HIVE: A cross-platform, modular visualization framework for large-scale data sets

Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 112; s. 875 - 883
Hlavní autori: Ono, Kenji, Nonaka, Jorji, Kawanabe, Tomohiro, Fujita, Masahiro, Oku, Kentaro, Hatta, Kazuma
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2020
Predmet:
ISSN:0167-739X, 1872-7115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a pressure on the entire end-to-end simulation workflow, which includes the pre- and post-processing such as the visualization. During the simulation code development and refinement process in such HPC environment, a variety of auxiliary computational systems with different hardware and software configurations can be employed for the post-processing activities. Therefore, a visualization application capable of running on such heterogeneous hardware environment, which uses common visualization pipeline workflow and unified abstract representation becomes highly valuable. In this paper, we present a visualization framework, named HIVE (Heterogeneously Integrated Visual-analytics Environment), designed to meet these requirements by using lightweight and cross-platform Lua scripting language for describing the desired visualization pipeline workflow, which was named as “Visualization Scene” script. Different visualization pipeline functionality modules such as data loading, rendering, and image compositing written in C/C++ programming language can be utilized via Lua by using its binding functionality. HIVE has currently integrated some cross-platform modules, and is capable of running on different hardware systems, ranging from x86 laptops to SPARC64 based supercomputers with tens of thousands of processors. As a future direction, we expect to include the supercomputers using Arm-based Fujitsu A64FX CPU such as the Fugaku, which is under installation, and other commercial systems from Fujitsu and Cray. •Visualization framework for large-scale data sets generated in the HPC environments.•Lua works as a glue for integrating the visualization pipeline functionality modules.•Hybrid MPI/OpenMP model is adopted to take advantage of the modern HPC architecture.
AbstractList Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a pressure on the entire end-to-end simulation workflow, which includes the pre- and post-processing such as the visualization. During the simulation code development and refinement process in such HPC environment, a variety of auxiliary computational systems with different hardware and software configurations can be employed for the post-processing activities. Therefore, a visualization application capable of running on such heterogeneous hardware environment, which uses common visualization pipeline workflow and unified abstract representation becomes highly valuable. In this paper, we present a visualization framework, named HIVE (Heterogeneously Integrated Visual-analytics Environment), designed to meet these requirements by using lightweight and cross-platform Lua scripting language for describing the desired visualization pipeline workflow, which was named as “Visualization Scene” script. Different visualization pipeline functionality modules such as data loading, rendering, and image compositing written in C/C++ programming language can be utilized via Lua by using its binding functionality. HIVE has currently integrated some cross-platform modules, and is capable of running on different hardware systems, ranging from x86 laptops to SPARC64 based supercomputers with tens of thousands of processors. As a future direction, we expect to include the supercomputers using Arm-based Fujitsu A64FX CPU such as the Fugaku, which is under installation, and other commercial systems from Fujitsu and Cray. •Visualization framework for large-scale data sets generated in the HPC environments.•Lua works as a glue for integrating the visualization pipeline functionality modules.•Hybrid MPI/OpenMP model is adopted to take advantage of the modern HPC architecture.
Author Fujita, Masahiro
Oku, Kentaro
Nonaka, Jorji
Ono, Kenji
Hatta, Kazuma
Kawanabe, Tomohiro
Author_xml – sequence: 1
  givenname: Kenji
  surname: Ono
  fullname: Ono, Kenji
  email: keno@cc.kyushu-u.ac.jp
  organization: RIIT Kyushu University, Fukuoka, Japan
– sequence: 2
  givenname: Jorji
  surname: Nonaka
  fullname: Nonaka, Jorji
  email: jorji@riken.jp
  organization: RIKEN Center for Computational Science, Kobe, Japan
– sequence: 3
  givenname: Tomohiro
  surname: Kawanabe
  fullname: Kawanabe, Tomohiro
  email: tkawanabe@riken.jp
  organization: RIKEN Center for Computational Science, Kobe, Japan
– sequence: 4
  givenname: Masahiro
  surname: Fujita
  fullname: Fujita, Masahiro
  email: syoyo@lighttransport.com
  organization: Light Transport Entertainment Inc., Tokyo, Japan
– sequence: 5
  givenname: Kentaro
  surname: Oku
  fullname: Oku, Kentaro
  email: oku@kashika.co.jp
  organization: KASHIKA Inc., Tokyo, Japan
– sequence: 6
  givenname: Kazuma
  surname: Hatta
  fullname: Hatta, Kazuma
  email: kazuma-h@digirea.com
  organization: IMAGICA DIGITALSCAPE, Tokyo, Japan
BookMark eNqFkM1KAzEUhYMo2FbfwEUewBmTTJrMdCGUUm2hIIKKu5Bm7kjq_JQkU9GnN21dudDVhXvPOdzzDdFp27WA0BUlKSVU3GzSqg-9g5QRRlIiUjIWJ2hAc8kSSen4FA2iTCYyK17P0dD7DSGEyowO0ONi-TKf4Ck2rvM-2dY6VJ1rrnHTlX2tHd5Z3-vafulguxZXTjfw0bl3HFU43t8g8UbXgEsdNPYQ_AU6q3Tt4fJnjtDz3fxptkhWD_fL2XSVmEyykAAXa86gkJBzTjNhzNpkkLO4ZHkhqMlFNQbgRUWZhmKdUdBSU8YJEMYFyUaIH3MPnzuo1NbZRrtPRYnaY1EbdcSi9lgUESpiibbJL5ux4VAuOG3r_8y3RzPEYjsLTnljoTVQWgcmqLKzfwd8A8udg4k
CitedBy_id crossref_primary_10_1016_j_procs_2024_08_160
Cites_doi 10.1145/2828612.2828624
10.1007/978-3-030-02465-9_21
10.1111/cgf.12930
10.1145/3149457.3155323
10.1016/j.future.2017.02.011
10.1109/HPCS.2017.54
10.1142/S1793962318400068
10.1109/HPCSim.2015.7237071
10.1109/MCG.2016.48
10.1109/TVCG.2012.133
10.1109/TVCG.2016.2599041
10.1016/j.procs.2014.05.218
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.06.056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 883
ExternalDocumentID 10_1016_j_future_2020_06_056
S0167739X19308726
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-e46b42e97e844136ccbc3e82b4228961c86f5ee49f12ae9b31ea7a1240e024603
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567827900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 22:00:25 EST 2025
Sat Nov 29 07:25:48 EST 2025
Fri Feb 23 02:49:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parallel rendering
HPC environment
Scalability
Cross-platform software
Lua scripting language
Scientific visualization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-e46b42e97e844136ccbc3e82b4228961c86f5ee49f12ae9b31ea7a1240e024603
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_future_2020_06_056
crossref_citationtrail_10_1016_j_future_2020_06_056
elsevier_sciencedirect_doi_10_1016_j_future_2020_06_056
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References J. Nonaka, K. Ono, M. Fujita, 234 scheduling of 3-2 and 2-1 eliminations for parallel image compositing using non-power-of-two number of processes, in: High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 421–428.
Fujitsu, Fujitsu completes Post-K supercomputer CPU prototype, begins functionality trials
Nonaka, Inacio, Ono, Dantas, Kawashima, Kawanabe, Shoji (b29) 2018; 09
Nonaka, Ono, Fujita (b11) 2018; 82
Khronos Group, Inc., OpenGL overview
B. Whitlock, J.M. Favre, J.S. Meredith, Parallel in situ coupling of simulation with a fully featured visualization system, in: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, EGPGV ’11, 2011, pp. 101–109.
Moreland, Sewell, Usher, Lo, Meredith, Pugmire, Kress, Schroots, Ma, Childs, Larsen, Chen, Maynard, Geveci (b26) 2016; 36
Kitware, Inc., ParaView
FORUM8, HPCI project ID (hp130034): Building of high speed rendering environment by using photorealistic rendering engine
Fujitsu, Post-K Incorporating ARM SVE’ Power for Emerging Apps
K. Onishi, N. Jansson, R. Bale, W.-H. Wang, C.-G. Li, M. Tsubokura, A deployment of HPC algorithm into pre/post-processing for industrial CFD on K-computer, in: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17) Poster, 2017.
Fujita, Nonaka, Ono (b7) 2014
Bauer, Abbasi, Ahrens, Childs, Geveci, Klasky, Moreland, O’Leary, Vishwanath, Whitlock, Bethel (b9) 2016; 35
Johnson, Hansen (b3) 2004
nVIDIA, nVIDIA Turing GPU Architecture, NVIDIA-Turing-Architecture-Whitepaper.pdf at
Top 500 supercomputer sites
T. Rowley, Software Rasterizer (SWR), Intel HPC Developers Conference at SC’14.
Moreland (b10) 2013; 19
U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, J. Mauldin, ParaView Catalyst: Enabling in situ data analysis and visualization, in: Proceedings of ISAV 2015: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, 2015.
Bethel, Childs, Hansen (b4) 2012
Mesa Project, Mesa 3D graphics library
Wald, Johnson, Amstutz, Brownlee, Knoll, Jeffers, Gunther, Navratil (b8) 2017; 23
Ogasa, Maesaka, K., Otagiri (b21) 2012; 48
.
Tsujita, Furutani, Hida, Yamamoto, Uno, Sueyasu (b30) 2018
K. Hayashi, N. Sakamoto, J. Nonaka, M. Matsuda, F. Shoji, An in-situ visualization approach for the K computer using mesa 3D and KVS: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised Selected Papers, 2018, pp. 310–322.
Ono, Kawashima, Kawanabe (b28) 2014; 29
Schroeder, Martin, Lorensen (b14) 2006
J. Nonaka, M. Matsuda, T. Shimizu, N. Sakamoto, M. Fujita, K. Onishi, E.C. Inacio, S. Ito, F. Shoji, K. Ono, A study on open source software for large-scale data visualization on SPARC64fx based HPC systems, in: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, 2018, pp. 278–288.
LLNL (Lawrence Livermore National Laboratory), VisIt
J. Nonaka, N. Sakamoto, T. Shimizu, M. Fujita, K. Ono, K. Koyamada, Distributed particle-based rendering framework for large data visualization on HPC environments, in: The 2017 International Conference on High Performance Computing & Simulation, HPCS 2017, 2017.
Fujita (10.1016/j.future.2020.06.056_b7) 2014
10.1016/j.future.2020.06.056_b18
Ogasa (10.1016/j.future.2020.06.056_b21) 2012; 48
10.1016/j.future.2020.06.056_b19
10.1016/j.future.2020.06.056_b16
10.1016/j.future.2020.06.056_b17
Nonaka (10.1016/j.future.2020.06.056_b11) 2018; 82
10.1016/j.future.2020.06.056_b15
10.1016/j.future.2020.06.056_b12
Tsujita (10.1016/j.future.2020.06.056_b30) 2018
10.1016/j.future.2020.06.056_b13
10.1016/j.future.2020.06.056_b2
10.1016/j.future.2020.06.056_b1
Schroeder (10.1016/j.future.2020.06.056_b14) 2006
Nonaka (10.1016/j.future.2020.06.056_b29) 2018; 09
Wald (10.1016/j.future.2020.06.056_b8) 2017; 23
Bauer (10.1016/j.future.2020.06.056_b9) 2016; 35
Moreland (10.1016/j.future.2020.06.056_b10) 2013; 19
Johnson (10.1016/j.future.2020.06.056_b3) 2004
Ono (10.1016/j.future.2020.06.056_b28) 2014; 29
10.1016/j.future.2020.06.056_b27
10.1016/j.future.2020.06.056_b25
10.1016/j.future.2020.06.056_b23
10.1016/j.future.2020.06.056_b24
10.1016/j.future.2020.06.056_b22
10.1016/j.future.2020.06.056_b20
10.1016/j.future.2020.06.056_b6
10.1016/j.future.2020.06.056_b5
Moreland (10.1016/j.future.2020.06.056_b26) 2016; 36
Bethel (10.1016/j.future.2020.06.056_b4) 2012
References_xml – reference: . Fujitsu, Fujitsu completes Post-K supercomputer CPU prototype, begins functionality trials,
– volume: 23
  start-page: 931
  year: 2017
  end-page: 940
  ident: b8
  article-title: OSPRay - A CPU ray tracing framework for scientific visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
– reference: B. Whitlock, J.M. Favre, J.S. Meredith, Parallel in situ coupling of simulation with a fully featured visualization system, in: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, EGPGV ’11, 2011, pp. 101–109.
– year: 2012
  ident: b4
  article-title: High Performance Visualization: Enabling Extreme-Scale Scientific Insight
– reference: . Fujitsu, Post-K Incorporating ARM SVE’ Power for Emerging Apps,
– reference: U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, J. Mauldin, ParaView Catalyst: Enabling in situ data analysis and visualization, in: Proceedings of ISAV 2015: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, 2015.
– reference: J. Nonaka, M. Matsuda, T. Shimizu, N. Sakamoto, M. Fujita, K. Onishi, E.C. Inacio, S. Ito, F. Shoji, K. Ono, A study on open source software for large-scale data visualization on SPARC64fx based HPC systems, in: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, 2018, pp. 278–288.
– year: 2004
  ident: b3
  article-title: Visualization Handbook
– reference: . Khronos Group, Inc., OpenGL overview,
– reference: . Kitware, Inc., ParaView,
– year: 2014
  ident: b7
  article-title: LSGL: Large-scale graphics library for peta-scale computing environments, HPG 2014: High performance graphics 2014 (Poster)
– volume: 09
  year: 2018
  ident: b29
  article-title: Data I/O management approach for the post-hoc visualization of big simulation data results
  publication-title: Int. J. Model. Simul. Sci. Comput.
– start-page: 36
  year: 2018
  end-page: 48
  ident: b30
  article-title: I/O interference alleviation on parallel file systems using server-side QoS-based load-balancing
  publication-title: High Performance Computing
– reference: K. Hayashi, N. Sakamoto, J. Nonaka, M. Matsuda, F. Shoji, An in-situ visualization approach for the K computer using mesa 3D and KVS: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised Selected Papers, 2018, pp. 310–322.
– reference: . Mesa Project, Mesa 3D graphics library,
– reference: J. Nonaka, K. Ono, M. Fujita, 234 scheduling of 3-2 and 2-1 eliminations for parallel image compositing using non-power-of-two number of processes, in: High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 421–428.
– volume: 29
  start-page: 2336
  year: 2014
  end-page: 2350
  ident: b28
  article-title: Data centric framework for large-scale high-performance parallel computation
  publication-title: Procedia Comput. Sci.
– reference: T. Rowley, Software Rasterizer (SWR), Intel HPC Developers Conference at SC’14.
– volume: 36
  start-page: 48
  year: 2016
  end-page: 58
  ident: b26
  article-title: VTK-m: Accelerating the visualization toolkit for massively threaded architectures
  publication-title: IEEE Comput. Graph. Appl.
– reference: K. Onishi, N. Jansson, R. Bale, W.-H. Wang, C.-G. Li, M. Tsubokura, A deployment of HPC algorithm into pre/post-processing for industrial CFD on K-computer, in: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17) Poster, 2017.
– reference: Top 500 supercomputer sites,
– reference: J. Nonaka, N. Sakamoto, T. Shimizu, M. Fujita, K. Ono, K. Koyamada, Distributed particle-based rendering framework for large data visualization on HPC environments, in: The 2017 International Conference on High Performance Computing & Simulation, HPCS 2017, 2017.
– volume: 82
  start-page: 647
  year: 2018
  end-page: 655
  ident: b11
  article-title: 234Compositor: A flexible parallel image compositing framework for massively parallel visualization environments
  publication-title: Future Gener. Comput. Syst.
– reference: . FORUM8, HPCI project ID (hp130034): Building of high speed rendering environment by using photorealistic rendering engine,
– volume: 48
  start-page: 348
  year: 2012
  end-page: 356
  ident: b21
  article-title: Visualization technology for the K computer
  publication-title: Fujitsu Sci. Tech. J.
– reference: .
– volume: 35
  start-page: 577
  year: 2016
  end-page: 597
  ident: b9
  article-title: In situ methods, infrastructures, and applications on high performance computing platforms
  publication-title: Comput. Graph. Forum
– volume: 19
  start-page: 367
  year: 2013
  end-page: 378
  ident: b10
  article-title: A survey of visualization pipelines
  publication-title: IEEE Trans. Vis. Comput. Graphics
– year: 2006
  ident: b14
  article-title: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics
– reference: . LLNL (Lawrence Livermore National Laboratory), VisIt,
– reference: . nVIDIA, nVIDIA Turing GPU Architecture, NVIDIA-Turing-Architecture-Whitepaper.pdf at
– ident: 10.1016/j.future.2020.06.056_b1
– ident: 10.1016/j.future.2020.06.056_b17
  doi: 10.1145/2828612.2828624
– ident: 10.1016/j.future.2020.06.056_b15
– ident: 10.1016/j.future.2020.06.056_b5
– ident: 10.1016/j.future.2020.06.056_b25
  doi: 10.1007/978-3-030-02465-9_21
– volume: 48
  start-page: 348
  issue: 3
  year: 2012
  ident: 10.1016/j.future.2020.06.056_b21
  article-title: Visualization technology for the K computer
  publication-title: Fujitsu Sci. Tech. J.
– ident: 10.1016/j.future.2020.06.056_b19
– ident: 10.1016/j.future.2020.06.056_b22
– volume: 35
  start-page: 577
  issue: 3
  year: 2016
  ident: 10.1016/j.future.2020.06.056_b9
  article-title: In situ methods, infrastructures, and applications on high performance computing platforms
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12930
– ident: 10.1016/j.future.2020.06.056_b24
  doi: 10.1145/3149457.3155323
– year: 2012
  ident: 10.1016/j.future.2020.06.056_b4
– ident: 10.1016/j.future.2020.06.056_b20
– start-page: 36
  year: 2018
  ident: 10.1016/j.future.2020.06.056_b30
  article-title: I/O interference alleviation on parallel file systems using server-side QoS-based load-balancing
– year: 2004
  ident: 10.1016/j.future.2020.06.056_b3
– volume: 82
  start-page: 647
  year: 2018
  ident: 10.1016/j.future.2020.06.056_b11
  article-title: 234Compositor: A flexible parallel image compositing framework for massively parallel visualization environments
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.02.011
– ident: 10.1016/j.future.2020.06.056_b13
  doi: 10.1109/HPCS.2017.54
– ident: 10.1016/j.future.2020.06.056_b2
– volume: 09
  issue: 03
  year: 2018
  ident: 10.1016/j.future.2020.06.056_b29
  article-title: Data I/O management approach for the post-hoc visualization of big simulation data results
  publication-title: Int. J. Model. Simul. Sci. Comput.
  doi: 10.1142/S1793962318400068
– ident: 10.1016/j.future.2020.06.056_b12
  doi: 10.1109/HPCSim.2015.7237071
– volume: 36
  start-page: 48
  issue: 03
  year: 2016
  ident: 10.1016/j.future.2020.06.056_b26
  article-title: VTK-m: Accelerating the visualization toolkit for massively threaded architectures
  publication-title: IEEE Comput. Graph. Appl.
  doi: 10.1109/MCG.2016.48
– year: 2014
  ident: 10.1016/j.future.2020.06.056_b7
– ident: 10.1016/j.future.2020.06.056_b6
– volume: 19
  start-page: 367
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2020.06.056_b10
  article-title: A survey of visualization pipelines
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2012.133
– ident: 10.1016/j.future.2020.06.056_b16
– ident: 10.1016/j.future.2020.06.056_b18
– year: 2006
  ident: 10.1016/j.future.2020.06.056_b14
– ident: 10.1016/j.future.2020.06.056_b23
– volume: 23
  start-page: 931
  issue: 01
  year: 2017
  ident: 10.1016/j.future.2020.06.056_b8
  article-title: OSPRay - A CPU ray tracing framework for scientific visualization
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2016.2599041
– volume: 29
  start-page: 2336
  year: 2014
  ident: 10.1016/j.future.2020.06.056_b28
  article-title: Data centric framework for large-scale high-performance parallel computation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.05.218
– ident: 10.1016/j.future.2020.06.056_b27
SSID ssj0001731
Score 2.30809
Snippet Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 875
SubjectTerms Cross-platform software
HPC environment
Lua scripting language
Parallel rendering
Scalability
Scientific visualization
Title HIVE: A cross-platform, modular visualization framework for large-scale data sets
URI https://dx.doi.org/10.1016/j.future.2020.06.056
Volume 112
WOSCitedRecordID wos000567827900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BHjJj_wNjLVcRI7e6tQ0QZigBiob5GTOlpKl1RN1038EH4v59iO11LETUKVospNWsvnq8_no3POR8jzUiZxpCdhwDhGq7iKAmBFZcCkzLEfmACqZMQmxPGxHI_T973et64WZjUTdS0vL9P5fzU1jIGxsXT2L8ztvxQG4D0YHa5gdrj-keEPjz6PbL258YDBfKaWyExxMc-aiUk7XVUtFlN-dZmGXYKWyTmcYW540ILt9B7mj-612nZ78mqepg0Jai9rB5_CSUO4vtCepr8zut5Y-zOtfNQZqP8Xm6DbLK6G36gLVavc9gBuzprTatF4bJ1PK0ty36pW-U9crAIOpmwjVrFdRGNjmrBXC24UdcEl2X1YCiD-zFZ6-o3aJVy3zk_H617byuFsOQQbm5ju2w4t-zgp0681_qH_tvHoH3EqOBNgtQOYQXKN7IQiTmWf7AyPRuPX3scz4ZQu3dS7okyTObj9Wz8nPWtE5uQ2uelOIHRokXOH9HR9l9zq1D2o2-zvkQ8IpAM6pJswekEdiOgGiKgHEYW76BqIKIKIIojuk0-vRicvDwMnwBEUXITLQEdJHoU6FVoCa-ZJUeQF1zLMsW9cmrBCJmWsdZSWLFQ6zTnTSihgjAMN1C8Z8AekXze1fkioVDqSBbxSCT6jVCkrleRlokI1gVO03CW8W6GscN3pUSRllnVpiNPMrmuG65phNmac7JLAPzW33Vl-c7_oFj9zDNMyxwzw8ssnH_3zk4_Jjau_whPSXy7O9VNyvVgtq3bxzAHrO3_zoyI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIVE%3A+A+cross-platform%2C+modular+visualization+framework+for+large-scale+data+sets&rft.jtitle=Future+generation+computer+systems&rft.au=Ono%2C+Kenji&rft.au=Nonaka%2C+Jorji&rft.au=Kawanabe%2C+Tomohiro&rft.au=Fujita%2C+Masahiro&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=112&rft.spage=875&rft.epage=883&rft_id=info:doi/10.1016%2Fj.future.2020.06.056&rft.externalDocID=S0167739X19308726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon