Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation
In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R...
Saved in:
| Published in: | Animal cells and systems Vol. 16; no. 2; pp. 121 - 126 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Daejeon
Taylor & Francis Group
01.04.2012
Taylor & Francis Ltd 한국통합생물학회 |
| Subjects: | |
| ISSN: | 1976-8354, 2151-2485 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fluckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations. |
|---|---|
| AbstractList | In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Flückiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations. In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fluckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations. In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w),dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Flu¨ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations. KCI Citation Count: 1 |
| Author | Vossoughi, G.R., Sharif University of Technology, Tehran, Iran Abbasi, Ali A., Sharif University of Technology, Tehran, Iran Ahmadian, M.T., Sharif University of Technology, Tehran, Iran |
| Author_xml | – sequence: 1 fullname: Abbasi, Ali A., Sharif University of Technology, Tehran, Iran – sequence: 2 fullname: Vossoughi, G.R., Sharif University of Technology, Tehran, Iran – sequence: 3 fullname: Ahmadian, M.T., Sharif University of Technology, Tehran, Iran |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001653453$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNqFkV1rFDEYhYNUcFv9BwoBb7yZNR8zk8mVlFZtsSCUeh0y-VjTnUnWNzOU_fdmZ5SCN16dQJ5zyMk5R2cxRYfQW0q2lHTkI5Wi7XhTbxmhdNsy2XbkBdow2tCK1V1zhjYnpDoxr9B5zo-EtIx0coN-XjufYNRTSBEfwNlglmN_xBp75ywu108aLNYwBR9M0AOOboZFpqcEe2xnCHGHxzRnh93YwzHhMRhIo47hMA9L-Gv00ushuzd_9AL9-PL54eqmuvv-9fbq8q4yXLCp8oR5Tznh0oiW24Zy42jfUm-pq6UTPeHeWau16ESpTkvT2hhK2l5K1hXnBfqw5kbwam-CSjosuktqD-ry_uFWCVna18_oAdKv2eVJjSEbNww6utJFUS6lLC_p2oK-_wd9TDPEUkRRwoSoGWWkUPVKle45g_PqAGHUcCyQOi2l_i6lTkupdali-7TaQly2KJ86WDXp45DAg44mZMX_k_BuTfA6Kb2DYvh2X4CGkFoIwn8D_Jik7w |
| Cites_doi | 10.1080/19768354.2009.9647237 10.1063/1.2430936 10.1016/j.msea.2007.02.075 10.1016/j.jbiomech.2006.09.023 10.1007/BF01045717 10.1021/la060561p 10.1016/j.commatsci.2008.08.006 10.1109/TNB.2003.820273 10.1016/j.jmps.2003.09.019 10.1109/TNB.2010.2050598 10.1242/jcs.110.17.2109 10.1016/j.jbiomech.2004.12.008 10.1016/j.asoc.2008.03.016 10.1016/j.commatsci.2005.01.006 10.1016/j.commatsci.2009.02.013 10.1109/BIOROB.2008.4762824 10.1529/biophysj.105.063826 |
| ContentType | Journal Article |
| Copyright | Copyright Korean Society for Integrative Biology 2012 Copyright Taylor & Francis Ltd. Apr 2012 |
| Copyright_xml | – notice: Copyright Korean Society for Integrative Biology 2012 – notice: Copyright Taylor & Francis Ltd. Apr 2012 |
| DBID | FBQ AAYXX CITATION 7QO 7SN 7TK 7TM 8FD C1K FR3 P64 RC3 ACYCR |
| DOI | 10.1080/19768354.2011.629680 |
| DatabaseName | AGRIS CrossRef Biotechnology Research Abstracts Ecology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Korean Citation Index |
| DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Engineering Research Database Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Genetics Abstracts Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2151-2485 |
| EndPage | 126 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_796204 2720208631 10_1080_19768354_2011_629680 629680 KR2015004770 |
| Genre | Feature |
| GroupedDBID | .7F .QJ .UV 0R~ 0YH 23M 2DF 3YN 4.4 5GY 8FE 8FH 9ZL AAAVI AAENE ABCCY ABDBF ABFIM ABHAV ABPEM ABPTK ABTAI ACGFS ACIWK ACPRK ADBBV ADCVX AENEX AFKRA AFRAH AGMYJ AHDLD AIJEM ALMA_UNASSIGNED_HOLDINGS AOIJS AVBZW BBNVY BCNDV BENPR BHPHI CCCUG CCPQU CE4 EBD EBS EJD ESX EYRJQ E~A E~B FBQ FUNRP FVPDL GROUPED_DOAJ GTTXZ HCIFZ HF~ HYE HZ~ H~P IPNFZ J.P KVFHK LK8 M4Z M7P NA5 O9- OK1 PIMPY PROAC RIG RPM S-T TEI TFL TFT TFW TUS UT5 UU3 V1K ~S~ AAHBH ACUHS AQTUD H13 TDBHL AAYXX AEUYN AFFHD CITATION PHGZM PHGZT PQGLB 7QO 7SN 7TK 7TM 8FD C1K FR3 P64 RC3 ACYCR |
| ID | FETCH-LOGICAL-c372t-f02ff13039c763d513ce1b61fd1e49e7b03feddaa78708016804cc106b9928f13 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305090200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1976-8354 |
| IngestDate | Sun Mar 09 07:53:54 EDT 2025 Mon Oct 06 18:08:41 EDT 2025 Mon Jun 30 08:40:45 EDT 2025 Sat Nov 29 03:57:09 EST 2025 Mon Oct 20 23:45:35 EDT 2025 Tue Nov 07 23:11:45 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-f02ff13039c763d513ce1b61fd1e49e7b03feddaa78708016804cc106b9928f13 |
| Notes | L01 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 G704-000140.2012.16.2.005 |
| PQID | 1027742120 |
| PQPubID | 1346338 |
| PageCount | 6 |
| ParticipantIDs | fao_agris_KR2015004770 proquest_miscellaneous_1399903986 proquest_journals_1027742120 nrf_kci_oai_kci_go_kr_ARTI_796204 crossref_primary_10_1080_19768354_2011_629680 informaworld_taylorfrancis_310_1080_19768354_2011_629680 |
| PublicationCentury | 2000 |
| PublicationDate | Apr 2012 4/1/2012 2012-04-00 20120401 2012-04 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: Apr 2012 |
| PublicationDecade | 2010 |
| PublicationPlace | Daejeon |
| PublicationPlace_xml | – name: Daejeon |
| PublicationTitle | Animal cells and systems |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis Group Taylor & Francis Ltd 한국통합생물학회 |
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd – name: 한국통합생물학회 |
| References | Ahmadian MT (CIT0001) 2010; 2 CIT0010 CIT0020 CIT0012 CIT0011 Thoumine O (CIT0017) 1997; 110 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0009 doi: 10.1080/19768354.2009.9647237 – ident: CIT0006 doi: 10.1063/1.2430936 – ident: CIT0013 – ident: CIT0004 doi: 10.1016/j.msea.2007.02.075 – ident: CIT0018 doi: 10.1016/j.jbiomech.2006.09.023 – ident: CIT0019 doi: 10.1007/BF01045717 – ident: CIT0011 doi: 10.1021/la060561p – ident: CIT0020 doi: 10.1016/j.commatsci.2008.08.006 – ident: CIT0015 doi: 10.1109/TNB.2003.820273 – ident: CIT0003 doi: 10.1016/j.jmps.2003.09.019 – volume: 2 start-page: 190 year: 2010 ident: CIT0001 publication-title: J Solid Mech. – ident: CIT0016 doi: 10.1109/TNB.2010.2050598 – volume: 110 start-page: 2109 year: 1997 ident: CIT0017 publication-title: J Cell Sci. doi: 10.1242/jcs.110.17.2109 – ident: CIT0005 – ident: CIT0010 doi: 10.1016/j.jbiomech.2004.12.008 – ident: CIT0012 doi: 10.1016/j.asoc.2008.03.016 – ident: CIT0002 doi: 10.1016/j.commatsci.2005.01.006 – ident: CIT0007 doi: 10.1016/j.commatsci.2009.02.013 – ident: CIT0008 doi: 10.1109/BIOROB.2008.4762824 – ident: CIT0014 doi: 10.1529/biophysj.105.063826 |
| SSID | ssj0062089 |
| Score | 1.8509983 |
| Snippet | In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models... |
| SourceID | nrf proquest crossref informaworld fao |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 121 |
| SubjectTerms | artificial neural network Behavior biological cells Deformation Embryos error back propagation algorithm NEURAL NETWORKS REDES DE NEURONAS RESEAU DE NEURONES Sensitivity analysis Studies 생물학 |
| Title | Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation |
| URI | https://www.tandfonline.com/doi/abs/10.1080/19768354.2011.629680 https://www.proquest.com/docview/1027742120 https://www.proquest.com/docview/1399903986 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001653453 |
| Volume | 16 |
| WOSCitedRecordID | wos000305090200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Animal Cells and Systems, 2012, 16(2), , pp.121-126 |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis customDbUrl: eissn: 2151-2485 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062089 issn: 1976-8354 databaseCode: TFW dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBZtaKGXvNpQ51EUyHWppV2vVseQxCQUQggp9U3omRrjtVlvA_73mZG8xmloD-1pH1qJ1Yw0D2n0DSFn3DrujCzBLWE-K7QuMi0GIuPOMR3KwOCDmGxC3N5Wo5G82zjFj2GV6EOHBBQRZTVObm0WXUTcVwYqFNcrEgBnyWVZodMOhj3G9D0Mf3SiuOT9mAMPK2RYozs794dGXuimt0HPfsMvhZd1E15J7aiKhjv_34ldsr0yQ-l5Gjd75I2v98n7lJhy-ZH8vPTrU4103uBmTrw1S6ppAIVHoRjjbSmOvARCQREaM15iYDlNByApLi146qemWc7oNIb_6XrcZQ37RL4Prx4urrNVTobM5oK3WejzEFDvSQuSyQ1Ybj0zJQuO-UJ6Yfp58M5pjYIAtB_0qrAW_E4jJa-g5gHZqme1_0woeHoOzQVrBrYYeKtF4RCAS_pCm8pXPZJ13FDzBL2h2ArRtKOeQuqpRL0eOQCWKf0I0lF9u-e4ltMvhICCapOLqo1rISElLlH539s8BY6riR0rxOHG6-NMTRoF3saNEhLR_HvkuBsPaiUAFtAiB8Ma7AJsYl0MUxf3Y3TtgfYKjG-wBXJZlYf__odH5AM88RRMdEy22uaXPyHv7FM7XjRf4nR4BgpUBig |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFA6u7qIv6l7E8bYRfC07STtN8yjqoOgOsozoW0hzcQexI51RmH_vOUkrq-I-iE8pPU1obueWk-8QsseN5baUOZglzCWZ1lmiRU8k3Fqmfe4ZfBCSTYjBoLi6kudNNOGkCatEG9pHoIjAq3FzozO6DYn7xUCGosMiInDmXOYFWO0LmJwO7a9h_7Jlxjnvhix4WCPBKu3tuTdaeSadPnk9foFgCi-r2r_i20EY9Vc-oBurZLnRROl-XDpfyZyrvpEvMTfl7Dv5e-ieLjbSuxrPc8JjOaOaepB5FMgYcktx8UUcCoromKEIseU03oGk6F1w1N2W9WxMb0MEoK5GbeKwH-SifzQ8OE6atAyJSQWfJr7LvUfRJw0wJ9tjqXGszJm3zGXSibKbemet1sgLQABCrzJjwPQspeQF1Fwj89W4cuuEgrFnUWMwZc9kPWe0yCxicEmX6bJwRYck7XSou4i-oVgDatqOnsLRU3H0OmQN5kzpa2CQ6vQPR3dONxMCCMW_06imwR3iY-4Slf6_zV2YcnVjRgqhuLG8HqubWoHBcaKERED_DtlqF4RqeMAEWuSgW4NqgE08kWH34pGMrhyMvQL9G9SBVBb5xvv_8CdZPB7-PlNnJ4PTTbIEFB5ji7bI_LS-d9vks3mYjib1Ttgbj4uRCks |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdYGYgXGB_TOgYzEq8RtfPh-HGiRFRDVYWG6Jvl-KNU05IqK5P633NnN9Vgggf25CiOrfhs34d99ztC3nNjua1lAWYJc0mmdZZokYuEW8u0LzyDD0KyCTGdlvO5nN2K4ke3SrShfQSKCLwaN_fK-t4j7gMDEYrnFRGAs-CyKMFofwiac47r-qL63vPigo9CEjxskWCTPnjuL738Jpz2vG7_ADCFl03n77DtIIuqZ_cfxQF5utVD6VlcOM_JA9e8II9iZsrNS_Jj7HZhjXTV4W1OeKw3VFMPEo9CNTrcUlx6EYWCIjZmKIJnOY0RkBTPFhx1V3W3aelV8P_TzbJPG_aKfKs-XXz8nGyTMiQmFXyd-BH3HgWfNMCabM5S41hdMG-Zy6QT9Sj1zlqtkROA-INRZcaA4VlLyUtoeUgGTdu4I0LB1LOoL5g6N1nujBaZRQQu6TJdl64ckqSfDbWK2BuKbSFNe-oppJ6K1BuSQ5gypRfAHtX5V46HOaNMCKgob8-iWofDEB8zl6j0332-gxlXl2apEIgby0WrLjsF5sZECYlw_kNy0q8HteUA19AjB80aFAPsYlcNexcvZHTjgPYKtG9QBlJZFsf__4en5PFsXKkvk-n5a_IEKnh0LDohg3X3070h--Zmvbzu3oad8Qtcogj9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+prediction+by+a+feed+forward+artificial+neural+network+during+mouse+embryo+micromanipulation&rft.jtitle=Animal+cells+and+systems&rft.au=Abbasi%2C+Ali+A&rft.au=Vossoughi%2C+G+R&rft.au=Ahmadian%2C+M+T&rft.date=2012-04-01&rft.issn=1976-8354&rft.eissn=2151-2485&rft.volume=16&rft.issue=2&rft.spage=121&rft.epage=126&rft_id=info:doi/10.1080%2F19768354.2011.629680&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-8354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-8354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-8354&client=summon |