316_AECE_2020_03007 crossref_primary_10_1016_j_artmed_2024_102928 crossref_primary_10_1007_s10916_019_1466_3 crossref_primary_10_1007_s11042_021_11786_z crossref_primary_10_1016_j_knosys_2020_105949 crossref_primary_10_1007_s10278_023_00889_8 crossref_primary_10_1002_jemt_23779 crossref_primary_10_1007_s42452_024_06440_w crossref_primary_10_1155_2021_5527698 crossref_primary_10_1007_s00521_022_08187_0 crossref_primary_10_1371_journal_pone_0226990 crossref_primary_10_3233_IDT_220256 crossref_primary_10_3390_life12111848 crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1093_cercor_bhad499 crossref_primary_10_1016_j_ipm_2022_102952 crossref_primary_10_1007_s10462_021_10084_2 |
| Cites_doi | 10.1016/j.neuroscience.2015.08.013 10.1016/j.patrec.2017.05.028 10.1016/j.nic.2011.11.002 10.1159/000438457 10.1016/j.jbi.2011.01.001 10.1038/s41598-018-27337-w 10.1109/CETIC4.2018.8530910 10.1016/j.neuroimage.2009.11.046 10.1016/j.future.2018.03.023 10.1016/j.neuroimage.2013.06.033 10.7785/tcrt.2012.500214 10.1007/s00415-017-8395-1 10.1016/j.ins.2017.08.050 10.1016/j.neuroimage.2016.12.026 10.1016/j.dsp.2009.07.002 10.1016/j.compbiomed.2017.02.011 10.1016/j.jalz.2018.06.2498 10.1001/jama.2015.4669 10.1109/TIP.2010.2041410 10.1109/MSP.2005.1550194 10.1016/j.bspc.2006.05.002 10.3233/JAD-2012-129016 10.1109/SPICES.2015.7091517 10.1016/j.bspc.2018.10.010 10.1016/j.jneumeth.2017.12.010 10.1016/j.jalz.2016.02.010 10.1016/j.cmpb.2016.10.007 10.1016/j.neuroimage.2012.04.056 10.1007/978-981-10-3274-5_1 10.1109/TIP.2013.2244223 10.1016/j.neuroimage.2018.08.040 10.3233/JAD-150848 10.2528/PIER12061410 10.1002/msj.20279 10.1016/j.jneumeth.2018.01.003 10.1007/s11042-016-4222-4 10.1016/j.jneumeth.2011.01.027 10.1016/S0140-6736(11)60582-5 10.2214/ajr.182.1.1820003 10.3390/app6060169 10.1016/j.compmedimag.2018.08.002 10.1016/j.phpro.2012.03.133 10.1142/S0129065712500025 10.1016/j.knosys.2017.06.003 10.1016/j.future.2018.08.008 10.3233/JAD-170069 10.7717/peerj.1251 10.1016/j.ins.2018.01.051 10.1016/S1672-0229(08)60011-X 10.1007/s12652-018-0854-8 10.1371/journal.pone.0177044 10.1212/WNL.0b013e3182166e96 10.1016/j.neuroimage.2010.03.051 10.2528/PIER13121310 10.1186/alzrt276 10.1016/j.jocs.2017.02.006 10.1007/s10586-017-0977-2 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1428-9 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 14 |
| ExternalDocumentID | 31396722 10_1007_s10916_019_1428_9 |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c372t-f7b74ab48e21ecdd8e3ce83e9c017685c7b59b5ffd5560502febae90da4f37d83 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000480479100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Sun Nov 09 13:53:18 EST 2025 Tue Nov 04 23:05:05 EST 2025 Wed Feb 19 02:32:13 EST 2025 Sat Nov 29 05:35:01 EST 2025 Tue Nov 18 20:48:39 EST 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Performance evaluation Feature extraction KNN classifier Brain MRI Alzheimer’s disease |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-f7b74ab48e21ecdd8e3ce83e9c017685c7b59b5ffd5560502febae90da4f37d83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3897-4460 |
| PMID | 31396722 |
| PQID | 2269856918 |
| PQPubID | 54050 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2270007808 proquest_journals_2269856918 pubmed_primary_31396722 crossref_citationtrail_10_1007_s10916_019_1428_9 crossref_primary_10_1007_s10916_019_1428_9 springer_journals_10_1007_s10916_019_1428_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20190900 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 9 year: 2019 text: 20190900 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BeheshtiIDemirelHMatsudaHClassification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithmComput. Biol. Med.20178310911910.1016/j.compbiomed.2017.02.01128260614 RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028 ZhangYLenanWAn MR brain images classifier via principal component analysis and kernel support vector machineProg. Electromagn. Res.201213036938810.2528/PIER12061410 RaghavendraUBhatNSGudigarAAcharyaURAutomated system for the detection of thoracolumbar fractures using a CNN architectureFutur. Gener. Comput. Syst.20188518418910.1016/j.future.2018.03.023 HeadEPowellDGoldBTSchmittFAAlzheimer's disease in down syndromeEuropean Journal of Neurodegenerative Diseases201213353364 ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310 CalsolaroVEdisonPNeuroinflammation in Alzheimer's disease: Current evidence and future directionsAlzheimer's and Dementia201612671973210.1016/j.jalz.2016.02.01027179961 MalikGARobertsonNPTreatments in Alzheimer’s diseaseJ. Neurol.201726424164181:STN:280:DC%2BC1c7ptVSitw%3D%3D10.1007/s00415-017-8395-1281200415306064 NorfrayJFProvenzaleJMAlzheimer’s disease: neuropathologic findings and recent advances in imagingAm. J. Roentgenol.2004182131310.2214/ajr.182.1.1820003 ZhangYWangSSuiYYangMLiuBChengHMultivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimizationJ. Alzheimers Dis.20186585586910.3233/JAD-17006928731432 KrishnanKGVanathiPTAbinayaRTexture classification using Shearlet transform energy featuresCommunications in Computer and Information Science201667931310.1007/978-981-10-3274-5_1 ChaplotSPatnaikLMJagannathanNRClassification of magnetic resonance brain images using wavelets as input to support vector machine and neural networkBiomedical Signal Processing and Control200611869210.1016/j.bspc.2006.05.002 WangS-HZhangYLiY-JJiaW-JLiuF-YYangM-MSingle slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimizationMultimed. Tools Appl.2016779103931041710.1007/s11042-016-4222-4 Raja, N. S. M., Fernandes, S. L., Dey, N., Satapathy, S. C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput.:1–12, 2018. https://doi.org/10.1007/s12652-018-0854-8. SotensenLNielsenMEnsemble support vector machine classification of dementia using structural MRI and mini-mental state examinationJ. Neurosci. Methods2018302667410.1016/j.jneumeth.2018.01.003 HaaksmaMiriam L.VilelaLara R.MarengoniAlessandraCalderón-LarrañagaAmaiaLeoutsakosJeannie-Marie S.Olde RikkertMarcel G. M.MelisRené J. F.Comorbidity and progression of late onset Alzheimer’s disease: A systematic reviewPLOS ONE2017125e017704410.1371/journal.pone.0177044284722005417646 EditorialThe three stages of Alzheimer's diseaseLancet20113779776146510.1016/S0140-6736(11)60582-5 JhaDKwonG-RContourlet-based feature extraction for computer-aided classification of Alzheimer’s diseaseAlzheimers and Dementia2018147147310.1016/j.jalz.2018.06.2498 GorjiHTHaddadniaJA novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRINeuroscience20153053613711:CAS:528:DC%2BC2MXhtlCru73L10.1016/j.neuroscience.2015.08.01326265552 WangSZhangYLiuGPhillipsPYuanT-FDetection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imagingJ. Alzheimers Dis.2016502332481:CAS:528:DC%2BC28XnvVGltA%3D%3D10.3233/JAD-15084826682696 El-DahshanE-SAHosnyTSalemA-BMHybrid intelligent techniques for MRI brain images classificationDigital Signal Processing20102043344110.1016/j.dsp.2009.07.002 ZhangYDongZPhillipsPWangSJiGYangJDetection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learningFront. Comput. Neurosci.2015966260827134451357 SelesnickIWBaraniukRGKingsburyNCThe dual-tree complex wavelet transformIEEE Signal Process. Mag.200522612315110.1109/MSP.2005.1550194 LiuXLocally linear embedding (LLE) for MRI based Alzheimer's disease classificationNeuroImage20138314815710.1016/j.neuroimage.2013.06.03323792982 GudigarARaghavendraUSanTRCiaccioEJAcharyaURApplication of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative studyFutur. Gener. Comput. Syst.20199035936710.1016/j.future.2018.08.008 ChandraBGuptaMAn efficient statistical feature selection approach for classification of gene expression dataJ. Biomed. Inform.20114445295351:STN:280:DC%2BC3Mjgt1GqsQ%3D%3D10.1016/j.jbi.2011.01.00121241823 BraskieMNTogaAWThompsonPMRecent advances in imaging alzheimer’s diseaseJ. Alzheimers Dis.2013331S313S32710.3233/JAD-2012-129016226728804110110 ZhouNWangLA Modified T-test Feature Selection Method and Its Application on the Hap Map Genotype DataGenomics Proteomics Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X18267305 WangS-HDuSZhangYPhillipsPWuL-NChenX-QAlzheimer’s disease detection by pseudo Zernike moment and linear regression classificationCNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)2017161115 LimW-QThe discrete Shearlet transform: a new directional transform and compactly supported Shearlet framesIEEE Trans. Image Process.20101951166118010.1109/TIP.2010.204141020106737 OssenkoppeleRPrevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysisJ. Am. Med. Assoc.2015313191939194910.1001/jama.2015.4669 GaoXWHuiRTianZClassification of CT brain images based on deep learning networksComput. Methods Prog. Biomed.2017138495610.1016/j.cmpb.2016.10.007 World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death Johnson, K.A., and Becker J.A. The whole brain atlas. Available from Harvard Medical School, USA http://www.med.harvard.edu/aanlib TanJHAcharyaURBhandarySVChuaKCSivaprasadSSegmentation of optic disc, fovea and retinal vasculature using a single convolutional neural networkJ. Comput. Sci.2017207079 NeugroschlJWangSAlzheimer’s disease: Diagnosis and treatment across the spectrum of disease severityMt Sinai J. Med.201178459661210.1002/msj.20279217487483315348 WestmanEMuehlboeckJ-SSimmonsACombining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversionNeuroImage20126222923810.1016/j.neuroimage.2012.04.05622580170 SankariZAdeliHProbabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherenceJ. Neurosci. Methods2011197116517010.1016/j.jneumeth.2011.01.02721310177 HettKTaV-TManjónJVCoupéPAdaptive fusion of texture-based grading for Alzheimer's disease classificationComput. Med. Imaging Graph.20187081610.1016/j.compmedimag.2018.08.00230273832 AcharyaURFaustOSreeSVMolinariFGarberoglioRSuriJSCost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ AlgorithmsTechnology in Cancer Research & treatment20111043713801:STN:280:DC%2BC3MnlslKjsg%3D%3D10.7785/tcrt.2012.500214 LimW-QNonseparable Shearlet transformIEEE Trans. Image Process.20132252056206510.1109/TIP.2013.224422323372085 PichMImaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology?Alzheimers Res. Ther.20146511:CAS:528:DC%2BC2cXhvVGnsLbN10.1186/alzrt276 StonningtonCMPredicting clinical scores from magnetic resonance scans in Alzheimer's diseaseNeuroImage2010541405141310.1016/j.neuroimage.2010.03.051 AcharyaURFujitaHLihOSAdamMTanJHChuaCKAutomated detection of coronary artery disease using different durations of ECG segments with convolutional neural networkKnowl.-Based Syst.2017132627110.1016/j.knosys.2017.06.003 DimitriadisSILiparasDTsolakiMNRandom forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) databaseJ. Neurosci. Methods201830214231:STN:280:DC%2BC1MzktlSjtw%3D%3D10.1016/j.jneumeth.2017.12.01029269320 WhalleyLJSpatial distribution and secular trends in the epidemiology of Alzheimer’s diseaseNeuroimaging Clin. N. Am.201222111010.1016/j.nic.2011.11.00222284729 DickersonBStoubTShahRSperlingRKillianyRAlbertMAlzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adultsNeurology201176139514021:CAS:528:DC%2BC3MXkvValtbw%3D10.1212/WNL.0b013e3182166e96214903233087406 AyadiWElhamziWCharfiIAtriMA hybrid feature extraction approach for brain MRI classification based on Bag-of-wordsBiomedical Signal Processing and Control20194814415210.1016/j.bspc.2018.10.010 C. Patil, M. Mathura, S. Madhumitha, S. S. David, M. Fernandes, A. Venugopal, et al., Using Image Processing on MRI Scans, in Signal Processing, Informatics, IEEE International Conference on Communication and Energy Systems (SPICES), pp. 1–5, 2015, 2015. https://doi.org/10.1109/SPICES.2015.7091517. PlantCTeipelSJOswaldABöhmCMeindlTMourao-MirandaJAutomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's diseaseNeuroimage20105016217410.1016/j.neuroimage.2009.11.046199619382838472 ZhuYHuangCAn improved median filtering algorithm for image noise reductionPhys. Procedia20122560961610.1016/j.phpro.2012.03.133 AcharyaU. RajendraSudarshanVidya K.AdeliHojjatSanthoshJayasreeKohJoel E.W.PuthankattiSubha D.AdeliAmirA Novel Depres R Ossenkoppele (1428_CR10) 2015; 313 B Dickerson (1428_CR23) 2011; 76 Z Sankari (1428_CR27) 2011; 197 S Chaplot (1428_CR59) 2006; 1 V Rajinikanth (1428_CR46) 2017; 94 J Neugroschl (1428_CR7) 2011; 78 S Wang (1428_CR57) 2016; 6 U Raghavendra (1428_CR63) 2018; 441 S-H Wang (1428_CR34) 2017; 16 LJ Whalley (1428_CR12) 2012; 22 Y Zhu (1428_CR42) 2012; 25 S Wang (1428_CR36) 2016; 50 V Calsolaro (1428_CR20) 2016; 12 JF Norfray (1428_CR11) 2004; 182 N Zhou (1428_CR44) 2007; 5 X Liu (1428_CR14) 2013; 83 R Casanova (1428_CR19) 2018; 183 E-SA El-Dahshan (1428_CR33) 2010; 20 Miriam L. Haaksma (1428_CR4) 2017; 12 1428_CR41 KG Krishnan (1428_CR53) 2016; 679 E Head (1428_CR2) 2012; 1 Y Zhao (1428_CR26) 2017; 148 Y Zhang (1428_CR60) 2012; 130 UR Acharya (1428_CR51) 2017; 132 T Wang (1428_CR3) 2018; 8 1428_CR47 M Pich (1428_CR8) 2014; 6 Y Zhang (1428_CR38) 2015; 26 U. Rajendra Acharya (1428_CR48) 2015; 74 A Gudigar (1428_CR50) 2019; 90 GA Malik (1428_CR5) 2017; 264 CM Stonnington (1428_CR13) 2010; 5 Y Zhang (1428_CR29) 2018; 65 UR Acharya (1428_CR49) 2011; 10 JH Tan (1428_CR61) 2017; 20 B Chandra (1428_CR45) 2011; 44 W Ayadi (1428_CR58) 2019; 48 Editorial (1428_CR6) 2011; 377 R Varatharajan (1428_CR22) 2017; 21 U Raghavendra (1428_CR64) 2018; 85 IW Selesnick (1428_CR56) 2005; 22 K Hett (1428_CR39) 2018; 70 D Jha (1428_CR52) 2018; 14 Y Zhang (1428_CR37) 2015; 9 XW Gao (1428_CR40) 2017; 138 I Beheshti (1428_CR16) 2017; 83 W-Q Lim (1428_CR54) 2010; 19 L Sotensen (1428_CR18) 2018; 302 Y Zhang (1428_CR32) 2015; 3 MN Braskie (1428_CR9) 2013; 33 W-Q Lim (1428_CR55) 2013; 22 E Westman (1428_CR17) 2012; 62 1428_CR24 UR Acharya (1428_CR43) 2012; 22 C Plant (1428_CR28) 2010; 50 S-H Wang (1428_CR30) 2016; 77 1428_CR21 Y Zhang (1428_CR31) 2014; 144 JH Tan (1428_CR62) 2017; 420 HT Gorji (1428_CR35) 2015; 305 A Kaur (1428_CR25) 2016; 46 SI Dimitriadis (1428_CR15) 2018; 302 1428_CR1 |
| References_xml | – reference: C. Patil, M. Mathura, S. Madhumitha, S. S. David, M. Fernandes, A. Venugopal, et al., Using Image Processing on MRI Scans, in Signal Processing, Informatics, IEEE International Conference on Communication and Energy Systems (SPICES), pp. 1–5, 2015, 2015. https://doi.org/10.1109/SPICES.2015.7091517. – reference: SotensenLNielsenMEnsemble support vector machine classification of dementia using structural MRI and mini-mental state examinationJ. Neurosci. Methods2018302667410.1016/j.jneumeth.2018.01.003 – reference: TanJHAcharyaURBhandarySVChuaKCSivaprasadSSegmentation of optic disc, fovea and retinal vasculature using a single convolutional neural networkJ. Comput. Sci.2017207079 – reference: World Health Organization (2018) The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death – reference: AcharyaU. RajendraSudarshanVidya K.AdeliHojjatSanthoshJayasreeKohJoel E.W.PuthankattiSubha D.AdeliAmirA Novel Depression Diagnosis Index Using Nonlinear Features in EEG SignalsEuropean Neurology2015741-2798310.1159/00043845726303033 – reference: HaaksmaMiriam L.VilelaLara R.MarengoniAlessandraCalderón-LarrañagaAmaiaLeoutsakosJeannie-Marie S.Olde RikkertMarcel G. M.MelisRené J. F.Comorbidity and progression of late onset Alzheimer’s disease: A systematic reviewPLOS ONE2017125e017704410.1371/journal.pone.0177044284722005417646 – reference: SelesnickIWBaraniukRGKingsburyNCThe dual-tree complex wavelet transformIEEE Signal Process. Mag.200522612315110.1109/MSP.2005.1550194 – reference: ZhangYWangSSunPPhillipsPPathological brain detection based on wavelet entropy and Hu moment invariantsBiomed. Mater. Eng.201526S1283S129026405888 – reference: ZhangYWangSSuiYYangMLiuBChengHMultivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimizationJ. Alzheimers Dis.20186585586910.3233/JAD-17006928731432 – reference: OssenkoppeleRPrevalence of Amyloid PET Positivity in Dementia Syndromes A Meta-analysisJ. Am. Med. Assoc.2015313191939194910.1001/jama.2015.4669 – reference: Johnson, K.A., and Becker J.A. The whole brain atlas. Available from Harvard Medical School, USA http://www.med.harvard.edu/aanlib/ – reference: TanJHAutomated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural networkInf. Sci.2017420667610.1016/j.ins.2017.08.050 – reference: SankariZAdeliHProbabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherenceJ. Neurosci. Methods2011197116517010.1016/j.jneumeth.2011.01.02721310177 – reference: ChandraBGuptaMAn efficient statistical feature selection approach for classification of gene expression dataJ. Biomed. Inform.20114445295351:STN:280:DC%2BC3Mjgt1GqsQ%3D%3D10.1016/j.jbi.2011.01.00121241823 – reference: WangS-HZhangYLiY-JJiaW-JLiuF-YYangM-MSingle slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimizationMultimed. Tools Appl.2016779103931041710.1007/s11042-016-4222-4 – reference: El-DahshanE-SAHosnyTSalemA-BMHybrid intelligent techniques for MRI brain images classificationDigital Signal Processing20102043344110.1016/j.dsp.2009.07.002 – reference: DimitriadisSILiparasDTsolakiMNRandom forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and Alzheimer’s disease patients: From the alzheimer’s disease neuroimaging initiative (ADNI) databaseJ. Neurosci. Methods201830214231:STN:280:DC%2BC1MzktlSjtw%3D%3D10.1016/j.jneumeth.2017.12.01029269320 – reference: StonningtonCMPredicting clinical scores from magnetic resonance scans in Alzheimer's diseaseNeuroImage2010541405141310.1016/j.neuroimage.2010.03.051 – reference: HettKTaV-TManjónJVCoupéPAdaptive fusion of texture-based grading for Alzheimer's disease classificationComput. Med. Imaging Graph.20187081610.1016/j.compmedimag.2018.08.00230273832 – reference: CalsolaroVEdisonPNeuroinflammation in Alzheimer's disease: Current evidence and future directionsAlzheimer's and Dementia201612671973210.1016/j.jalz.2016.02.01027179961 – reference: WangTQiuRGYuMPredictive modeling of the progression of Alzheimer’s disease with recurrent neural networksSci. Rep.2018891611:CAS:528:DC%2BC1cXhvVGit7rI10.1038/s41598-018-27337-w299077476003986 – reference: GaoXWHuiRTianZClassification of CT brain images based on deep learning networksComput. Methods Prog. Biomed.2017138495610.1016/j.cmpb.2016.10.007 – reference: WestmanEMuehlboeckJ-SSimmonsACombining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversionNeuroImage20126222923810.1016/j.neuroimage.2012.04.05622580170 – reference: CasanovaRUsing high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer's disease across imaging databasesNeuroImage201818340141110.1016/j.neuroimage.2018.08.04030130645 – reference: GorjiHTHaddadniaJA novel method for early diagnosis of Alzheimer’s disease based on pseudo Zernike moment from structural MRINeuroscience20153053613711:CAS:528:DC%2BC2MXhtlCru73L10.1016/j.neuroscience.2015.08.01326265552 – reference: ZhangYDongZPhillipsPWangSJiGYangJDetection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learningFront. Comput. Neurosci.2015966260827134451357 – reference: WangS-HDuSZhangYPhillipsPWuL-NChenX-QAlzheimer’s disease detection by pseudo Zernike moment and linear regression classificationCNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders)2017161115 – reference: ZhouNWangLA Modified T-test Feature Selection Method and Its Application on the Hap Map Genotype DataGenomics Proteomics Bioinformatics200753–424224910.1016/S1672-0229(08)60011-X18267305 – reference: PlantCTeipelSJOswaldABöhmCMeindlTMourao-MirandaJAutomated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's diseaseNeuroimage20105016217410.1016/j.neuroimage.2009.11.046199619382838472 – reference: RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028 – reference: ZhangYLenanWAn MR brain images classifier via principal component analysis and kernel support vector machineProg. Electromagn. Res.201213036938810.2528/PIER12061410 – reference: ZhaoYRaichleMEWenJBenzingerTLFaganAMHassenstabJIn vivo detection of microstructural correlates of brain pathology in preclinical and early Alzheimer Disease with magnetic resonance imagingNeuroimage201714829630410.1016/j.neuroimage.2016.12.02627989773 – reference: RaghavendraUBhatNSGudigarAAcharyaURAutomated system for the detection of thoracolumbar fractures using a CNN architectureFutur. Gener. Comput. Syst.20188518418910.1016/j.future.2018.03.023 – reference: VaratharajanRManogaranGPriyanMSundarasekarRWearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithmClust. Comput.201721168169010.1007/s10586-017-0977-2 – reference: EditorialThe three stages of Alzheimer's diseaseLancet20113779776146510.1016/S0140-6736(11)60582-5 – reference: LimW-QThe discrete Shearlet transform: a new directional transform and compactly supported Shearlet framesIEEE Trans. Image Process.20101951166118010.1109/TIP.2010.204141020106737 – reference: Raja, N. S. M., Fernandes, S. L., Dey, N., Satapathy, S. C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput.:1–12, 2018. https://doi.org/10.1007/s12652-018-0854-8. – reference: NeugroschlJWangSAlzheimer’s disease: Diagnosis and treatment across the spectrum of disease severityMt Sinai J. Med.201178459661210.1002/msj.20279217487483315348 – reference: KrishnanKGVanathiPTAbinayaRTexture classification using Shearlet transform energy featuresCommunications in Computer and Information Science201667931310.1007/978-981-10-3274-5_1 – reference: BraskieMNTogaAWThompsonPMRecent advances in imaging alzheimer’s diseaseJ. Alzheimers Dis.2013331S313S32710.3233/JAD-2012-129016226728804110110 – reference: WhalleyLJSpatial distribution and secular trends in the epidemiology of Alzheimer’s diseaseNeuroimaging Clin. N. Am.201222111010.1016/j.nic.2011.11.00222284729 – reference: NorfrayJFProvenzaleJMAlzheimer’s disease: neuropathologic findings and recent advances in imagingAm. J. Roentgenol.2004182131310.2214/ajr.182.1.1820003 – reference: HeadEPowellDGoldBTSchmittFAAlzheimer's disease in down syndromeEuropean Journal of Neurodegenerative Diseases201213353364 – reference: RaghavendraUDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051 – reference: BeheshtiIDemirelHMatsudaHClassification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithmComput. Biol. Med.20178310911910.1016/j.compbiomed.2017.02.01128260614 – reference: PichMImaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology?Alzheimers Res. Ther.20146511:CAS:528:DC%2BC2cXhvVGnsLbN10.1186/alzrt276 – reference: AcharyaURSreeSVAngPCAYantiRSuriJSApplication of non-linear and wavelet based features for the automated identification of epileptic EEG signalsInt. J. Neural Syst.20122202125000210.1142/S012906571250002523627588 – reference: AcharyaURFaustOSreeSVMolinariFGarberoglioRSuriJSCost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ AlgorithmsTechnology in Cancer Research & treatment20111043713801:STN:280:DC%2BC3MnlslKjsg%3D%3D10.7785/tcrt.2012.500214 – reference: GudigarARaghavendraUSanTRCiaccioEJAcharyaURApplication of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative studyFutur. Gener. Comput. Syst.20199035936710.1016/j.future.2018.08.008 – reference: WangSDual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain DetectionAppl. Sci.20166616910.3390/app6060169 – reference: LiuXLocally linear embedding (LLE) for MRI based Alzheimer's disease classificationNeuroImage20138314815710.1016/j.neuroimage.2013.06.03323792982 – reference: KaurAKaurPA comparative study of various exudate segmentation techniques for diagnosis of diabetic retinopathyInternational Journal of Current Engineering and Technology201646142146 – reference: ZhangYWangSDongZClassification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision treeProg. Electromagn. Res.201414417118410.2528/PIER13121310 – reference: AcharyaURFujitaHLihOSAdamMTanJHChuaCKAutomated detection of coronary artery disease using different durations of ECG segments with convolutional neural networkKnowl.-Based Syst.2017132627110.1016/j.knosys.2017.06.003 – reference: JhaDKwonG-RContourlet-based feature extraction for computer-aided classification of Alzheimer’s diseaseAlzheimers and Dementia2018147147310.1016/j.jalz.2018.06.2498 – reference: MalikGARobertsonNPTreatments in Alzheimer’s diseaseJ. Neurol.201726424164181:STN:280:DC%2BC1c7ptVSitw%3D%3D10.1007/s00415-017-8395-1281200415306064 – reference: ZhuYHuangCAn improved median filtering algorithm for image noise reductionPhys. Procedia20122560961610.1016/j.phpro.2012.03.133 – reference: N. A. Mathew, R. Vivek, and P. Anurenjan, Early Diagnosis of Alzheimer's Disease from MRI Images Using PNN, in 2018 International CET Conference on Control, Communication, and Computing (IC4), pp. 161–164, 2018. – reference: DickersonBStoubTShahRSperlingRKillianyRAlbertMAlzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adultsNeurology201176139514021:CAS:528:DC%2BC3MXkvValtbw%3D10.1212/WNL.0b013e3182166e96214903233087406 – reference: LimW-QNonseparable Shearlet transformIEEE Trans. Image Process.20132252056206510.1109/TIP.2013.224422323372085 – reference: AyadiWElhamziWCharfiIAtriMA hybrid feature extraction approach for brain MRI classification based on Bag-of-wordsBiomedical Signal Processing and Control20194814415210.1016/j.bspc.2018.10.010 – reference: ChaplotSPatnaikLMJagannathanNRClassification of magnetic resonance brain images using wavelets as input to support vector machine and neural networkBiomedical Signal Processing and Control200611869210.1016/j.bspc.2006.05.002 – reference: ZhangYWangSDetection of Alzheimer’s disease by displacement field and machine learningPeer J20153e125110.7717/peerj.125126401461 – reference: WangSZhangYLiuGPhillipsPYuanT-FDetection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imagingJ. Alzheimers Dis.2016502332481:CAS:528:DC%2BC28XnvVGltA%3D%3D10.3233/JAD-15084826682696 – volume: 305 start-page: 361 year: 2015 ident: 1428_CR35 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2015.08.013 – volume: 94 start-page: 87 year: 2017 ident: 1428_CR46 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.05.028 – volume: 22 start-page: 1 issue: 1 year: 2012 ident: 1428_CR12 publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2011.11.002 – volume: 74 start-page: 79 issue: 1-2 year: 2015 ident: 1428_CR48 publication-title: European Neurology doi: 10.1159/000438457 – volume: 44 start-page: 529 issue: 4 year: 2011 ident: 1428_CR45 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2011.01.001 – volume: 16 start-page: 11 year: 2017 ident: 1428_CR34 publication-title: CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) – volume: 8 start-page: 9161 year: 2018 ident: 1428_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-018-27337-w – ident: 1428_CR21 doi: 10.1109/CETIC4.2018.8530910 – volume: 50 start-page: 162 year: 2010 ident: 1428_CR28 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.11.046 – volume: 85 start-page: 184 year: 2018 ident: 1428_CR64 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.023 – volume: 83 start-page: 148 year: 2013 ident: 1428_CR14 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.06.033 – volume: 10 start-page: 371 issue: 4 year: 2011 ident: 1428_CR49 publication-title: Technology in Cancer Research & treatment doi: 10.7785/tcrt.2012.500214 – volume: 264 start-page: 416 issue: 2 year: 2017 ident: 1428_CR5 publication-title: J. Neurol. doi: 10.1007/s00415-017-8395-1 – volume: 420 start-page: 66 year: 2017 ident: 1428_CR62 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.08.050 – volume: 26 start-page: S1283 year: 2015 ident: 1428_CR38 publication-title: Biomed. Mater. Eng. – volume: 148 start-page: 296 year: 2017 ident: 1428_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.12.026 – volume: 20 start-page: 433 year: 2010 ident: 1428_CR33 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2009.07.002 – volume: 83 start-page: 109 year: 2017 ident: 1428_CR16 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.02.011 – volume: 14 start-page: 1473 issue: 7 year: 2018 ident: 1428_CR52 publication-title: Alzheimers and Dementia doi: 10.1016/j.jalz.2018.06.2498 – volume: 313 start-page: 1939 issue: 19 year: 2015 ident: 1428_CR10 publication-title: J. Am. Med. Assoc. doi: 10.1001/jama.2015.4669 – volume: 19 start-page: 1166 issue: 5 year: 2010 ident: 1428_CR54 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2041410 – volume: 22 start-page: 123 issue: 6 year: 2005 ident: 1428_CR56 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2005.1550194 – volume: 1 start-page: 86 issue: 1 year: 2006 ident: 1428_CR59 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2006.05.002 – volume: 33 start-page: S313 issue: 1 year: 2013 ident: 1428_CR9 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2012-129016 – ident: 1428_CR24 doi: 10.1109/SPICES.2015.7091517 – volume: 48 start-page: 144 year: 2019 ident: 1428_CR58 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2018.10.010 – volume: 302 start-page: 14 year: 2018 ident: 1428_CR15 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.12.010 – volume: 12 start-page: 719 issue: 6 year: 2016 ident: 1428_CR20 publication-title: Alzheimer's and Dementia doi: 10.1016/j.jalz.2016.02.010 – volume: 138 start-page: 49 year: 2017 ident: 1428_CR40 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.10.007 – volume: 62 start-page: 229 year: 2012 ident: 1428_CR17 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.04.056 – volume: 679 start-page: 3 year: 2016 ident: 1428_CR53 publication-title: Communications in Computer and Information Science doi: 10.1007/978-981-10-3274-5_1 – volume: 22 start-page: 2056 issue: 5 year: 2013 ident: 1428_CR55 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2244223 – volume: 183 start-page: 401 year: 2018 ident: 1428_CR19 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.08.040 – volume: 50 start-page: 233 year: 2016 ident: 1428_CR36 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150848 – volume: 130 start-page: 369 year: 2012 ident: 1428_CR60 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER12061410 – volume: 78 start-page: 596 issue: 4 year: 2011 ident: 1428_CR7 publication-title: Mt Sinai J. Med. doi: 10.1002/msj.20279 – volume: 1 start-page: 353 issue: 3 year: 2012 ident: 1428_CR2 publication-title: European Journal of Neurodegenerative Diseases – volume: 302 start-page: 66 year: 2018 ident: 1428_CR18 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2018.01.003 – volume: 77 start-page: 10393 issue: 9 year: 2016 ident: 1428_CR30 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4222-4 – volume: 197 start-page: 165 issue: 1 year: 2011 ident: 1428_CR27 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2011.01.027 – volume: 377 start-page: 1465 issue: 9776 year: 2011 ident: 1428_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(11)60582-5 – volume: 182 start-page: 3 issue: 1 year: 2004 ident: 1428_CR11 publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.182.1.1820003 – ident: 1428_CR41 – volume: 6 start-page: 169 issue: 6 year: 2016 ident: 1428_CR57 publication-title: Appl. Sci. doi: 10.3390/app6060169 – volume: 70 start-page: 8 year: 2018 ident: 1428_CR39 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2018.08.002 – volume: 25 start-page: 609 year: 2012 ident: 1428_CR42 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2012.03.133 – volume: 22 start-page: 1250002 issue: 02 year: 2012 ident: 1428_CR43 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065712500025 – volume: 132 start-page: 62 year: 2017 ident: 1428_CR51 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.06.003 – ident: 1428_CR1 – volume: 90 start-page: 359 year: 2019 ident: 1428_CR50 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.08.008 – volume: 65 start-page: 855 year: 2018 ident: 1428_CR29 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-170069 – volume: 3 start-page: e1251 year: 2015 ident: 1428_CR32 publication-title: Peer J doi: 10.7717/peerj.1251 – volume: 441 start-page: 41 year: 2018 ident: 1428_CR63 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 5 start-page: 242 issue: 3–4 year: 2007 ident: 1428_CR44 publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/S1672-0229(08)60011-X – ident: 1428_CR47 doi: 10.1007/s12652-018-0854-8 – volume: 9 start-page: 66 year: 2015 ident: 1428_CR37 publication-title: Front. Comput. Neurosci. – volume: 12 start-page: e0177044 issue: 5 year: 2017 ident: 1428_CR4 publication-title: PLOS ONE doi: 10.1371/journal.pone.0177044 – volume: 76 start-page: 1395 year: 2011 ident: 1428_CR23 publication-title: Neurology doi: 10.1212/WNL.0b013e3182166e96 – volume: 5 start-page: 1405 issue: 4 year: 2010 ident: 1428_CR13 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.03.051 – volume: 144 start-page: 171 year: 2014 ident: 1428_CR31 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER13121310 – volume: 6 start-page: 51 year: 2014 ident: 1428_CR8 publication-title: Alzheimers Res. Ther. doi: 10.1186/alzrt276 – volume: 20 start-page: 70 year: 2017 ident: 1428_CR61 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.02.006 – volume: 21 start-page: 681 issue: 1 year: 2017 ident: 1428_CR22 publication-title: Clust. Comput. doi: 10.1007/s10586-017-0977-2 – volume: 46 start-page: 142 year: 2016 ident: 1428_CR25 publication-title: International Journal of Current Engineering and Technology |
| SSID | ssj0009667 |
| Score | 2.6263988 |
| Snippet | The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer’s disease. The... The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 302 |
| SubjectTerms | Abnormalities Alzheimer Disease - classification Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain Brain - pathology Classification Cognitive ability Comparative analysis Diagnosis Diagnosis, Computer-Assisted - methods Feature extraction Health Informatics Health Informatics and Computer Vision Health Sciences Humans Image & Signal Processing Image acquisition Image detection Image Interpretation, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Medicine Medicine & Public Health Neuroimaging NMR Nuclear magnetic resonance Pattern Recognition, Automated - methods Recent Advances in Deep Learning for Biomedical Signal Processing Sensitivity Series (mathematics) Statistics for Life Sciences |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9VAFB60igjio76urXIEV8rQJJNkZlbl2gcWbRGppbswM5nBQpvUJFesq_4HV_17_SWeyST3IsVuXGeSDDmP-XIe3yHkjc6YyhRnFNGvof6EpiqJUypKK0yO3lH1bJ8Hn_jenjg8lJ-HgFs7lFWOPrF31GVtfIx8DWGCFFkuY7F--p36qVE-uzqM0LhJbsVJEns9_8jpgnQ3z0O7dCqoJyIfs5qhdQ6BEf5IS-o5x6j8-1y6AjavJEr782f7wf_u_CG5PyBPmAZVeURu2GqZ3NkdcuvL5F6I4EFoTHpMzqazrkY8a0vYtF1fsVVB7WB6_OubPTqxzeX5RQubIcEDfekBvPcDJ2D3yw7snKCjai_Pf8MUfK3iGfiILxzgr3k9a8Ejz1ljYetn14TWCtgf2WTbJ-Tr9tb-xgc6DGqghvGko45rniqdCpvE1pSlsMxYwaw0aO-5yAzXmdSZc2WGACuLEme1sjIqVeoYLwV7SpaqurLPCQjGcmVSrXJn0kin0ukY9QwVSUQmNm5ColFMhRlYzP0wjeNiwb_sJVugZAsv2UJOyNv5LaeBwuO6xaujEIvBmttiIcEJeT2_jHbokyuqsvjdcA3v8VaEa54FnZm_jSHMznmSTMi7UYkWD__nVl5cv5UVcjfx6tvXu62Spa6Z2ZfktvnRHbXNq94Q_gDaWA8X priority: 102 providerName: ProQuest |
| Title | Automated Detection of Alzheimer’s Disease Using Brain MRI Images– A Study with Various Feature Extraction Techniques |
| URI | https://link.springer.com/article/10.1007/s10916-019-1428-9 https://www.ncbi.nlm.nih.gov/pubmed/31396722 https://www.proquest.com/docview/2269856918 https://www.proquest.com/docview/2270007808 |
| Volume | 43 |
| WOSCitedRecordID | wos000480479100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xDSEkxMcYUBiVkXgCWUriJLYfO9aJCVpVpVQVL5HtOGLSlqIkRYyn_Q888e_tL-GcjxY0QIKXk6JcHOt8Z__s-zDAcx0xFSnOKKJfQ90KTVXgh1SkVpgYZ0dVV_ucv-XjsVgs5KTN4y67aPfOJVnP1D8luyGUwa2vpK5KGJVbsIOrnXDWOH0331TajeMmRzoU1FUf71yZv2vi18XoCsK84h2tF52jO__V3btwu8WYZNAoxT24ZvNduDFqvei7cKs5qyNNCtJ9OB-sqiUiV5uSQ1vVsVk5WWZkcPr1oz05s8XlxfeSHDauHFIHGZADd7UEGU2PyfEZTknl5cU3MiAuKvGcuLNdMsdN-HJVEocxV4Ulwy9V0SRRkFlXN7bcg_dHw9mr17S9koEaxoOKZlzzUOlQ2MC3Jk2FZcYKZqVBy45FZLiOpI6yLI0QSkVekFmtrPRSFWaMp4I9gO18mdtHQARjsTKhVnFmQk-HMtM-ahSqjPCMb7IeeN3YJKatV-6uzThNNpWWnYgTFHHiRJzIHrxYf_KpKdbxN-b9bsCT1m7LBMGoFFEsfdGDZ-vXaHHOjaJyi3JDHl4jKw95HjaKsv4bQ0Ad8yDowctOKzaN_7Erj_-J-wncDJxa1YFu-7BdFSv7FK6bz9VJWfRhi0_nji54TUUfdg6G48kUn95winTkzRwNJo5yRyfRh35tRD8AYsINxw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgqAS4qctsFDASHChsprE-bEPCC1sq666u0JoqXoLjuOISm22TbLAcuo7cOIleKg-CeM42RWq6K0HznF-5Hwz_uyZ-QbgZRIwGciIUWS_ipoVmkrP9SlPNVchekdZq33uD6LRiB8ciA9L8LuthTFpla1PrB11OlHmjHwLaYLgQShc_vbklJquUSa62rbQsLDY07NvuGUr3_R7-H9fed7O9vj9Lm26ClDFIq-iWZREvkx8rj1XqzTlminNmRYKwRnyQEVJIJIgy9IA2UDgeJlOpBZOKv2MRSln-NxrcN3o6pkUwqEzXoj8hqEtz_Y5NcLnbRTVluohEcONu6BG44yKv9fBC-T2QmC2Xu927v5vM3UP7jTMmnStKdyHJZ2vws1hkzuwCrftCSWxhVdrMOtOqwnydZ2Snq7qjLScTDLSPfrxRR8e6-L87FdJejaARerUCvLONNQgw4990j9GR1yen_0kXWJyMWfEnGiTfVmYpGJimPW00GT7e1XY0hEybtVyy3X4dCUT8QCW80muHwHhjIVS-YkMM-U7iS-yxEU7QkPhjnJV1gGnhUWsGpV20yzkKF7oSxskxYik2CApFh14Pb_lxEqUXDZ4owVN3HirMl4gpgMv5pfRz5jgkcw1zhuOiWo-6eCYhxaj87cx3EaEked1YLMF7eLh__yUx5d_ynO4tTseDuJBf7T3BFY8Yzp1bt8GLFfFVD-FG-prdVgWz2ojJPD5qrH8B_MNbwg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VgiokxE-BslDASHChspqNk9g-ILSwXbHadlWhUvUWHMdWK7XZkmSB5dR34MSr8Dh9Esb52RWq6K0HznEcy_lm5rPnD-BlEjIVKs4osl9NnYWmyu8GVKRG6Ai1o6qqfe5v8_FYHBzI3SX43ebCuLDKVidWijqdaHdHvok0QYowkl2xaZuwiN3-4O3pF-o6SDlPa9tOo4bIyMy-4fGteDPs479-5fuDrb33H2jTYYBqxv2SWp7wQCWBMH7X6DQVhmkjmJEagRqJUPMklElobRoiMwg935pEGemlKrCMp4LhvNfgOlrh0MnYiNNFwd8oqlO1A0FdEfTWo1qn7SEpw0O8pK7eGZV_28QLRPeCk7ayfYM7__Ou3YXbDeMmvVpE7sGSyVZhZaeJKViFW_XNJakTsu7DrDctJ8jjTUr6pqwi1TIysaR3_OPQHJ2Y_PzsV0H6tWOLVCEX5J1rtEF2Pg7J8AQVdHF-9pP0iIvRnBF30032Ve6CjYlj3NPckK3vZV6nlJC9topu8QA-XclGPITlbJKZR0AEY5HSQaIiqwMvCaRNuihfKEDC011tO-C1EIl1U73dNRE5jhd1px2qYkRV7FAVyw68nr9yWpcuuWzweguguNFiRbxATwdezB-j_nFOJZUZ3Dccwyue6eGYtRqv868xPF5E3Pc7sNECeDH5P5fy-PKlPIcVhHC8PRyPnsBN30lRFfK3DstlPjVP4Yb-Wh4V-bNKHgl8vmoo_wEwfneH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Detection+of+Alzheimer%E2%80%99s+Disease+Using+Brain+MRI+Images%E2%80%93+A+Study+with+Various+Feature+Extraction+Techniques&rft.jtitle=Journal+of+medical+systems&rft.au=Acharya%2C+U.+Rajendra&rft.au=Fernandes%2C+Steven+Lawrence&rft.au=WeiKoh%2C+Joel+En&rft.au=Ciaccio%2C+Edward+J.&rft.date=2019-09-01&rft.pub=Springer+US&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft_id=info:doi/10.1007%2Fs10916-019-1428-9&rft.externalDocID=10_1007_s10916_019_1428_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |