Optimized sparse fractional Fourier transform: Principle and performance analysis

•Neyman-Pearson detection is applied to estimate large coefficients of noise-corrupted signals in the fractional Fourier domain.•Distribution of phase error is obtained via Parzen-Rosenblatt window method.•Location error correction method is proposed.•Important properties of the proposed optimized s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 174; S. 107646
Hauptverfasser: Zhang, Hongchi, Shan, Tao, Liu, Shengheng, Tao, Ran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.09.2020
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Neyman-Pearson detection is applied to estimate large coefficients of noise-corrupted signals in the fractional Fourier domain.•Distribution of phase error is obtained via Parzen-Rosenblatt window method.•Location error correction method is proposed.•Important properties of the proposed optimized sparse fractional Fourier transform are investigated via extensive simulations.•Real data collected from a continuous-wave radar is processed and the velocity of a free falling target is estimated. For the input signals that can be sparsely represented in the fractional Fourier domain, sparse discrete fractional Fourier transform (SDFrFT) has been proposed to accelerate the numerical computation of discrete fractional Fourier transform. While significantly alleviating the computational load, SDFrFT has narrow applicability since it is more suitable for large-scale input signals. In this regard, the objective of this work is to overcome the limitation and further optimize the numerical computation of SDFrFT by exploiting the underlying phase information. We first employ Neyman-Pearson approach to achieve a noise-robust detection. Then, we derive the probability distribution function of the phase error in the location stage and, accordingly, design a location error correction algorithm. The proposed algorithm, termed optimized sparse fractional Fourier transform (OSFrFT), can reduce the computational complexity while guarantee sufficient robustness and estimation accuracy. Simulation results are provided to validate the effectiveness of the proposed algorithm. A successful application of OSFrFT to continuous wave radar signal processing is also presented.
AbstractList •Neyman-Pearson detection is applied to estimate large coefficients of noise-corrupted signals in the fractional Fourier domain.•Distribution of phase error is obtained via Parzen-Rosenblatt window method.•Location error correction method is proposed.•Important properties of the proposed optimized sparse fractional Fourier transform are investigated via extensive simulations.•Real data collected from a continuous-wave radar is processed and the velocity of a free falling target is estimated. For the input signals that can be sparsely represented in the fractional Fourier domain, sparse discrete fractional Fourier transform (SDFrFT) has been proposed to accelerate the numerical computation of discrete fractional Fourier transform. While significantly alleviating the computational load, SDFrFT has narrow applicability since it is more suitable for large-scale input signals. In this regard, the objective of this work is to overcome the limitation and further optimize the numerical computation of SDFrFT by exploiting the underlying phase information. We first employ Neyman-Pearson approach to achieve a noise-robust detection. Then, we derive the probability distribution function of the phase error in the location stage and, accordingly, design a location error correction algorithm. The proposed algorithm, termed optimized sparse fractional Fourier transform (OSFrFT), can reduce the computational complexity while guarantee sufficient robustness and estimation accuracy. Simulation results are provided to validate the effectiveness of the proposed algorithm. A successful application of OSFrFT to continuous wave radar signal processing is also presented.
ArticleNumber 107646
Author Liu, Shengheng
Zhang, Hongchi
Shan, Tao
Tao, Ran
Author_xml – sequence: 1
  givenname: Hongchi
  surname: Zhang
  fullname: Zhang, Hongchi
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 2
  givenname: Tao
  surname: Shan
  fullname: Shan, Tao
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Shengheng
  orcidid: 0000-0001-6579-9798
  surname: Liu
  fullname: Liu, Shengheng
  email: s.liu@seu.edu.cn
  organization: School of Information Science and Engineering, Southeast University, Nanjing 210096, China
– sequence: 4
  givenname: Ran
  surname: Tao
  fullname: Tao, Ran
  organization: School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
BookMark eNqFkFFLwzAUhYNMcJv-Ax_yBzqTNE3SPQgynAqDKehzSJNUMrqkJFWYv96U-uSDPl3u5Z7DOd8CzHzwFoBrjFYYYXZzWCX33sewIoiMJ84oOwNzLDgpeFXxGZjnt6rATNALsEjpgBDCJUNz8LLvB3d0X9bA1KuYLGyj0oMLXnVwGz6isxEOUfnUhnhcw-fovHZ9Z6HyBvY2jmfl9bir7pRcugTnreqSvfqZS_C2vX_dPBa7_cPT5m5X6JKTobBccUGNaHMUTYlQuiprzpoa4Yajpql0rQQ2tG4tIrwxlFbUME2QbpgSVJdLsJ58dQwpRdtK7QY1Js9xXScxkiMceZATHDnCkROcLKa_xH10RxVP_8luJ5nNxT4zGpm0s7m9cdHqQZrg_jb4Bo3shH4
CitedBy_id crossref_primary_10_1049_sil2_12137
crossref_primary_10_1109_JSEN_2023_3268295
crossref_primary_10_1109_ACCESS_2022_3185730
crossref_primary_10_1109_TSP_2022_3205758
crossref_primary_10_1016_j_dsp_2023_104261
crossref_primary_10_1109_TSP_2024_3423784
crossref_primary_10_1049_ell2_12907
crossref_primary_10_1049_rsn2_12194
crossref_primary_10_1155_2023_2499336
crossref_primary_10_1063_5_0159968
crossref_primary_10_1109_ACCESS_2022_3182701
crossref_primary_10_1109_JSEN_2024_3370234
crossref_primary_10_1016_j_sigpro_2022_108682
crossref_primary_10_1109_ACCESS_2020_3010629
crossref_primary_10_1109_TAES_2022_3157657
crossref_primary_10_1109_ACCESS_2022_3220891
crossref_primary_10_1016_j_dsp_2022_103683
crossref_primary_10_1016_j_sigpro_2020_107820
crossref_primary_10_1049_rsn2_12028
crossref_primary_10_1109_LSP_2021_3050052
crossref_primary_10_1155_2022_1369622
crossref_primary_10_1049_rsn2_12445
crossref_primary_10_23919_JSEE_2024_000015
crossref_primary_10_3390_e24040452
crossref_primary_10_1186_s13634_023_01057_4
crossref_primary_10_1016_j_sigpro_2021_108291
crossref_primary_10_3390_electronics13020244
crossref_primary_10_1109_TAES_2023_3254527
crossref_primary_10_1016_j_sigpro_2023_109080
crossref_primary_10_1016_j_sigpro_2025_110202
crossref_primary_10_1080_01969722_2022_2112543
Cites_doi 10.1109/7.481277
10.1109/78.330368
10.1109/TSP.2017.2740198
10.1109/78.839980
10.1109/TSP.2016.2645510
10.1007/s10618-018-0550-5
10.1109/TSP.2017.2750105
10.1016/j.sigpro.2019.06.032
10.1109/TSP.2019.2912878
10.1109/TAES.2017.2714918
10.1109/78.839981
10.1109/78.492554
10.1109/TSP.2014.2366719
10.1109/MSP.2014.2329131
10.1109/TWC.2003.814344
10.1109/TIE.2017.2668987
10.1109/TIT.2017.2679053
10.1109/78.536672
10.1109/TIT.2017.2746568
10.1109/TCSI.2015.2468996
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2020.107646
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2020_107646
S0165168420301894
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-e7a784d8f000c428ac53976b901b70bb5c9a81d49fe027bd4454d6c20cb6a84c3
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538107600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Tue Nov 18 22:03:07 EST 2025
Sat Nov 29 07:27:03 EST 2025
Fri Feb 23 02:47:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-frequency analysis
Sparse representation
Computational complexity
Fractional Fourier transform
Numerical algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-e7a784d8f000c428ac53976b901b70bb5c9a81d49fe027bd4454d6c20cb6a84c3
ORCID 0000-0001-6579-9798
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2020_107646
crossref_primary_10_1016_j_sigpro_2020_107646
elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107646
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Neto, Lima, Silva, Souza (bib0007) Dec. 2019; 165
Peng, Tang, Du, Qian (bib0020) Jun. 2017; 64
Abbas, Sun, Foroosh (bib0014) Apr. 2017; 65
Pawar, Ramchandran (bib0015) Jan. 2018; 64
Miao, Zhang, Tao (bib0017) Jun. 2019; 67
Hassanieh, Indyk, Katabi, Price (bib0022) Jan. 2012
Ozaktas, Arikan, Kutay, Bozdaği (bib0004) Sept. 1996; 44
Chen, Tsai, Yang (bib0013) Nov. 2017; 65
Yu, Chen, Huang, Guan (bib0012) 2019
Candan, Kutay, Ozaktas (bib0002) May 2000; 48
Neto, Lima (bib0006) Dec. 2017; 65
Zhang, Zhang, Chao, Tseng (bib0021) May 2018; 32
Liu, Shan, Zhang, Tao, Feng (bib0011) May 2015
Liu, Zeng, Zhang, Fan, Shan, Tao (bib0025) Mar. 2015
Santhanam, McClellan (bib0003) Apr. 1996; 44
Liu, Shan, Tao, Zhang, Zhang, Zhang, Wang (bib0010) Dec. 2014; 62
Simon, Alouini (bib0023) Jul. 2003; 2
Hassanieh, Indyk, Katabi, Price (bib0018) Jan. 2012
Gilbert, Indyk, Iwen, Schmidt (bib0009) Sept. 2014; 31
Peleg, Friedlander (bib0024) Jan. 1996; 32
Hsue, Chang (bib0008) Oct. 2015; 62
Pei, Ding (bib0005) May 2000; 48
Pawar, Ramchandran (bib0016) Jan. 2018; 64
Wang, Patel, Petropulu (bib0019) Dec. 2017; 53
Almeida (bib0001) Nov. 1994; 42
Zhang (10.1016/j.sigpro.2020.107646_bib0021) 2018; 32
Pawar (10.1016/j.sigpro.2020.107646_bib0015) 2018; 64
Liu (10.1016/j.sigpro.2020.107646_bib0011) 2015
Hassanieh (10.1016/j.sigpro.2020.107646_bib0022) 2012
Neto (10.1016/j.sigpro.2020.107646_bib0007) 2019; 165
Chen (10.1016/j.sigpro.2020.107646_bib0013) 2017; 65
Liu (10.1016/j.sigpro.2020.107646_bib0010) 2014; 62
Peleg (10.1016/j.sigpro.2020.107646_bib0024) 1996; 32
Neto (10.1016/j.sigpro.2020.107646_bib0006) 2017; 65
Simon (10.1016/j.sigpro.2020.107646_bib0023) 2003; 2
Yu (10.1016/j.sigpro.2020.107646_bib0012) 2019
Ozaktas (10.1016/j.sigpro.2020.107646_bib0004) 1996; 44
Pawar (10.1016/j.sigpro.2020.107646_bib0016) 2018; 64
Wang (10.1016/j.sigpro.2020.107646_bib0019) 2017; 53
Miao (10.1016/j.sigpro.2020.107646_bib0017) 2019; 67
Candan (10.1016/j.sigpro.2020.107646_bib0002) 2000; 48
Pei (10.1016/j.sigpro.2020.107646_bib0005) 2000; 48
Liu (10.1016/j.sigpro.2020.107646_bib0025) 2015
Gilbert (10.1016/j.sigpro.2020.107646_bib0009) 2014; 31
Abbas (10.1016/j.sigpro.2020.107646_bib0014) 2017; 65
Hassanieh (10.1016/j.sigpro.2020.107646_bib0018) 2012
Santhanam (10.1016/j.sigpro.2020.107646_bib0003) 1996; 44
Almeida (10.1016/j.sigpro.2020.107646_bib0001) 1994; 42
Peng (10.1016/j.sigpro.2020.107646_bib0020) 2017; 64
Hsue (10.1016/j.sigpro.2020.107646_bib0008) 2015; 62
References_xml – volume: 64
  start-page: 429
  year: Jan. 2018
  end-page: 450
  ident: bib0015
  article-title: FFAST: an algorithm for computing an exactly
  publication-title: IEEE Trans. Inform. Theory
– start-page: 563
  year: Jan. 2012
  end-page: 578
  ident: bib0018
  article-title: Nearly optimal sparse Fourier transform
  publication-title: Proc. 44th Symp. Theory Comput., New York, NY, USA
– volume: 42
  start-page: 3084
  year: Nov. 1994
  end-page: 3091
  ident: bib0001
  article-title: The fractional Fourier transform and time-frequency representations
  publication-title: IEEE Trans. Signal Process.
– volume: 44
  start-page: 994
  year: Apr. 1996
  end-page: 998
  ident: bib0003
  article-title: The discrete rotational Fourier transform
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 6582
  year: Dec. 2014
  end-page: 6595
  ident: bib0010
  article-title: Sparse discrete fractional Fourier transform and its applications
  publication-title: IEEE Trans. Signal Process.
– volume: 32
  start-page: 378
  year: Jan. 1996
  end-page: 387
  ident: bib0024
  article-title: Multicomponent signal analysis using the polynomial-phase transform
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– year: 2019
  ident: bib0012
  article-title: Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform
  publication-title: IEEE Geosci. Remote Sens. Lett. Early Access
– volume: 65
  start-page: 5716
  year: Nov. 2017
  end-page: 5729
  ident: bib0013
  article-title: On performance of sparse fast Fourier transform and enhancement algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 48
  start-page: 1329
  year: May 2000
  end-page: 1337
  ident: bib0002
  article-title: The discrete fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
– start-page: 1139
  year: May 2015
  end-page: 1143
  ident: bib0011
  article-title: A fast algorithm for multi-component LFM signal analysis exploiting segmented DPT and SDFrFT
  publication-title: Proc. IEEE Int. Radar Conf. (RadarCon), Arlington, VA, USA
– volume: 48
  start-page: 1338
  year: May 2000
  end-page: 1353
  ident: bib0005
  article-title: Closed-form discrete fractional and affine Fourier transforms
  publication-title: IEEE Trans. Signal Process.
– start-page: 1183
  year: Jan. 2012
  end-page: 1194
  ident: bib0022
  article-title: Simple and practical algorithm for sparse Fourier transform
  publication-title: Proc. 23rd Annu. ACM-SIAM Symp. Discrete Algorithms, Kyoto, Japan
– volume: 2
  start-page: 611
  year: Jul. 2003
  end-page: 615
  ident: bib0023
  article-title: Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels
  publication-title: IEEE Trans. Wireless Commun.
– volume: 32
  start-page: 675
  year: May 2018
  end-page: 707
  ident: bib0021
  article-title: Kernel mixture model for probability density estimation in Bayesian classifiers
  publication-title: Data Min. Knowl. Discov.
– volume: 44
  start-page: 2141
  year: Sept. 1996
  end-page: 2150
  ident: bib0004
  article-title: Digital computation of the fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
– volume: 53
  start-page: 2735
  year: Dec. 2017
  end-page: 2755
  ident: bib0019
  article-title: The robust sparse Fourier transform (RSFT) and its application in radar signal processing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 165
  start-page: 72
  year: Dec. 2019
  end-page: 82
  ident: bib0007
  article-title: Computation of an eigendecomposition-based discrete fractional Fourier transform with reduced arithmetic complexity
  publication-title: Signal Process.
– volume: 67
  start-page: 3181
  year: Jun. 2019
  end-page: 3196
  ident: bib0017
  article-title: Fractional Fourier analysis using the Möbius inversion formula
  publication-title: IEEE Trans. Signal Process
– start-page: 799
  year: Mar. 2015
  end-page: 803
  ident: bib0025
  article-title: Automatic human fall detection in fractional Fourier domain for assisted living
  publication-title: Proc. 41st IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Shanghai, China
– volume: 64
  start-page: 4866
  year: Jun. 2017
  end-page: 4875
  ident: bib0020
  article-title: Multimode process monitoring and fault detection: asparse modeling and dictionary learning method
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  start-page: 91
  year: Sept. 2014
  end-page: 100
  ident: bib0009
  article-title: Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data
  publication-title: IEEE Signal Process. Mag.
– volume: 65
  start-page: 2033
  year: Apr. 2017
  end-page: 2048
  ident: bib0014
  article-title: An exact and fast computation of discrete Fourier transform for polar and spherical grid
  publication-title: IEEE Trans. Signal Process.
– volume: 64
  start-page: 451
  year: Jan. 2018
  end-page: 466
  ident: bib0016
  article-title: R-FFAST: a robust sub-linear time algorithm for computing a sparse DFT
  publication-title: IEEE Trans. Inform. Theory
– volume: 65
  start-page: 6171
  year: Dec. 2017
  end-page: 6184
  ident: bib0006
  article-title: Discrete fractional Fourier transforms based on closed-form Hermite-Gaussian-like DFT eigenvectors
  publication-title: IEEE Trans. Signal Process.
– volume: 62
  start-page: 2594
  year: Oct. 2015
  end-page: 2605
  ident: bib0008
  article-title: Real discrete fractional Fourier, Hartley, generalized Fourier and generalized Hartley transforms with many parameters
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
– volume: 32
  start-page: 378
  issue: 1
  year: 1996
  ident: 10.1016/j.sigpro.2020.107646_bib0024
  article-title: Multicomponent signal analysis using the polynomial-phase transform
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/7.481277
– start-page: 563
  year: 2012
  ident: 10.1016/j.sigpro.2020.107646_bib0018
  article-title: Nearly optimal sparse Fourier transform
– volume: 42
  start-page: 3084
  issue: 11
  year: 1994
  ident: 10.1016/j.sigpro.2020.107646_bib0001
  article-title: The fractional Fourier transform and time-frequency representations
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.330368
– volume: 65
  start-page: 5716
  issue: 21
  year: 2017
  ident: 10.1016/j.sigpro.2020.107646_bib0013
  article-title: On performance of sparse fast Fourier transform and enhancement algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2740198
– volume: 48
  start-page: 1329
  issue: 5
  year: 2000
  ident: 10.1016/j.sigpro.2020.107646_bib0002
  article-title: The discrete fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.839980
– start-page: 1183
  year: 2012
  ident: 10.1016/j.sigpro.2020.107646_bib0022
  article-title: Simple and practical algorithm for sparse Fourier transform
– volume: 65
  start-page: 2033
  issue: 8
  year: 2017
  ident: 10.1016/j.sigpro.2020.107646_bib0014
  article-title: An exact and fast computation of discrete Fourier transform for polar and spherical grid
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2645510
– volume: 32
  start-page: 675
  issue: 3
  year: 2018
  ident: 10.1016/j.sigpro.2020.107646_bib0021
  article-title: Kernel mixture model for probability density estimation in Bayesian classifiers
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0550-5
– volume: 65
  start-page: 6171
  issue: 23
  year: 2017
  ident: 10.1016/j.sigpro.2020.107646_bib0006
  article-title: Discrete fractional Fourier transforms based on closed-form Hermite-Gaussian-like DFT eigenvectors
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2750105
– volume: 165
  start-page: 72
  year: 2019
  ident: 10.1016/j.sigpro.2020.107646_bib0007
  article-title: Computation of an eigendecomposition-based discrete fractional Fourier transform with reduced arithmetic complexity
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.06.032
– year: 2019
  ident: 10.1016/j.sigpro.2020.107646_bib0012
  article-title: Fast detection method for low-observable maneuvering target via robust sparse fractional Fourier transform
  publication-title: IEEE Geosci. Remote Sens. Lett. Early Access
– volume: 67
  start-page: 3181
  issue: 12
  year: 2019
  ident: 10.1016/j.sigpro.2020.107646_bib0017
  article-title: Fractional Fourier analysis using the Möbius inversion formula
  publication-title: IEEE Trans. Signal Process
  doi: 10.1109/TSP.2019.2912878
– volume: 53
  start-page: 2735
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2020.107646_bib0019
  article-title: The robust sparse Fourier transform (RSFT) and its application in radar signal processing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2714918
– volume: 48
  start-page: 1338
  issue: 5
  year: 2000
  ident: 10.1016/j.sigpro.2020.107646_bib0005
  article-title: Closed-form discrete fractional and affine Fourier transforms
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.839981
– volume: 44
  start-page: 994
  issue: 4
  year: 1996
  ident: 10.1016/j.sigpro.2020.107646_bib0003
  article-title: The discrete rotational Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.492554
– volume: 62
  start-page: 6582
  issue: 24
  year: 2014
  ident: 10.1016/j.sigpro.2020.107646_bib0010
  article-title: Sparse discrete fractional Fourier transform and its applications
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2366719
– volume: 31
  start-page: 91
  issue: 5
  year: 2014
  ident: 10.1016/j.sigpro.2020.107646_bib0009
  article-title: Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2014.2329131
– volume: 2
  start-page: 611
  issue: 4
  year: 2003
  ident: 10.1016/j.sigpro.2020.107646_bib0023
  article-title: Some new results for integrals involving the generalized Marcum Q function and their application to performance evaluation over fading channels
  publication-title: IEEE Trans. Wireless Commun.
  doi: 10.1109/TWC.2003.814344
– volume: 64
  start-page: 4866
  issue: 6
  year: 2017
  ident: 10.1016/j.sigpro.2020.107646_bib0020
  article-title: Multimode process monitoring and fault detection: asparse modeling and dictionary learning method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2668987
– volume: 64
  start-page: 451
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2020.107646_bib0016
  article-title: R-FFAST: a robust sub-linear time algorithm for computing a sparse DFT
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2017.2679053
– start-page: 799
  year: 2015
  ident: 10.1016/j.sigpro.2020.107646_bib0025
  article-title: Automatic human fall detection in fractional Fourier domain for assisted living
– volume: 44
  start-page: 2141
  issue: 9
  year: 1996
  ident: 10.1016/j.sigpro.2020.107646_bib0004
  article-title: Digital computation of the fractional Fourier transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.536672
– volume: 64
  start-page: 429
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2020.107646_bib0015
  article-title: FFAST: an algorithm for computing an exactly k-sparse DFT in O(klog k) time
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2017.2746568
– volume: 62
  start-page: 2594
  issue: 10
  year: 2015
  ident: 10.1016/j.sigpro.2020.107646_bib0008
  article-title: Real discrete fractional Fourier, Hartley, generalized Fourier and generalized Hartley transforms with many parameters
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2015.2468996
– start-page: 1139
  year: 2015
  ident: 10.1016/j.sigpro.2020.107646_bib0011
  article-title: A fast algorithm for multi-component LFM signal analysis exploiting segmented DPT and SDFrFT
SSID ssj0001360
Score 2.48217
Snippet •Neyman-Pearson detection is applied to estimate large coefficients of noise-corrupted signals in the fractional Fourier domain.•Distribution of phase error is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107646
SubjectTerms Computational complexity
Fractional Fourier transform
Numerical algorithm
Sparse representation
Time-frequency analysis
Title Optimized sparse fractional Fourier transform: Principle and performance analysis
URI https://dx.doi.org/10.1016/j.sigpro.2020.107646
Volume 174
WOSCitedRecordID wos000538107600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swGLVY2cN4mLhsGmxDftjblCpN7NjZG0IgQAjYuKhvkeM4baqRVm1BaL-ez_Gl2TrBNmkPjSqrjht_J_bx0XdB6BMrYRunRRyEUifVLuIoyJmCF49rn3dacNGER9-csrMz3u-nF9Z_ftaUE2B1zR8e0sl_NTW0gbF16OxfmNvfFBrgOxgdrmB2uP6R4c9hEbitfgCRhMViOlOfy6kJXgBjHNoKdXNHV7UgcOH0dpM04KdIApOxpM1gL6uBvtPEBBi4ja8tPR-N64EcVl67GdoKyGLsvX-qu0Z1Hap6oD8L-aARbr9ZxFoxAk6eztvKKmRLUTJGtExo0EtMKbiuMgstZ8DsqUlO7VdiU7BnaVU3AsOoO6sG8HRdPTA0soT8kkS72ZYv9XB6tEif9nhKXqDViNGUd9Dq3vFB_8Rv1L24CSL3f89FVjbuf8tj_Z65tNjI1Tp6bY8ReM-YfwOtqHoTrbWSS26hrx4I2AABL4CALRCwB8IX7GGAAQa4BQPsYPAGXR8eXO0fBbaARiBjFs0DxQTjpOAlPKyEc6aQVNPPHDhgzsI8pzIVcF4haanCiOUFIZQUiYxCmSeCExm_RZ16XKt3CMueLIuIpWVRUiIEE8Az4TVWQO9EJEO6jWI3OZm02eV1kZPvmXMjHGVmSjM9pZmZ0m0U-F4Tk13lmd8zN--ZZYiG-WUAlSd77vxzz_fo1QLpH1BnPr1TH9FLeT-vZtNdi6lHgaKNsA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+sparse+fractional+Fourier+transform%3A+Principle+and+performance+analysis&rft.jtitle=Signal+processing&rft.au=Zhang%2C+Hongchi&rft.au=Shan%2C+Tao&rft.au=Liu%2C+Shengheng&rft.au=Tao%2C+Ran&rft.date=2020-09-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=174&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107646&rft.externalDocID=S0165168420301894
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon