HIVE: A cross-platform, modular visualization framework for large-scale data sets
Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a...
Uložené v:
| Vydané v: | Future generation computer systems Ročník 112; s. 875 - 883 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2020
|
| Predmet: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a pressure on the entire end-to-end simulation workflow, which includes the pre- and post-processing such as the visualization. During the simulation code development and refinement process in such HPC environment, a variety of auxiliary computational systems with different hardware and software configurations can be employed for the post-processing activities. Therefore, a visualization application capable of running on such heterogeneous hardware environment, which uses common visualization pipeline workflow and unified abstract representation becomes highly valuable. In this paper, we present a visualization framework, named HIVE (Heterogeneously Integrated Visual-analytics Environment), designed to meet these requirements by using lightweight and cross-platform Lua scripting language for describing the desired visualization pipeline workflow, which was named as “Visualization Scene” script. Different visualization pipeline functionality modules such as data loading, rendering, and image compositing written in C/C++ programming language can be utilized via Lua by using its binding functionality. HIVE has currently integrated some cross-platform modules, and is capable of running on different hardware systems, ranging from x86 laptops to SPARC64 based supercomputers with tens of thousands of processors. As a future direction, we expect to include the supercomputers using Arm-based Fujitsu A64FX CPU such as the Fugaku, which is under installation, and other commercial systems from Fujitsu and Cray.
•Visualization framework for large-scale data sets generated in the HPC environments.•Lua works as a glue for integrating the visualization pipeline functionality modules.•Hybrid MPI/OpenMP model is adopted to take advantage of the modern HPC architecture. |
|---|---|
| AbstractList | Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to tackle “Grand Challenge” class of simulations with unprecedented scale. This significant increase in the simulation scale has directly imposed a pressure on the entire end-to-end simulation workflow, which includes the pre- and post-processing such as the visualization. During the simulation code development and refinement process in such HPC environment, a variety of auxiliary computational systems with different hardware and software configurations can be employed for the post-processing activities. Therefore, a visualization application capable of running on such heterogeneous hardware environment, which uses common visualization pipeline workflow and unified abstract representation becomes highly valuable. In this paper, we present a visualization framework, named HIVE (Heterogeneously Integrated Visual-analytics Environment), designed to meet these requirements by using lightweight and cross-platform Lua scripting language for describing the desired visualization pipeline workflow, which was named as “Visualization Scene” script. Different visualization pipeline functionality modules such as data loading, rendering, and image compositing written in C/C++ programming language can be utilized via Lua by using its binding functionality. HIVE has currently integrated some cross-platform modules, and is capable of running on different hardware systems, ranging from x86 laptops to SPARC64 based supercomputers with tens of thousands of processors. As a future direction, we expect to include the supercomputers using Arm-based Fujitsu A64FX CPU such as the Fugaku, which is under installation, and other commercial systems from Fujitsu and Cray.
•Visualization framework for large-scale data sets generated in the HPC environments.•Lua works as a glue for integrating the visualization pipeline functionality modules.•Hybrid MPI/OpenMP model is adopted to take advantage of the modern HPC architecture. |
| Author | Fujita, Masahiro Oku, Kentaro Nonaka, Jorji Ono, Kenji Hatta, Kazuma Kawanabe, Tomohiro |
| Author_xml | – sequence: 1 givenname: Kenji surname: Ono fullname: Ono, Kenji email: keno@cc.kyushu-u.ac.jp organization: RIIT Kyushu University, Fukuoka, Japan – sequence: 2 givenname: Jorji surname: Nonaka fullname: Nonaka, Jorji email: jorji@riken.jp organization: RIKEN Center for Computational Science, Kobe, Japan – sequence: 3 givenname: Tomohiro surname: Kawanabe fullname: Kawanabe, Tomohiro email: tkawanabe@riken.jp organization: RIKEN Center for Computational Science, Kobe, Japan – sequence: 4 givenname: Masahiro surname: Fujita fullname: Fujita, Masahiro email: syoyo@lighttransport.com organization: Light Transport Entertainment Inc., Tokyo, Japan – sequence: 5 givenname: Kentaro surname: Oku fullname: Oku, Kentaro email: oku@kashika.co.jp organization: KASHIKA Inc., Tokyo, Japan – sequence: 6 givenname: Kazuma surname: Hatta fullname: Hatta, Kazuma email: kazuma-h@digirea.com organization: IMAGICA DIGITALSCAPE, Tokyo, Japan |
| BookMark | eNqFkM1KAzEUhYMo2FbfwEUewBmTTJrMdCGUUm2hIIKKu5Bm7kjq_JQkU9GnN21dudDVhXvPOdzzDdFp27WA0BUlKSVU3GzSqg-9g5QRRlIiUjIWJ2hAc8kSSen4FA2iTCYyK17P0dD7DSGEyowO0ONi-TKf4Ck2rvM-2dY6VJ1rrnHTlX2tHd5Z3-vafulguxZXTjfw0bl3HFU43t8g8UbXgEsdNPYQ_AU6q3Tt4fJnjtDz3fxptkhWD_fL2XSVmEyykAAXa86gkJBzTjNhzNpkkLO4ZHkhqMlFNQbgRUWZhmKdUdBSU8YJEMYFyUaIH3MPnzuo1NbZRrtPRYnaY1EbdcSi9lgUESpiibbJL5ux4VAuOG3r_8y3RzPEYjsLTnljoTVQWgcmqLKzfwd8A8udg4k |
| CitedBy_id | crossref_primary_10_1016_j_procs_2024_08_160 |
| Cites_doi | 10.1145/2828612.2828624 10.1007/978-3-030-02465-9_21 10.1111/cgf.12930 10.1145/3149457.3155323 10.1016/j.future.2017.02.011 10.1109/HPCS.2017.54 10.1142/S1793962318400068 10.1109/HPCSim.2015.7237071 10.1109/MCG.2016.48 10.1109/TVCG.2012.133 10.1109/TVCG.2016.2599041 10.1016/j.procs.2014.05.218 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2020.06.056 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 883 |
| ExternalDocumentID | 10_1016_j_future_2020_06_056 S0167739X19308726 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c372t-e46b42e97e844136ccbc3e82b4228961c86f5ee49f12ae9b31ea7a1240e024603 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000567827900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 22:00:25 EST 2025 Sat Nov 29 07:25:48 EST 2025 Fri Feb 23 02:49:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parallel rendering HPC environment Scalability Cross-platform software Lua scripting language Scientific visualization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-e46b42e97e844136ccbc3e82b4228961c86f5ee49f12ae9b31ea7a1240e024603 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2020_06_056 crossref_citationtrail_10_1016_j_future_2020_06_056 elsevier_sciencedirect_doi_10_1016_j_future_2020_06_056 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | J. Nonaka, K. Ono, M. Fujita, 234 scheduling of 3-2 and 2-1 eliminations for parallel image compositing using non-power-of-two number of processes, in: High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 421–428. Fujitsu, Fujitsu completes Post-K supercomputer CPU prototype, begins functionality trials Nonaka, Inacio, Ono, Dantas, Kawashima, Kawanabe, Shoji (b29) 2018; 09 Nonaka, Ono, Fujita (b11) 2018; 82 Khronos Group, Inc., OpenGL overview B. Whitlock, J.M. Favre, J.S. Meredith, Parallel in situ coupling of simulation with a fully featured visualization system, in: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, EGPGV ’11, 2011, pp. 101–109. Moreland, Sewell, Usher, Lo, Meredith, Pugmire, Kress, Schroots, Ma, Childs, Larsen, Chen, Maynard, Geveci (b26) 2016; 36 Kitware, Inc., ParaView FORUM8, HPCI project ID (hp130034): Building of high speed rendering environment by using photorealistic rendering engine Fujitsu, Post-K Incorporating ARM SVE’ Power for Emerging Apps K. Onishi, N. Jansson, R. Bale, W.-H. Wang, C.-G. Li, M. Tsubokura, A deployment of HPC algorithm into pre/post-processing for industrial CFD on K-computer, in: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17) Poster, 2017. Fujita, Nonaka, Ono (b7) 2014 Bauer, Abbasi, Ahrens, Childs, Geveci, Klasky, Moreland, O’Leary, Vishwanath, Whitlock, Bethel (b9) 2016; 35 Johnson, Hansen (b3) 2004 nVIDIA, nVIDIA Turing GPU Architecture, NVIDIA-Turing-Architecture-Whitepaper.pdf at Top 500 supercomputer sites T. Rowley, Software Rasterizer (SWR), Intel HPC Developers Conference at SC’14. Moreland (b10) 2013; 19 U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, J. Mauldin, ParaView Catalyst: Enabling in situ data analysis and visualization, in: Proceedings of ISAV 2015: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, 2015. Bethel, Childs, Hansen (b4) 2012 Mesa Project, Mesa 3D graphics library Wald, Johnson, Amstutz, Brownlee, Knoll, Jeffers, Gunther, Navratil (b8) 2017; 23 Ogasa, Maesaka, K., Otagiri (b21) 2012; 48 . Tsujita, Furutani, Hida, Yamamoto, Uno, Sueyasu (b30) 2018 K. Hayashi, N. Sakamoto, J. Nonaka, M. Matsuda, F. Shoji, An in-situ visualization approach for the K computer using mesa 3D and KVS: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised Selected Papers, 2018, pp. 310–322. Ono, Kawashima, Kawanabe (b28) 2014; 29 Schroeder, Martin, Lorensen (b14) 2006 J. Nonaka, M. Matsuda, T. Shimizu, N. Sakamoto, M. Fujita, K. Onishi, E.C. Inacio, S. Ito, F. Shoji, K. Ono, A study on open source software for large-scale data visualization on SPARC64fx based HPC systems, in: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, 2018, pp. 278–288. LLNL (Lawrence Livermore National Laboratory), VisIt J. Nonaka, N. Sakamoto, T. Shimizu, M. Fujita, K. Ono, K. Koyamada, Distributed particle-based rendering framework for large data visualization on HPC environments, in: The 2017 International Conference on High Performance Computing & Simulation, HPCS 2017, 2017. Fujita (10.1016/j.future.2020.06.056_b7) 2014 10.1016/j.future.2020.06.056_b18 Ogasa (10.1016/j.future.2020.06.056_b21) 2012; 48 10.1016/j.future.2020.06.056_b19 10.1016/j.future.2020.06.056_b16 10.1016/j.future.2020.06.056_b17 Nonaka (10.1016/j.future.2020.06.056_b11) 2018; 82 10.1016/j.future.2020.06.056_b15 10.1016/j.future.2020.06.056_b12 Tsujita (10.1016/j.future.2020.06.056_b30) 2018 10.1016/j.future.2020.06.056_b13 10.1016/j.future.2020.06.056_b2 10.1016/j.future.2020.06.056_b1 Schroeder (10.1016/j.future.2020.06.056_b14) 2006 Nonaka (10.1016/j.future.2020.06.056_b29) 2018; 09 Wald (10.1016/j.future.2020.06.056_b8) 2017; 23 Bauer (10.1016/j.future.2020.06.056_b9) 2016; 35 Moreland (10.1016/j.future.2020.06.056_b10) 2013; 19 Johnson (10.1016/j.future.2020.06.056_b3) 2004 Ono (10.1016/j.future.2020.06.056_b28) 2014; 29 10.1016/j.future.2020.06.056_b27 10.1016/j.future.2020.06.056_b25 10.1016/j.future.2020.06.056_b23 10.1016/j.future.2020.06.056_b24 10.1016/j.future.2020.06.056_b22 10.1016/j.future.2020.06.056_b20 10.1016/j.future.2020.06.056_b6 10.1016/j.future.2020.06.056_b5 Moreland (10.1016/j.future.2020.06.056_b26) 2016; 36 Bethel (10.1016/j.future.2020.06.056_b4) 2012 |
| References_xml | – reference: . Fujitsu, Fujitsu completes Post-K supercomputer CPU prototype, begins functionality trials, – volume: 23 start-page: 931 year: 2017 end-page: 940 ident: b8 article-title: OSPRay - A CPU ray tracing framework for scientific visualization publication-title: IEEE Trans. Vis. Comput. Graphics – reference: B. Whitlock, J.M. Favre, J.S. Meredith, Parallel in situ coupling of simulation with a fully featured visualization system, in: Proceedings of the 11th Eurographics Conference on Parallel Graphics and Visualization, EGPGV ’11, 2011, pp. 101–109. – year: 2012 ident: b4 article-title: High Performance Visualization: Enabling Extreme-Scale Scientific Insight – reference: . Fujitsu, Post-K Incorporating ARM SVE’ Power for Emerging Apps, – reference: U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, J. Mauldin, ParaView Catalyst: Enabling in situ data analysis and visualization, in: Proceedings of ISAV 2015: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, 2015. – reference: J. Nonaka, M. Matsuda, T. Shimizu, N. Sakamoto, M. Fujita, K. Onishi, E.C. Inacio, S. Ito, F. Shoji, K. Ono, A study on open source software for large-scale data visualization on SPARC64fx based HPC systems, in: Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2018, 2018, pp. 278–288. – year: 2004 ident: b3 article-title: Visualization Handbook – reference: . Khronos Group, Inc., OpenGL overview, – reference: . Kitware, Inc., ParaView, – year: 2014 ident: b7 article-title: LSGL: Large-scale graphics library for peta-scale computing environments, HPG 2014: High performance graphics 2014 (Poster) – volume: 09 year: 2018 ident: b29 article-title: Data I/O management approach for the post-hoc visualization of big simulation data results publication-title: Int. J. Model. Simul. Sci. Comput. – start-page: 36 year: 2018 end-page: 48 ident: b30 article-title: I/O interference alleviation on parallel file systems using server-side QoS-based load-balancing publication-title: High Performance Computing – reference: K. Hayashi, N. Sakamoto, J. Nonaka, M. Matsuda, F. Shoji, An in-situ visualization approach for the K computer using mesa 3D and KVS: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, June 28, 2018, Revised Selected Papers, 2018, pp. 310–322. – reference: . Mesa Project, Mesa 3D graphics library, – reference: J. Nonaka, K. Ono, M. Fujita, 234 scheduling of 3-2 and 2-1 eliminations for parallel image compositing using non-power-of-two number of processes, in: High Performance Computing Simulation (HPCS), 2015 International Conference on, 2015, pp. 421–428. – volume: 29 start-page: 2336 year: 2014 end-page: 2350 ident: b28 article-title: Data centric framework for large-scale high-performance parallel computation publication-title: Procedia Comput. Sci. – reference: T. Rowley, Software Rasterizer (SWR), Intel HPC Developers Conference at SC’14. – volume: 36 start-page: 48 year: 2016 end-page: 58 ident: b26 article-title: VTK-m: Accelerating the visualization toolkit for massively threaded architectures publication-title: IEEE Comput. Graph. Appl. – reference: K. Onishi, N. Jansson, R. Bale, W.-H. Wang, C.-G. Li, M. Tsubokura, A deployment of HPC algorithm into pre/post-processing for industrial CFD on K-computer, in: The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17) Poster, 2017. – reference: Top 500 supercomputer sites, – reference: J. Nonaka, N. Sakamoto, T. Shimizu, M. Fujita, K. Ono, K. Koyamada, Distributed particle-based rendering framework for large data visualization on HPC environments, in: The 2017 International Conference on High Performance Computing & Simulation, HPCS 2017, 2017. – volume: 82 start-page: 647 year: 2018 end-page: 655 ident: b11 article-title: 234Compositor: A flexible parallel image compositing framework for massively parallel visualization environments publication-title: Future Gener. Comput. Syst. – reference: . FORUM8, HPCI project ID (hp130034): Building of high speed rendering environment by using photorealistic rendering engine, – volume: 48 start-page: 348 year: 2012 end-page: 356 ident: b21 article-title: Visualization technology for the K computer publication-title: Fujitsu Sci. Tech. J. – reference: . – volume: 35 start-page: 577 year: 2016 end-page: 597 ident: b9 article-title: In situ methods, infrastructures, and applications on high performance computing platforms publication-title: Comput. Graph. Forum – volume: 19 start-page: 367 year: 2013 end-page: 378 ident: b10 article-title: A survey of visualization pipelines publication-title: IEEE Trans. Vis. Comput. Graphics – year: 2006 ident: b14 article-title: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics – reference: . LLNL (Lawrence Livermore National Laboratory), VisIt, – reference: . nVIDIA, nVIDIA Turing GPU Architecture, NVIDIA-Turing-Architecture-Whitepaper.pdf at – ident: 10.1016/j.future.2020.06.056_b1 – ident: 10.1016/j.future.2020.06.056_b17 doi: 10.1145/2828612.2828624 – ident: 10.1016/j.future.2020.06.056_b15 – ident: 10.1016/j.future.2020.06.056_b5 – ident: 10.1016/j.future.2020.06.056_b25 doi: 10.1007/978-3-030-02465-9_21 – volume: 48 start-page: 348 issue: 3 year: 2012 ident: 10.1016/j.future.2020.06.056_b21 article-title: Visualization technology for the K computer publication-title: Fujitsu Sci. Tech. J. – ident: 10.1016/j.future.2020.06.056_b19 – ident: 10.1016/j.future.2020.06.056_b22 – volume: 35 start-page: 577 issue: 3 year: 2016 ident: 10.1016/j.future.2020.06.056_b9 article-title: In situ methods, infrastructures, and applications on high performance computing platforms publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12930 – ident: 10.1016/j.future.2020.06.056_b24 doi: 10.1145/3149457.3155323 – year: 2012 ident: 10.1016/j.future.2020.06.056_b4 – ident: 10.1016/j.future.2020.06.056_b20 – start-page: 36 year: 2018 ident: 10.1016/j.future.2020.06.056_b30 article-title: I/O interference alleviation on parallel file systems using server-side QoS-based load-balancing – year: 2004 ident: 10.1016/j.future.2020.06.056_b3 – volume: 82 start-page: 647 year: 2018 ident: 10.1016/j.future.2020.06.056_b11 article-title: 234Compositor: A flexible parallel image compositing framework for massively parallel visualization environments publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.02.011 – ident: 10.1016/j.future.2020.06.056_b13 doi: 10.1109/HPCS.2017.54 – ident: 10.1016/j.future.2020.06.056_b2 – volume: 09 issue: 03 year: 2018 ident: 10.1016/j.future.2020.06.056_b29 article-title: Data I/O management approach for the post-hoc visualization of big simulation data results publication-title: Int. J. Model. Simul. Sci. Comput. doi: 10.1142/S1793962318400068 – ident: 10.1016/j.future.2020.06.056_b12 doi: 10.1109/HPCSim.2015.7237071 – volume: 36 start-page: 48 issue: 03 year: 2016 ident: 10.1016/j.future.2020.06.056_b26 article-title: VTK-m: Accelerating the visualization toolkit for massively threaded architectures publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2016.48 – year: 2014 ident: 10.1016/j.future.2020.06.056_b7 – ident: 10.1016/j.future.2020.06.056_b6 – volume: 19 start-page: 367 issue: 3 year: 2013 ident: 10.1016/j.future.2020.06.056_b10 article-title: A survey of visualization pipelines publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2012.133 – ident: 10.1016/j.future.2020.06.056_b16 – ident: 10.1016/j.future.2020.06.056_b18 – year: 2006 ident: 10.1016/j.future.2020.06.056_b14 – ident: 10.1016/j.future.2020.06.056_b23 – volume: 23 start-page: 931 issue: 01 year: 2017 ident: 10.1016/j.future.2020.06.056_b8 article-title: OSPRay - A CPU ray tracing framework for scientific visualization publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2016.2599041 – volume: 29 start-page: 2336 year: 2014 ident: 10.1016/j.future.2020.06.056_b28 article-title: Data centric framework for large-scale high-performance parallel computation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.05.218 – ident: 10.1016/j.future.2020.06.056_b27 |
| SSID | ssj0001731 |
| Score | 2.30809 |
| Snippet | Leading-edge supercomputers, such as the K computer and Fugaku, have been designed to achieve the highest computational performance possible as well as to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 875 |
| SubjectTerms | Cross-platform software HPC environment Lua scripting language Parallel rendering Scalability Scientific visualization |
| Title | HIVE: A cross-platform, modular visualization framework for large-scale data sets |
| URI | https://dx.doi.org/10.1016/j.future.2020.06.056 |
| Volume | 112 |
| WOSCitedRecordID | wos000567827900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMv3BHjJj_wNjLVcRI7e6tQ0QZigBiob5GTOlpKl1RN1038EH4v59iO11LETUKVospNWsvnq8_no3POR8jzUiZxpCdhwDhGq7iKAmBFZcCkzLEfmACqZMQmxPGxHI_T973et64WZjUTdS0vL9P5fzU1jIGxsXT2L8ztvxQG4D0YHa5gdrj-keEPjz6PbL258YDBfKaWyExxMc-aiUk7XVUtFlN-dZmGXYKWyTmcYW540ILt9B7mj-612nZ78mqepg0Jai9rB5_CSUO4vtCepr8zut5Y-zOtfNQZqP8Xm6DbLK6G36gLVavc9gBuzprTatF4bJ1PK0ty36pW-U9crAIOpmwjVrFdRGNjmrBXC24UdcEl2X1YCiD-zFZ6-o3aJVy3zk_H617byuFsOQQbm5ju2w4t-zgp0681_qH_tvHoH3EqOBNgtQOYQXKN7IQiTmWf7AyPRuPX3scz4ZQu3dS7okyTObj9Wz8nPWtE5uQ2uelOIHRokXOH9HR9l9zq1D2o2-zvkQ8IpAM6pJswekEdiOgGiKgHEYW76BqIKIKIIojuk0-vRicvDwMnwBEUXITLQEdJHoU6FVoCa-ZJUeQF1zLMsW9cmrBCJmWsdZSWLFQ6zTnTSihgjAMN1C8Z8AekXze1fkioVDqSBbxSCT6jVCkrleRlokI1gVO03CW8W6GscN3pUSRllnVpiNPMrmuG65phNmac7JLAPzW33Vl-c7_oFj9zDNMyxwzw8ssnH_3zk4_Jjau_whPSXy7O9VNyvVgtq3bxzAHrO3_zoyI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIVE%3A+A+cross-platform%2C+modular+visualization+framework+for+large-scale+data+sets&rft.jtitle=Future+generation+computer+systems&rft.au=Ono%2C+Kenji&rft.au=Nonaka%2C+Jorji&rft.au=Kawanabe%2C+Tomohiro&rft.au=Fujita%2C+Masahiro&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=112&rft.spage=875&rft.epage=883&rft_id=info:doi/10.1016%2Fj.future.2020.06.056&rft.externalDocID=S0167739X19308726 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |