Quantum particle swarm optimization algorithm based on diversity migration strategy

Particle swarm optimization algorithm has been successfully applied to solve practical optimization problems due to its simplicity and efficiency. However, the traditional particle swarm optimization algorithm has inferior search performance in complicated high-dimensional optimization issues and is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 157; S. 445 - 458
Hauptverfasser: Gong, Chen, Zhou, Nanrun, Xia, Shuhua, Huang, Shuiyuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2024
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Particle swarm optimization algorithm has been successfully applied to solve practical optimization problems due to its simplicity and efficiency. However, the traditional particle swarm optimization algorithm has inferior search performance in complicated high-dimensional optimization issues and is prone to falling into local optima. To address these problems, a new migration mechanism is introduced and a quantum particle swarm optimization method based on diversity migration is proposed. The strategy can capture different ranges of particles in the population, and the selection of migrating individuals depends not only on their fitness values but is also influenced by the positions within the population. The individual with the minimal average Hamming distance in the population can indicate the direction of iterative population optimization. After comparing the fitness values and the average Hamming distance between particles, the particles deviating from the central range of the population are replaced. The performance of the proposed algorithm is investigated under seven different sets of benchmark function optimization problems in the CEC2020 single-objective boundary-constrained optimization competition, and is compared with those of several other representative optimization algorithms. The quantum particle swarm optimization algorithm based on diversity migration strategy outperforms other typical optimization algorithms. Moreover, the proposed algorithm is convergent and stable. •A quantum PSO algorithm is presented by introducing diversity migration strategy.•The DM-QOSO algorithm can accomplish particle migration via diversity guidance.•The DM-QPSO algorithm can achieve higher prediction accuracy in BP neural networks.
AbstractList Particle swarm optimization algorithm has been successfully applied to solve practical optimization problems due to its simplicity and efficiency. However, the traditional particle swarm optimization algorithm has inferior search performance in complicated high-dimensional optimization issues and is prone to falling into local optima. To address these problems, a new migration mechanism is introduced and a quantum particle swarm optimization method based on diversity migration is proposed. The strategy can capture different ranges of particles in the population, and the selection of migrating individuals depends not only on their fitness values but is also influenced by the positions within the population. The individual with the minimal average Hamming distance in the population can indicate the direction of iterative population optimization. After comparing the fitness values and the average Hamming distance between particles, the particles deviating from the central range of the population are replaced. The performance of the proposed algorithm is investigated under seven different sets of benchmark function optimization problems in the CEC2020 single-objective boundary-constrained optimization competition, and is compared with those of several other representative optimization algorithms. The quantum particle swarm optimization algorithm based on diversity migration strategy outperforms other typical optimization algorithms. Moreover, the proposed algorithm is convergent and stable. •A quantum PSO algorithm is presented by introducing diversity migration strategy.•The DM-QOSO algorithm can accomplish particle migration via diversity guidance.•The DM-QPSO algorithm can achieve higher prediction accuracy in BP neural networks.
Author Xia, Shuhua
Zhou, Nanrun
Huang, Shuiyuan
Gong, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Gong
  fullname: Gong, Chen
  email: ncugong@163.com
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 2
  givenname: Nanrun
  surname: Zhou
  fullname: Zhou, Nanrun
  email: znr21@163.com
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 3
  givenname: Shuhua
  surname: Xia
  fullname: Xia, Shuhua
  email: 1505348682@qq.com
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang, 330031, China
– sequence: 4
  givenname: Shuiyuan
  surname: Huang
  fullname: Huang, Shuiyuan
  email: huangshuiyuan@ncu.edu.cn
  organization: Department of Computer Science and Technology, Nanchang University, Nanchang, 330031, China
BookMark eNqFUF1LwzAUDTLBbfoPfOgfaL1p2qb1QZDhFwxEVPAtZMntzOjHSNLJ_PVm1icfFA7cy-Wcw7lnRiZd3yEh5xQSCrS42CT14AeLSQpplkAAlEdkSkuexpzSfEKmgcZjzqq3EzJzbgMAlDM6Jc9Pg-z80EZbab1RDUbuQ9o26rfetOZTetN3kWzWvTX-vY1W0qGOwkmbHVpn_D5qzdqONOfDguv9KTmuZePw7GfOyevtzcviPl4-3j0srpexYjz1Meac57LKVkUKOoOs5JJLzWpkVaYkLZguUWcSeFlzhUXKaw2rUrO8DkyoFJuTy9FX2d45i7VQxn9HCUFMIyiIQz1iI8Z6xKEeAQFQBnH2S7y1ppV2_5_sapRheGxn0AqnDHYKtbGovNC9-dvgC_9Rhr4
CitedBy_id crossref_primary_10_1038_s41598_025_03093_6
crossref_primary_10_1016_j_apacoust_2024_110527
crossref_primary_10_1016_j_cosrev_2025_100763
crossref_primary_10_1016_j_compbiomed_2025_109676
crossref_primary_10_1016_j_cma_2025_118039
crossref_primary_10_3390_en18184802
crossref_primary_10_1016_j_knosys_2024_112878
crossref_primary_10_1371_journal_pone_0311602
crossref_primary_10_17798_bitlisfen_1598152
crossref_primary_10_1109_ACCESS_2024_3463400
crossref_primary_10_1007_s10773_024_05630_x
crossref_primary_10_3390_math12244037
crossref_primary_10_1007_s11227_024_06746_x
crossref_primary_10_1007_s00180_025_01666_7
crossref_primary_10_1007_s40747_024_01694_8
crossref_primary_10_1016_j_optlastec_2025_112755
crossref_primary_10_1155_int_5521043
crossref_primary_10_1016_j_dsp_2025_105340
crossref_primary_10_1016_j_aei_2025_103622
crossref_primary_10_1016_j_envsoft_2025_106667
crossref_primary_10_1007_s11227_025_07810_w
crossref_primary_10_1186_s43067_025_00240_x
crossref_primary_10_1371_journal_pone_0306283
crossref_primary_10_1016_j_eswa_2025_129128
crossref_primary_10_1088_2058_9565_ad80bd
crossref_primary_10_1186_s42162_024_00454_9
crossref_primary_10_3390_biomimetics10050310
crossref_primary_10_1088_1612_202X_ad8742
crossref_primary_10_1109_ACCESS_2025_3560624
crossref_primary_10_1007_s42417_025_01949_9
crossref_primary_10_1002_qute_202400700
crossref_primary_10_3390_bdcc9090229
crossref_primary_10_1088_1402_4896_ad8190
crossref_primary_10_1007_s11227_025_07797_4
crossref_primary_10_1016_j_energy_2024_134100
crossref_primary_10_3390_biomimetics10050282
crossref_primary_10_3390_biomimetics10070471
crossref_primary_10_1016_j_compeleceng_2025_110086
crossref_primary_10_1016_j_future_2025_108006
crossref_primary_10_1016_j_enconman_2024_118844
crossref_primary_10_1109_ACCESS_2024_3456081
crossref_primary_10_1007_s40747_024_01606_w
crossref_primary_10_1109_TTE_2025_3548636
crossref_primary_10_1007_s11227_024_06615_7
crossref_primary_10_1002_qute_202400510
crossref_primary_10_1016_j_asoc_2025_113654
crossref_primary_10_1016_j_engappai_2025_110294
crossref_primary_10_3389_fphy_2024_1412664
crossref_primary_10_3389_fphy_2024_1443977
crossref_primary_10_1016_j_eswa_2025_129584
crossref_primary_10_1038_s41598_025_99501_y
Cites_doi 10.1016/j.neucom.2022.01.012
10.1109/4235.985692
10.1007/s10639-022-11194-2
10.1007/s00500-021-06113-5
10.1007/s11128-021-03380-x
10.3844/jcssp.2014.1758.1765
10.1109/TSMC.2013.2248146
10.1007/s12525-021-00475-2
10.1007/s10489-021-03155-y
10.1109/TNNLS.2023.3335859
10.1016/j.inffus.2018.11.010
10.1016/j.ins.2021.11.052
10.1016/j.asoc.2019.105704
10.1016/j.eswa.2023.120388
10.1016/j.future.2019.02.028
10.1016/j.swevo.2022.101212
10.1007/s11269-022-03064-w
10.1016/j.eswa.2022.118256
10.1080/0305215X.2021.1900154
10.1155/2021/4297600
10.1007/s12065-021-00661-3
10.1007/s00500-021-05688-3
10.1162/EVCO_a_00049
10.1016/j.knosys.2019.06.028
10.1016/j.apacoust.2023.109492
10.1016/j.swevo.2023.101309
10.1007/s12555-019-0931-6
10.1007/s00500-012-0803-y
10.1016/j.ins.2012.01.005
10.1504/IJGUC.2023.131018
10.1016/j.optcom.2023.129993
10.1109/TPWRS.2009.2030359
10.1016/j.asoc.2014.10.026
10.1109/TCYB.2015.2474153
10.1016/j.cageo.2023.105334
10.1016/j.eswa.2020.113396
10.1016/j.eswa.2022.117562
10.1007/s11128-020-02842-y
10.1016/j.eswa.2009.06.044
10.1061/(ASCE)CP.1943-5487.0001042
10.1016/j.ins.2022.10.069
10.1016/j.cie.2022.108487
10.1007/s00500-023-08011-4
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2024.04.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 458
ExternalDocumentID 10_1016_j_future_2024_04_008
S0167739X24001389
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c372t-e5775a94b620d40487a7ad3fe394ca163d8ed4a078f7ce627fd0b8d35f87a09c3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234910400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 03:48:13 EST 2025
Tue Nov 18 22:11:37 EST 2025
Sat May 25 15:40:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Diversity migration strategy
Average Hamming distance
Particle swarm optimization
Quantum-behaved
Optimization problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-e5775a94b620d40487a7ad3fe394ca163d8ed4a078f7ce627fd0b8d35f87a09c3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_future_2024_04_008
crossref_primary_10_1016_j_future_2024_04_008
elsevier_sciencedirect_doi_10_1016_j_future_2024_04_008
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tiwari, Kumar (b22) 2023; 16
Li, Liu, Yin, Chen, Meng (b19) 2023; 440
Zhang (b17) 2023; 76
He, Lu (b28) 2021; 25
Cauteruccio, Terracina, Ursino (b6) 2020; 187
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b7) 2019; 97
Sun, Fang, Wu, Palade, Xu (b42) 2012; 20
Khuwaileh, Al-Shabi, Assad (b18) 2021; 157
Ding, Dong, Zou (b11) 2019; 84
Lei, Gao, Gupta, Cheng, Yang (b13) 2020; 152
Xu, Gu, Fan, Li, Zhao, Zhao, Wang (b16) 2023; 619
Yang (b45) 2021; 2021
Ali, Ayaz, Iqbal (b21) 2022; 20
Rugveth, Khatter (b35) 2023; 27
Kang, Zhong, Cao, Li (b47) 2023; 14
Chen, He (b49) 2022; 52
Sun, Wu, Palade, Fang, Lai, Xu (b41) 2012; 193
Defersha, Obimuyiwa, Yimer (b9) 2022; 171
Li, Xiang, Jiao, Liu (b43) 2012; 16
Said, Elarbi, Bechikh, Ben Said (b48) 2022; 22
Bhatia, Saggi, Zheng (b27) 2020; 19
Xue, Jieru (b23) 2022
Dian, Zhong, Guo, Liu, Guo (b29) 2022; 208
Janiesch, Zschech, Heinrich (b1) 2021; 31
Klimova, Pikhart, Benites, Lehr, Sanchez-Stockhammer (b2) 2023; 28
Coelho (b40) 2010; 37
Zhou, Xia, Ma, Zhang (b44) 2022; 21
Huang, Huang (b50) 2018; 322
Deng, Zhang, Zhou, Liu, Zhou, Chen, Zhao (b10) 2022; 585
Chen, Sun, Palade, Wu, Shi (b31) 2022; 54
Hema, Marquez (b3) 2023; 211
Meng, Wang, Dong, Wong (b38) 2009; 25
Rezaei, Safavi (b20) 2022; 36
Qin, Cheng, Zhang, Li, Shi (b15) 2016; 46
Zhao, Fang, Ma, Liu (b46) 2022; 204
Sun, Xu, Feng (b37) 2004
Nakisa, Nazri, Rastgoo, Abdullah (b25) 2014; 10
Jordehi (b26) 2015; 26
Kaveh, Hosseini (b8) 2022; 36
Kennedy, Eberhart (b14) 1995
Ding, Zhang, Sun, Shi (b30) 2022; 480
Fu, Ding, Zhou, Hu (b39) 2013; 43
Gong, Pei, Zhang, Zhou (b4) 2024; 550
Tang, Zhu, Sun, Xin (b32) 2023; 228
Cauteruccio, Fortino, Guerrieri, Liotta, Mocanu, Perra, Terracina, Vega (b5) 2019; 52
Jiao, Cheng, Liu, Yang, Tan, Cheng, Zhang, Jiang, Chen (b33) 2023; 174
Clerc, Kennedy (b12) 2002; 6
Chen, Sun, Palade (b34) 2023
Wang, Wang, Zhang, Tan (b36) 2023; 79
Yang, Chen, Liu (b24) 2023; 27
Ding (10.1016/j.future.2024.04.008_b11) 2019; 84
Bhatia (10.1016/j.future.2024.04.008_b27) 2020; 19
Zhou (10.1016/j.future.2024.04.008_b44) 2022; 21
Clerc (10.1016/j.future.2024.04.008_b12) 2002; 6
Huang (10.1016/j.future.2024.04.008_b50) 2018; 322
Xue (10.1016/j.future.2024.04.008_b23) 2022
Coelho (10.1016/j.future.2024.04.008_b40) 2010; 37
Tang (10.1016/j.future.2024.04.008_b32) 2023; 228
Wang (10.1016/j.future.2024.04.008_b36) 2023; 79
Heidari (10.1016/j.future.2024.04.008_b7) 2019; 97
Rugveth (10.1016/j.future.2024.04.008_b35) 2023; 27
Kaveh (10.1016/j.future.2024.04.008_b8) 2022; 36
Li (10.1016/j.future.2024.04.008_b19) 2023; 440
Rezaei (10.1016/j.future.2024.04.008_b20) 2022; 36
Nakisa (10.1016/j.future.2024.04.008_b25) 2014; 10
Klimova (10.1016/j.future.2024.04.008_b2) 2023; 28
Jordehi (10.1016/j.future.2024.04.008_b26) 2015; 26
Sun (10.1016/j.future.2024.04.008_b41) 2012; 193
Kang (10.1016/j.future.2024.04.008_b47) 2023; 14
Tiwari (10.1016/j.future.2024.04.008_b22) 2023; 16
Xu (10.1016/j.future.2024.04.008_b16) 2023; 619
Zhang (10.1016/j.future.2024.04.008_b17) 2023; 76
Ali (10.1016/j.future.2024.04.008_b21) 2022; 20
Dian (10.1016/j.future.2024.04.008_b29) 2022; 208
Sun (10.1016/j.future.2024.04.008_b42) 2012; 20
Khuwaileh (10.1016/j.future.2024.04.008_b18) 2021; 157
Kennedy (10.1016/j.future.2024.04.008_b14) 1995
Hema (10.1016/j.future.2024.04.008_b3) 2023; 211
Jiao (10.1016/j.future.2024.04.008_b33) 2023; 174
Li (10.1016/j.future.2024.04.008_b43) 2012; 16
Fu (10.1016/j.future.2024.04.008_b39) 2013; 43
Chen (10.1016/j.future.2024.04.008_b49) 2022; 52
Meng (10.1016/j.future.2024.04.008_b38) 2009; 25
Said (10.1016/j.future.2024.04.008_b48) 2022; 22
Deng (10.1016/j.future.2024.04.008_b10) 2022; 585
Cauteruccio (10.1016/j.future.2024.04.008_b6) 2020; 187
Chen (10.1016/j.future.2024.04.008_b31) 2022; 54
Janiesch (10.1016/j.future.2024.04.008_b1) 2021; 31
Chen (10.1016/j.future.2024.04.008_b34) 2023
Gong (10.1016/j.future.2024.04.008_b4) 2024; 550
Cauteruccio (10.1016/j.future.2024.04.008_b5) 2019; 52
Sun (10.1016/j.future.2024.04.008_b37) 2004
Zhao (10.1016/j.future.2024.04.008_b46) 2022; 204
Ding (10.1016/j.future.2024.04.008_b30) 2022; 480
Yang (10.1016/j.future.2024.04.008_b24) 2023; 27
He (10.1016/j.future.2024.04.008_b28) 2021; 25
Defersha (10.1016/j.future.2024.04.008_b9) 2022; 171
Qin (10.1016/j.future.2024.04.008_b15) 2016; 46
Lei (10.1016/j.future.2024.04.008_b13) 2020; 152
Yang (10.1016/j.future.2024.04.008_b45) 2021; 2021
References_xml – start-page: 1942
  year: 1995
  end-page: 1948
  ident: b14
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95 - International Conference on Neural Networks, Vol. 4
– volume: 43
  start-page: 1451
  year: 2013
  end-page: 1465
  ident: b39
  article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 76
  year: 2023
  ident: b17
  article-title: Elite archives-driven particle swarm optimization for large scale numerical optimization and its engineering applications
  publication-title: Swarm Evol. Comput.
– start-page: 1
  year: 2023
  end-page: 12
  ident: b34
  article-title: A word-level adversarial attack method based on sememes and an improved quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 26
  start-page: 401
  year: 2015
  end-page: 417
  ident: b26
  article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems
  publication-title: Appl. Soft Comput.
– volume: 27
  start-page: 3461
  year: 2023
  end-page: 3476
  ident: b24
  article-title: Improved and optimized recurrent neural network based on PSO and its application in stock price prediction
  publication-title: Soft Comput.
– volume: 19
  start-page: 345
  year: 2020
  ident: b27
  article-title: QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution
  publication-title: Quantum Inf. Process.
– volume: 171
  year: 2022
  ident: b9
  article-title: Mathematical model and simulated annealing algorithm for setup operator constrained flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 204
  year: 2022
  ident: b46
  article-title: Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems
  publication-title: Expert Syst. Appl.
– volume: 31
  start-page: 685
  year: 2021
  end-page: 695
  ident: b1
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
– volume: 36
  start-page: 989
  year: 2022
  end-page: 1006
  ident: b20
  article-title: Sustainable conjunctive water use modeling using dual fitness particle swarm optimization algorithm
  publication-title: Water Resour. Manag.
– volume: 174
  year: 2023
  ident: b33
  article-title: Inversion of TEM measurement data via a quantum particle swarm optimization algorithm with the elite opposition-based learning strategy
  publication-title: Comput. Geosci.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b7
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 36
  year: 2022
  ident: b8
  article-title: Improved bat algorithm based on doppler effect for optimal design of special truss structures
  publication-title: J. Comput. Civ. Eng.
– volume: 2021
  year: 2021
  ident: b45
  article-title: Application of multidirectional mutation genetic algorithm and its optimization neural network in intelligent optimization of english teaching courses
  publication-title: Comput. Intell. Neurosci.
– volume: 16
  start-page: 23
  year: 2023
  end-page: 47
  ident: b22
  article-title: Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: Concepts and variants
  publication-title: Evol. Intell.
– volume: 152
  year: 2020
  ident: b13
  article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants
  publication-title: Expert Syst. Appl.
– volume: 211
  year: 2023
  ident: b3
  article-title: Emotional speech recognition using CNN and deep learning techniques
  publication-title: Appl. Acoust.
– volume: 84
  year: 2019
  ident: b11
  article-title: Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 7695
  year: 2021
  end-page: 7706
  ident: b28
  article-title: An improved QPSO algorithm and its application in fuzzy portfolio model with constraints
  publication-title: Soft Comput.
– start-page: 111
  year: 2004
  end-page: 116
  ident: b37
  article-title: A global search strategy of quantum-behaved particle swarm optimization
  publication-title: IEEE Conference on Cybernetics and Intelligent Systems, 2004, Vol. 1
– volume: 52
  start-page: 13
  year: 2019
  end-page: 30
  ident: b5
  article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance
  publication-title: Inf. Fusion
– volume: 208
  year: 2022
  ident: b29
  article-title: A smooth path planning method for mobile robot using a BES-incorporated modified QPSO algorithm
  publication-title: Expert Syst. Appl.
– volume: 550
  year: 2024
  ident: b4
  article-title: Quantum convolutional neural network based on variational quantum circuits
  publication-title: Opt. Commun.
– volume: 193
  start-page: 81
  year: 2012
  end-page: 103
  ident: b41
  article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization
  publication-title: Inform. Sci.
– volume: 440
  year: 2023
  ident: b19
  article-title: Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations
  publication-title: Appl. Math. Comput.
– volume: 322
  year: 2018
  ident: b50
  article-title: Gear fault diagnosis based on BP neural network
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 14
  start-page: 169
  year: 2023
  end-page: 181
  ident: b47
  article-title: A modified multi-objective particle swarm optimisation with entropy adaptive strategy and Levy mutation in the internet of things environment
  publication-title: Int. J. Grid Util. Comput.
– volume: 21
  start-page: 42
  year: 2022
  ident: b44
  article-title: Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy
  publication-title: Quantum Inf. Process.
– volume: 20
  start-page: 198
  year: 2022
  end-page: 207
  ident: b21
  article-title: Collaborative position control of pantograph robot using particle swarm optimization
  publication-title: Int. J. Control Autom. Syst.
– volume: 10
  start-page: 1758
  year: 2014
  end-page: 1765
  ident: b25
  article-title: A survey: Particle swarm optimization based algorithms to solve premature convergence problem
  publication-title: J. Comput. Sci.
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: b40
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– start-page: 857
  year: 2022
  end-page: 860
  ident: b23
  article-title: Application of support vector machine based on particle swarm optimization in classification and prediction of heart disease
  publication-title: 2022 7th International Conference on Intelligent Computing and Signal Processing
– volume: 20
  start-page: 349
  year: 2012
  end-page: 393
  ident: b42
  article-title: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
– volume: 46
  start-page: 2238
  year: 2016
  end-page: 2251
  ident: b15
  article-title: Particle swarm optimization with interswarm interactive learning strategy
  publication-title: IEEE Trans. Cybern.
– volume: 16
  start-page: 1061
  year: 2012
  end-page: 1069
  ident: b43
  article-title: An improved cooperative quantum-behaved particle swarm optimization
  publication-title: Soft Comput.
– volume: 54
  start-page: 743
  year: 2022
  end-page: 769
  ident: b31
  article-title: An improved Gaussian distribution based quantum-behaved particle swarm optimization algorithm for engineering shape design problems
  publication-title: Eng. Optim.
– volume: 52
  start-page: 13043
  year: 2022
  end-page: 13081
  ident: b49
  article-title: An enhanced seagull optimization algorithm for solving engineering optimization problems
  publication-title: Appl. Intell.
– volume: 157
  year: 2021
  ident: b18
  article-title: Artificial neural network based particle swarm optimization solution approach for the inverse depletion of used nuclear fuel
  publication-title: Ann. Nucl. Energy
– volume: 25
  start-page: 215
  year: 2009
  end-page: 222
  ident: b38
  article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 187
  year: 2020
  ident: b6
  article-title: Generalizing identity-based string comparison metrics: Framework and techniques
  publication-title: Knowl.-Based Syst.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b12
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 619
  start-page: 126
  year: 2023
  end-page: 152
  ident: b16
  article-title: A strategy learning framework for particle swarm optimization algorithm
  publication-title: Inform. Sci.
– volume: 480
  start-page: 146
  year: 2022
  end-page: 156
  ident: b30
  article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm
  publication-title: Neurocomputing
– volume: 228
  year: 2023
  ident: b32
  article-title: Mathematical modeling of resource allocation for cognitive radio sensor health monitoring system using coevolutionary quantum-behaved particle swarm optimization
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 1697
  year: 2022
  end-page: 1735
  ident: b48
  article-title: Solving combinatorial bi-level optimization problems using multiple populations and migration schemes
  publication-title: Oper. Res.
– volume: 28
  start-page: 663
  year: 2023
  end-page: 682
  ident: b2
  article-title: Neural machine translation in foreign language teaching and learning: a systematic review
  publication-title: Educ. Inf. Technol.
– volume: 27
  start-page: 8759
  year: 2023
  end-page: 8774
  ident: b35
  article-title: Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters
  publication-title: Soft Comput.
– volume: 79
  year: 2023
  ident: b36
  article-title: Adam-assisted quantum particle swarm optimization guided by length of potential well for numerical function optimization
  publication-title: Swarm Evol. Comput.
– volume: 585
  start-page: 441
  year: 2022
  end-page: 453
  ident: b10
  article-title: An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems
  publication-title: Inform. Sci.
– volume: 480
  start-page: 146
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b30
  article-title: Multiple birth support vector machine based on dynamic quantum particle swarm optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.012
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.future.2024.04.008_b12
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 28
  start-page: 663
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b2
  article-title: Neural machine translation in foreign language teaching and learning: a systematic review
  publication-title: Educ. Inf. Technol.
  doi: 10.1007/s10639-022-11194-2
– volume: 27
  start-page: 3461
  issue: 6
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b24
  article-title: Improved and optimized recurrent neural network based on PSO and its application in stock price prediction
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06113-5
– volume: 21
  start-page: 42
  issue: 2
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b44
  article-title: Quantum particle swarm optimization algorithm with the truncated mean stabilization strategy
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-021-03380-x
– volume: 10
  start-page: 1758
  issue: 9
  year: 2014
  ident: 10.1016/j.future.2024.04.008_b25
  article-title: A survey: Particle swarm optimization based algorithms to solve premature convergence problem
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2014.1758.1765
– volume: 43
  start-page: 1451
  issue: 6
  year: 2013
  ident: 10.1016/j.future.2024.04.008_b39
  article-title: Route planning for unmanned aerial vehicle (UAV) on the sea using hybrid differential evolution and quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2013.2248146
– start-page: 857
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b23
  article-title: Application of support vector machine based on particle swarm optimization in classification and prediction of heart disease
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: 10.1016/j.future.2024.04.008_b1
  article-title: Machine learning and deep learning
  publication-title: Electron. Mark.
  doi: 10.1007/s12525-021-00475-2
– volume: 52
  start-page: 13043
  issue: 11
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b49
  article-title: An enhanced seagull optimization algorithm for solving engineering optimization problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03155-y
– start-page: 1
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b34
  article-title: A word-level adversarial attack method based on sememes and an improved quantum-behaved particle swarm optimization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3335859
– volume: 52
  start-page: 13
  year: 2019
  ident: 10.1016/j.future.2024.04.008_b5
  article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.11.010
– volume: 585
  start-page: 441
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b10
  article-title: An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.11.052
– volume: 84
  year: 2019
  ident: 10.1016/j.future.2024.04.008_b11
  article-title: Fruit fly optimization algorithm based on a hybrid adaptive-cooperative learning and its application in multilevel image thresholding
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105704
– volume: 228
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b32
  article-title: Mathematical modeling of resource allocation for cognitive radio sensor health monitoring system using coevolutionary quantum-behaved particle swarm optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120388
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.future.2024.04.008_b7
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 76
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b17
  article-title: Elite archives-driven particle swarm optimization for large scale numerical optimization and its engineering applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101212
– volume: 36
  start-page: 989
  issue: 3
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b20
  article-title: Sustainable conjunctive water use modeling using dual fitness particle swarm optimization algorithm
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03064-w
– volume: 208
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b29
  article-title: A smooth path planning method for mobile robot using a BES-incorporated modified QPSO algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118256
– volume: 54
  start-page: 743
  issue: 5
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b31
  article-title: An improved Gaussian distribution based quantum-behaved particle swarm optimization algorithm for engineering shape design problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2021.1900154
– volume: 2021
  year: 2021
  ident: 10.1016/j.future.2024.04.008_b45
  article-title: Application of multidirectional mutation genetic algorithm and its optimization neural network in intelligent optimization of english teaching courses
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/4297600
– volume: 16
  start-page: 23
  issue: 1
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b22
  article-title: Advances and bibliographic analysis of particle swarm optimization applications in electrical power system: Concepts and variants
  publication-title: Evol. Intell.
  doi: 10.1007/s12065-021-00661-3
– volume: 25
  start-page: 7695
  issue: 12
  year: 2021
  ident: 10.1016/j.future.2024.04.008_b28
  article-title: An improved QPSO algorithm and its application in fuzzy portfolio model with constraints
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-05688-3
– volume: 322
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2024.04.008_b50
  article-title: Gear fault diagnosis based on BP neural network
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
– volume: 20
  start-page: 349
  issue: 3
  year: 2012
  ident: 10.1016/j.future.2024.04.008_b42
  article-title: Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00049
– volume: 187
  year: 2020
  ident: 10.1016/j.future.2024.04.008_b6
  article-title: Generalizing identity-based string comparison metrics: Framework and techniques
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.06.028
– volume: 211
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b3
  article-title: Emotional speech recognition using CNN and deep learning techniques
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2023.109492
– volume: 79
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b36
  article-title: Adam-assisted quantum particle swarm optimization guided by length of potential well for numerical function optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101309
– volume: 20
  start-page: 198
  issue: 1
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b21
  article-title: Collaborative position control of pantograph robot using particle swarm optimization
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0931-6
– volume: 16
  start-page: 1061
  issue: 6
  year: 2012
  ident: 10.1016/j.future.2024.04.008_b43
  article-title: An improved cooperative quantum-behaved particle swarm optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-012-0803-y
– volume: 193
  start-page: 81
  year: 2012
  ident: 10.1016/j.future.2024.04.008_b41
  article-title: Convergence analysis and improvements of quantum-behaved particle swarm optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2012.01.005
– volume: 14
  start-page: 169
  issue: 2–3
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b47
  article-title: A modified multi-objective particle swarm optimisation with entropy adaptive strategy and Levy mutation in the internet of things environment
  publication-title: Int. J. Grid Util. Comput.
  doi: 10.1504/IJGUC.2023.131018
– volume: 550
  year: 2024
  ident: 10.1016/j.future.2024.04.008_b4
  article-title: Quantum convolutional neural network based on variational quantum circuits
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2023.129993
– volume: 25
  start-page: 215
  issue: 1
  year: 2009
  ident: 10.1016/j.future.2024.04.008_b38
  article-title: Quantum-inspired particle swarm optimization for valve-point economic load dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2030359
– volume: 26
  start-page: 401
  year: 2015
  ident: 10.1016/j.future.2024.04.008_b26
  article-title: Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.10.026
– start-page: 1942
  year: 1995
  ident: 10.1016/j.future.2024.04.008_b14
  article-title: Particle swarm optimization
– start-page: 111
  year: 2004
  ident: 10.1016/j.future.2024.04.008_b37
  article-title: A global search strategy of quantum-behaved particle swarm optimization
– volume: 22
  start-page: 1697
  issue: 3
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b48
  article-title: Solving combinatorial bi-level optimization problems using multiple populations and migration schemes
  publication-title: Oper. Res.
– volume: 46
  start-page: 2238
  issue: 10
  year: 2016
  ident: 10.1016/j.future.2024.04.008_b15
  article-title: Particle swarm optimization with interswarm interactive learning strategy
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2474153
– volume: 157
  issue: 4
  year: 2021
  ident: 10.1016/j.future.2024.04.008_b18
  article-title: Artificial neural network based particle swarm optimization solution approach for the inverse depletion of used nuclear fuel
  publication-title: Ann. Nucl. Energy
– volume: 174
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b33
  article-title: Inversion of TEM measurement data via a quantum particle swarm optimization algorithm with the elite opposition-based learning strategy
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2023.105334
– volume: 152
  year: 2020
  ident: 10.1016/j.future.2024.04.008_b13
  article-title: An aggregative learning gravitational search algorithm with self-adaptive gravitational constants
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113396
– volume: 204
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b46
  article-title: Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian mutation for solving engineering optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117562
– volume: 19
  start-page: 345
  issue: 10
  year: 2020
  ident: 10.1016/j.future.2024.04.008_b27
  article-title: QPSO-CD: quantum-behaved particle swarm optimization algorithm with Cauchy distribution
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-020-02842-y
– volume: 37
  start-page: 1676
  issue: 2
  year: 2010
  ident: 10.1016/j.future.2024.04.008_b40
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.044
– volume: 36
  issue: 6
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b8
  article-title: Improved bat algorithm based on doppler effect for optimal design of special truss structures
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0001042
– volume: 619
  start-page: 126
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b16
  article-title: A strategy learning framework for particle swarm optimization algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.10.069
– volume: 440
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b19
  article-title: Adaptive selection strategy of shape parameters for LRBF for solving partial differential equations
  publication-title: Appl. Math. Comput.
– volume: 171
  year: 2022
  ident: 10.1016/j.future.2024.04.008_b9
  article-title: Mathematical model and simulated annealing algorithm for setup operator constrained flexible job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108487
– volume: 27
  start-page: 8759
  issue: 13
  year: 2023
  ident: 10.1016/j.future.2024.04.008_b35
  article-title: Sensitivity analysis on Gaussian quantum-behaved particle swarm optimization control parameters
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08011-4
SSID ssj0001731
Score 2.5937734
Snippet Particle swarm optimization algorithm has been successfully applied to solve practical optimization problems due to its simplicity and efficiency. However, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 445
SubjectTerms Average Hamming distance
Diversity migration strategy
Optimization problem
Particle swarm optimization
Quantum-behaved
Title Quantum particle swarm optimization algorithm based on diversity migration strategy
URI https://dx.doi.org/10.1016/j.future.2024.04.008
Volume 157
WOSCitedRecordID wos001234910400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECaMpEOXvoumL3DoJihQJUoUxyBI-hiCFkkBo4tAUWTkwJIN20qTPT-8J_FIpU2RNkMBQzBoirJ5H46fybvvCHlXmjwDlqpDkyQ8ZFLrsJR5GhqltAJ-YJSwxSb40VE-nYovk8mVy4U5n_O2zS8uxPK_mhrawNh96uwdzO0HhQZ4D0aHK5gdrv9k-K8dTFbXBEv8LFj_kKsmWIBvaDDpMpDz08VqtqmboF_Fqv7EoPIBGs3sFGGxttK1v5z8Hg4iJH3lZY29FBaGQFVoT9I_YLTvfj2mm32vFx069VXnW6c2Yve47upOjkBzW9l1N7vsEMW4QREzHx7n9yzBF_NkqJg7Ol0rS41uk1lJSVyBmRVzv-Hc7T7D2a5VW9ntnzXI1Eb5uJi5A_zf1jgfeeiC2s4KO0rRj1JE8Oozxrdjngpw79t7nw6mn_2K_p5jXUv8IS4Fc4gTvPlt_kxxrtGWk0fkAf7foHsWC4_JRLdPyENXy4Oia39KjhE21MGGDrCh12FDPWzoABsKTR421MOGOtg8I98OD072P4ZYcCNUCY83oU45T6VgZRZHFQPfziWXVWJ0IpiSwNyrXFdMAqs0XOks5qaKyrxKUgM9I6GS52SrXbT6BaFMZDBKXBmTCabLWAAT1aYSwohesTDeIYmbo0KhGn1fFGVe3GahHRL6u5ZWjeUv_bmb_gIZpWWKBWDq1jtf3vFJr8j9EfuvydZm1ek35J4638zWq7cIqJ8S66Dx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+particle+swarm+optimization+algorithm+based+on+diversity+migration+strategy&rft.jtitle=Future+generation+computer+systems&rft.au=Gong%2C+Chen&rft.au=Zhou%2C+Nanrun&rft.au=Xia%2C+Shuhua&rft.au=Huang%2C+Shuiyuan&rft.date=2024-08-01&rft.issn=0167-739X&rft.volume=157&rft.spage=445&rft.epage=458&rft_id=info:doi/10.1016%2Fj.future.2024.04.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2024_04_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon