Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation

In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal cells and systems Jg. 16; H. 2; S. 121 - 126
Hauptverfasser: Abbasi, Ali A., Sharif University of Technology, Tehran, Iran, Vossoughi, G.R., Sharif University of Technology, Tehran, Iran, Ahmadian, M.T., Sharif University of Technology, Tehran, Iran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Daejeon Taylor & Francis Group 01.04.2012
Taylor & Francis Ltd
한국통합생물학회
Schlagworte:
ISSN:1976-8354, 2151-2485
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fluckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.
AbstractList In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Flückiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.
In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Fluckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations.
In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models have been implemented. In the first NN model dimple depth (w),dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were used as inputs of the model while indentation force (f) was considered as output. In the second NN model, indentation force (f), dimple radius (a) and radius of the semi-circular curved surface of the cell (R) were considered as inputs of the model and dimple depth was predicted as the output of the model. In addition, sensitivity analysis has been carried out to investigate the influence of the significance of input parameters on the mechanical behavior of mouse embryos. Experimental data deduced by Flu¨ckiger (2004) were collected to obtain training and test data for the NN. The results of these investigations show that the correlation values of the test and training data sets are between 0.9988 and 1.0000, and are in good agreement with the experimental observations. KCI Citation Count: 1
Author Vossoughi, G.R., Sharif University of Technology, Tehran, Iran
Abbasi, Ali A., Sharif University of Technology, Tehran, Iran
Ahmadian, M.T., Sharif University of Technology, Tehran, Iran
Author_xml – sequence: 1
  fullname: Abbasi, Ali A., Sharif University of Technology, Tehran, Iran
– sequence: 2
  fullname: Vossoughi, G.R., Sharif University of Technology, Tehran, Iran
– sequence: 3
  fullname: Ahmadian, M.T., Sharif University of Technology, Tehran, Iran
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001653453$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkV1rFDEYhYNUcFv9BwoBb7yZNR8zk8mVlFZtsSCUeh0y-VjTnUnWNzOU_fdmZ5SCN16dQJ5zyMk5R2cxRYfQW0q2lHTkI5Wi7XhTbxmhdNsy2XbkBdow2tCK1V1zhjYnpDoxr9B5zo-EtIx0coN-XjufYNRTSBEfwNlglmN_xBp75ywu108aLNYwBR9M0AOOboZFpqcEe2xnCHGHxzRnh93YwzHhMRhIo47hMA9L-Gv00ushuzd_9AL9-PL54eqmuvv-9fbq8q4yXLCp8oR5Tznh0oiW24Zy42jfUm-pq6UTPeHeWau16ESpTkvT2hhK2l5K1hXnBfqw5kbwam-CSjosuktqD-ry_uFWCVna18_oAdKv2eVJjSEbNww6utJFUS6lLC_p2oK-_wd9TDPEUkRRwoSoGWWkUPVKle45g_PqAGHUcCyQOi2l_i6lTkupdali-7TaQly2KJ86WDXp45DAg44mZMX_k_BuTfA6Kb2DYvh2X4CGkFoIwn8D_Jik7w
Cites_doi 10.1080/19768354.2009.9647237
10.1063/1.2430936
10.1016/j.msea.2007.02.075
10.1016/j.jbiomech.2006.09.023
10.1007/BF01045717
10.1021/la060561p
10.1016/j.commatsci.2008.08.006
10.1109/TNB.2003.820273
10.1016/j.jmps.2003.09.019
10.1109/TNB.2010.2050598
10.1242/jcs.110.17.2109
10.1016/j.jbiomech.2004.12.008
10.1016/j.asoc.2008.03.016
10.1016/j.commatsci.2005.01.006
10.1016/j.commatsci.2009.02.013
10.1109/BIOROB.2008.4762824
10.1529/biophysj.105.063826
ContentType Journal Article
Copyright Copyright Korean Society for Integrative Biology 2012
Copyright Taylor & Francis Ltd. Apr 2012
Copyright_xml – notice: Copyright Korean Society for Integrative Biology 2012
– notice: Copyright Taylor & Francis Ltd. Apr 2012
DBID FBQ
AAYXX
CITATION
7QO
7SN
7TK
7TM
8FD
C1K
FR3
P64
RC3
ACYCR
DOI 10.1080/19768354.2011.629680
DatabaseName AGRIS
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Korean Citation Index
DatabaseTitle CrossRef
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Engineering Research Database
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Genetics Abstracts
Engineering Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2151-2485
EndPage 126
ExternalDocumentID oai_kci_go_kr_ARTI_796204
2720208631
10_1080_19768354_2011_629680
629680
KR2015004770
Genre Feature
GroupedDBID .7F
.QJ
.UV
0R~
0YH
23M
2DF
3YN
4.4
5GY
8FE
8FH
9ZL
AAAVI
AAENE
ABCCY
ABDBF
ABFIM
ABHAV
ABPEM
ABPTK
ABTAI
ACGFS
ACIWK
ACPRK
ADBBV
ADCVX
AENEX
AFKRA
AFRAH
AGMYJ
AHDLD
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVBZW
BBNVY
BCNDV
BENPR
BHPHI
CCCUG
CCPQU
CE4
EBD
EBS
EJD
ESX
EYRJQ
E~A
E~B
FBQ
FUNRP
FVPDL
GROUPED_DOAJ
GTTXZ
HCIFZ
HF~
HYE
HZ~
H~P
IPNFZ
J.P
KVFHK
LK8
M4Z
M7P
NA5
O9-
OK1
PIMPY
PROAC
RIG
RPM
S-T
TEI
TFL
TFT
TFW
TUS
UT5
UU3
V1K
~S~
AAHBH
ACUHS
AQTUD
H13
TDBHL
AAYXX
AEUYN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
7QO
7SN
7TK
7TM
8FD
C1K
FR3
P64
RC3
ACYCR
ID FETCH-LOGICAL-c372t-f02ff13039c763d513ce1b61fd1e49e7b03feddaa78708016804cc106b9928f13
IEDL.DBID TFW
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305090200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1976-8354
IngestDate Sun Mar 09 07:53:54 EDT 2025
Mon Oct 06 18:08:41 EDT 2025
Mon Jun 30 08:40:45 EDT 2025
Sat Nov 29 03:57:09 EST 2025
Mon Oct 20 23:45:35 EDT 2025
Tue Nov 07 23:11:45 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-f02ff13039c763d513ce1b61fd1e49e7b03feddaa78708016804cc106b9928f13
Notes L01
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
G704-000140.2012.16.2.005
PQID 1027742120
PQPubID 1346338
PageCount 6
ParticipantIDs fao_agris_KR2015004770
proquest_miscellaneous_1399903986
proquest_journals_1027742120
nrf_kci_oai_kci_go_kr_ARTI_796204
crossref_primary_10_1080_19768354_2011_629680
informaworld_taylorfrancis_310_1080_19768354_2011_629680
PublicationCentury 2000
PublicationDate Apr 2012
4/1/2012
2012-04-00
20120401
2012-04
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: Apr 2012
PublicationDecade 2010
PublicationPlace Daejeon
PublicationPlace_xml – name: Daejeon
PublicationTitle Animal cells and systems
PublicationYear 2012
Publisher Taylor & Francis Group
Taylor & Francis Ltd
한국통합생물학회
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
– name: 한국통합생물학회
References Ahmadian MT (CIT0001) 2010; 2
CIT0010
CIT0020
CIT0012
CIT0011
Thoumine O (CIT0017) 1997; 110
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0009
  doi: 10.1080/19768354.2009.9647237
– ident: CIT0006
  doi: 10.1063/1.2430936
– ident: CIT0013
– ident: CIT0004
  doi: 10.1016/j.msea.2007.02.075
– ident: CIT0018
  doi: 10.1016/j.jbiomech.2006.09.023
– ident: CIT0019
  doi: 10.1007/BF01045717
– ident: CIT0011
  doi: 10.1021/la060561p
– ident: CIT0020
  doi: 10.1016/j.commatsci.2008.08.006
– ident: CIT0015
  doi: 10.1109/TNB.2003.820273
– ident: CIT0003
  doi: 10.1016/j.jmps.2003.09.019
– volume: 2
  start-page: 190
  year: 2010
  ident: CIT0001
  publication-title: J Solid Mech.
– ident: CIT0016
  doi: 10.1109/TNB.2010.2050598
– volume: 110
  start-page: 2109
  year: 1997
  ident: CIT0017
  publication-title: J Cell Sci.
  doi: 10.1242/jcs.110.17.2109
– ident: CIT0005
– ident: CIT0010
  doi: 10.1016/j.jbiomech.2004.12.008
– ident: CIT0012
  doi: 10.1016/j.asoc.2008.03.016
– ident: CIT0002
  doi: 10.1016/j.commatsci.2005.01.006
– ident: CIT0007
  doi: 10.1016/j.commatsci.2009.02.013
– ident: CIT0008
  doi: 10.1109/BIOROB.2008.4762824
– ident: CIT0014
  doi: 10.1529/biophysj.105.063826
SSID ssj0062089
Score 1.8509983
Snippet In this study, a neural network (NN) modeling approach has been used to predict the mechanical and geometrical behaviors of mouse embryo cells. Two NN models...
SourceID nrf
proquest
crossref
informaworld
fao
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 121
SubjectTerms artificial neural network
Behavior
biological cells
Deformation
Embryos
error back propagation algorithm
NEURAL NETWORKS
REDES DE NEURONAS
RESEAU DE NEURONES
Sensitivity analysis
Studies
생물학
Title Deformation prediction by a feed forward artificial neural network during mouse embryo micromanipulation
URI https://www.tandfonline.com/doi/abs/10.1080/19768354.2011.629680
https://www.proquest.com/docview/1027742120
https://www.proquest.com/docview/1399903986
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001653453
Volume 16
WOSCitedRecordID wos000305090200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Animal Cells and Systems, 2012, 16(2), , pp.121-126
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 2151-2485
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062089
  issn: 1976-8354
  databaseCode: TFW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4qCl58i-uLCF6LbZpNm6OoiyKIiKK3kKSJLmJXuquw_96ZZCs-0IOe0jYkNK95ZeYbQvZzZGJag3ZSMZFwyWxieFYmouJSFBVnKfch2URxcVHe3cnLD1H86FaJOrSPQBGBVuPh1mbYesQdZMBC0V4RATgFk6JEpR0Ee_Tpu-7dtqRYsDTkwMMGCbZoY-d-6OQTb5r2evAFvxQ-1o3_RrUDK-ot_n8QS2RhIobSw7hvlsmUq1fIXExMOV4lD8fuPaqRPjd4mRMezZhq6oHhUahGf1uKOy-CUFCExgxFcCynMQCSomnBUfdkmvGAPgX3P13326xha-Smd3J9dJpMcjIkNi_YKPEp8x75nrRAmapulluXGZH5KnNcusKkuXdVpTUSAuB-MCpuLeidRkpWQst1MlMPardBaFp1bW6scNZzLkFTKxnmQ-tKq5kphOmQpF0N9RyhN1Q2QTRtZ0_h7Kk4ex2yDkum9D1QR3V-xdCWk_KigIry4yqqUbCF-Ji4ROW_97kHK64ebV8hDjeW9wP12CjQNs5UIRHNv0O22_2gJgRgCD0yEKxBLsAu3qvh6OJ9jK4dzL0C4RtkgVyWYvPvf7hF5uGNRWeibTIzal7cDpm1r6P-sNkNx-ENWtUEoQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZ4FNFLoaWIpUCNxDUicbxOfETQFQi6QtUiuFm2Y9MVIouyC9L--87YCSpU7aHilCiWrXg8npfH3xBykKMS0xq8k4qJhEtmE8OzMhEVl6KoOEu5D8UmiuGwvLmRl2024bRNq0Qf2kegiCCrcXNjMLpLiTvMQIdiwCIicAomRQle-3IoTgcsPRpcd8JYsDRUwcMeCXbpbs_9ZZQX2mnR68krBFP4WDf-D7kdlNFg7Q2msU4-tJYoPYqs85EsuPoTWYm1Kecb5OeJe77YSB8aPM8Jr2ZONfWg8yg0Y8otReaLOBQU0THDI-SW03gHkmJ0wVF3b5r5hN6HDEBdj7vCYZ_J1eDb6Pg0acsyJDYv2CzxKfMeVZ-0IJyqfpZblxmR-SpzXLrCpLl3VaU1ygJQgDArbi24nkZKVkLPTbJUT2q3RWha9W1urHDWcy7BWSsZlkTrS6uZKYTpkaRbDvUQ0TdU1oKadtRTSD0Vqdcjm7BmSt-CgFTnPxiGc1JeFNBQ_r6MahbCIT7WLlH5v8fchyVXd3asEIobn7cTddcocDjOVCER0L9HdjqGUK0MmMKIDGxrMA1wiOdm2L14JKNrB7RXYH-DOZDLUmz__x9-Jauno-8X6uJseP6FvIcWFnOLdsjSrHl0u-SdfZqNp81e2Bu_AMxNCMY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYbIgX2BdaR2GetNdoieM68eM0qECgCk2dxpvlT1ZVTatQJvW_585uENsED9tToli2Yp_vy777HSGfSlRiWoN34pjIuGQ2M7yoM-G4FJXjLOchFpuoRqP66kpePsjix7BK9KFDAoqIshqZe-FCFxH3uQAViucVCYBTMClqcNq3wHIWyJrj4Y9OFguWxyJ42CPDLl3y3COj_KacngU9_wPAFD42bfhLbEddNNz7_1m8JLtrO5R-SRvnFdnwzWvyIlWmXL0hP4_9fVojXbR4mxNfzYpqGkDjUWjGgFuKWy-hUFDExoyPGFlOUwYkxbMFT_3MtKs5ncX4P91MurJhb8n34cn462m2LsqQ2bJiyyzkLARUfNKCaHKDorS-MKIIrvBc-srkZfDOaY2SANQfzIpbC46nkZLV0HOfbDbzxr8jNHcDWxorvA2cS3DVaoYF0QbSamYqYXok66ihFgl7QxVrSNNu9RSunkqr1yP7QDKlr0E8qvNvDA9zcl5V0FA_pKJaxsOQkCqXqPLpMT8CxdXUThQCcePzeq6mrQJ340xVEuH8e6Tf7Qe1lgA3MCIDyxoMAxzivhl4Fy9kdONh7RVY32AMlLIW7__9Dz-Q7cvjobo4G50fkB1oYCmwqE82l-2tPyTP7a_l5KY9ipxxB4UzB28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+prediction+by+a+feed+forward+artificial+neural+network+during+mouse+embryo+micromanipulation&rft.jtitle=Animal+cells+and+systems&rft.au=Abbasi%2C+Ali+A&rft.au=Vossoughi%2C+G+R&rft.au=Ahmadian%2C+M+T&rft.date=2012-04-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1976-8354&rft.eissn=2151-2485&rft.volume=16&rft.issue=2&rft.spage=121&rft_id=info:doi/10.1080%2F19768354.2011.629680&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2720208631
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-8354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-8354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-8354&client=summon