Fuzzy Approaches and Simulation-Based Reliability Modeling to Solve a Road–Rail Intermodal Routing Problem with Soft Delivery Time Windows When Demand and Capacity are Uncertain

In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of fuzzy systems Ročník 22; číslo 7; s. 2119 - 2148
Hlavný autor: Sun, Yan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Springer Nature B.V
Predmet:
ISSN:1562-2479, 2199-3211
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft delivery time windows under a fuzzy environment is established, in which fuzzy periods caused by early and late deliveries that lead to penalty are modeled based on maximum functions. To solve the routing problem yielding the above characteristics, this study designs a fuzzy mixed-integer nonlinear programming model whose objective is to minimize the total costs created in the road–rail intermodal transportation activities. After using the fuzzy expected value method to address the fuzzy objective, two fuzzy approaches, i.e., fuzzy chance-constrained programming method and fuzzy ranking method, are separately adopted to undertake the defuzzification of the fuzzy constraints. Improved linear formulations of the model are then produced to make it easier to solve. A simulation-based reliability modeling is developed to quantify the reliability of the optimization results given by different fuzzy approaches under different parameter settings in a simulation environment. Finally, an empirical case is presented to verify the feasibility of the proposed methods. The effects of demand and capacity fuzziness on the routing optimization are revealed, and an optimization procedure that helps decision-makers to select a more suitable fuzzy approach and determine the best parameter setting for a given case is demonstrated. Some insights that are helpful for organizing a reliable transportation are also drawn.
AbstractList In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft delivery time windows under a fuzzy environment is established, in which fuzzy periods caused by early and late deliveries that lead to penalty are modeled based on maximum functions. To solve the routing problem yielding the above characteristics, this study designs a fuzzy mixed-integer nonlinear programming model whose objective is to minimize the total costs created in the road–rail intermodal transportation activities. After using the fuzzy expected value method to address the fuzzy objective, two fuzzy approaches, i.e., fuzzy chance-constrained programming method and fuzzy ranking method, are separately adopted to undertake the defuzzification of the fuzzy constraints. Improved linear formulations of the model are then produced to make it easier to solve. A simulation-based reliability modeling is developed to quantify the reliability of the optimization results given by different fuzzy approaches under different parameter settings in a simulation environment. Finally, an empirical case is presented to verify the feasibility of the proposed methods. The effects of demand and capacity fuzziness on the routing optimization are revealed, and an optimization procedure that helps decision-makers to select a more suitable fuzzy approach and determine the best parameter setting for a given case is demonstrated. Some insights that are helpful for organizing a reliable transportation are also drawn.
Author Sun, Yan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-4704-5578
  surname: Sun
  fullname: Sun, Yan
  email: sunyanbjtu@163.com
  organization: School of Management Science and Engineering, Shandong University of Finance and Economics
BookMark eNp9kU1uFDEQhS0UJIaQC7CyxNrgn3H_LMNAIFIQaDIoS6vadmeMuu3BdieZrLgDR-FGnAR3BgmJRRaWVfb7qp7qPUdHPniL0EtGXzNK6zdpSRsmCeWUUNpSSe6eoAVnbUsEZ-wILZisOOHLun2GTlJyHRWMV0JWYoF-nU3393t8utvFAHprEwZv8KUbpwGyC568hWQNXtvBQecGl_f4UzCl8tc4B3wZhhuLAa8DmN8_fq7BDfjcZxvHYGAoz1OelV9i6AY74luXt4XpM35XWtzYuMcbN1p85bwJtwlfba0vX-PsYT4r2IGeZ0K0-KvXNmZw_gV62sOQ7Mnf-xhtzt5vVh_JxecP56vTC6JFzTMxpm9Ytexk1zVtDwy4kcJIJlgv61bouq90wwzXjLKl5K2owVLJNZ_rBsQxenVoW1bzfbIpq29hir5MVEXMRVMJ3hRVc1DpGFKKtlfF8MPqcizbUIyqOSR1CEmVkNRDSOquoPw_dBfdCHH_OCQOUCpif23jP1ePUH8AuJKqTw
CitedBy_id crossref_primary_10_3390_systems12110468
crossref_primary_10_3934_jimo_2025137
crossref_primary_10_3390_ijerph18062986
crossref_primary_10_3390_su132212766
crossref_primary_10_3846_tede_2021_14433
crossref_primary_10_3390_su17136071
crossref_primary_10_1109_ACCESS_2020_3025315
crossref_primary_10_3390_systems10050156
crossref_primary_10_1016_j_ins_2024_121112
crossref_primary_10_1007_s40747_023_01308_9
crossref_primary_10_1007_s40815_022_01435_4
crossref_primary_10_3390_math11143244
crossref_primary_10_3390_electronics9122010
crossref_primary_10_3390_systems11080403
crossref_primary_10_3390_su15054376
crossref_primary_10_3390_su14052985
crossref_primary_10_3390_s22228896
crossref_primary_10_1016_j_aei_2023_101956
crossref_primary_10_1016_j_rser_2025_115420
crossref_primary_10_3390_app11209551
crossref_primary_10_3390_systems12060212
crossref_primary_10_1109_TITS_2025_3555286
crossref_primary_10_3390_vehicles7020043
crossref_primary_10_3390_systems12120547
crossref_primary_10_1016_j_ocecoaman_2023_106675
crossref_primary_10_1016_j_swevo_2022_101129
crossref_primary_10_3390_a14020045
crossref_primary_10_3390_axioms13040220
crossref_primary_10_1007_s40747_021_00598_1
crossref_primary_10_1016_j_tre_2024_103915
crossref_primary_10_3390_asi8030068
crossref_primary_10_3390_designs5040067
crossref_primary_10_1016_j_fss_2023_108539
crossref_primary_10_3390_systems12120560
crossref_primary_10_1007_s40815_020_01048_9
crossref_primary_10_3390_axioms13030200
crossref_primary_10_3390_ijerph18042096
crossref_primary_10_3390_f15112003
Cites_doi 10.1016/j.apm.2012.04.026
10.1057/s41278-016-0001-4
10.1371/journal.pone.0185001
10.1007/s00521-018-3492-3
10.1080/0305215X.2016.1190351
10.1007/s10589-011-9409-z
10.1016/j.cie.2019.106011
10.1016/B978-0-444-63578-5.50001-3
10.1142/S0218488596000226
10.3390/sym11010091
10.1016/S1366-5545(98)00017-9
10.1016/j.jhazmat.2012.05.028
10.1016/j.cor.2006.12.025
10.3182/20120523-3-RO-2023.00063
10.1016/j.compchemeng.2016.03.002
10.1109/CSCWD.2019.8791930
10.3390/math7080739
10.1016/j.fss.2010.04.010
10.1016/S0360-8352(97)00100-9
10.1007/BF03342738
10.1016/j.asoc.2014.08.005
10.1016/j.eswa.2019.06.023
10.1016/j.cor.2018.08.002
10.3155/1047-3289.58.8.1004
10.1002/net.20383
10.1287/trsc.2019.0912
10.1016/j.ecolind.2016.03.017
10.1109/AICI.2009.204
10.1007/978-3-319-49487-6_2
10.1016/S0191-2615(02)00074-7
10.1016/j.engappai.2018.04.022
10.1109/ACCESS.2020.2971027
10.1371/journal.pone.0192275
10.1016/j.omega.2018.06.004
10.1016/j.compind.2012.12.001
10.1023/A:1023447217758
10.1016/j.apm.2010.07.013
10.1016/j.cie.2015.08.004
10.1016/j.trb.2015.09.007
10.1007/s40815-015-0081-9
10.1016/j.cie.2018.03.041
10.1080/23249935.2018.1523249
10.1016/j.tre.2015.08.006
10.1080/00207543.2019.1620363
10.1007/s11067-019-09492-3
10.1016/0165-0114(95)00096-8
10.1016/0191-2607(91)90013-G
10.1016/j.cie.2014.05.008
10.1007/s10696-016-9267-1
10.1080/0305215X.2012.704029
10.1016/j.ejor.2012.03.010
10.1155/2015/406218
10.1016/j.dss.2020.113289
10.1007/s11067-018-9438-6
10.1016/j.ijpe.2010.06.007
10.1080/00207543.2013.865852
10.1080/16168658.2018.1517978
10.1016/j.jclepro.2019.119245
10.1016/j.tre.2011.06.001
10.1016/j.fss.2008.09.016
10.1016/j.eswa.2011.02.006
ContentType Journal Article
Copyright Taiwan Fuzzy Systems Association 2020
Taiwan Fuzzy Systems Association 2020.
Copyright_xml – notice: Taiwan Fuzzy Systems Association 2020
– notice: Taiwan Fuzzy Systems Association 2020.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s40815-020-00905-x
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-3211
EndPage 2148
ExternalDocumentID 10_1007_s40815_020_00905_x
GrantInformation_xml – fundername: Project for Humanities and Social Sciences Research of Ministry of Education of China
  grantid: 19YJC630149
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2019BG006
  funderid: http://dx.doi.org/10.13039/501100007129
– fundername: Shandong Provincial Higher Educational Social Science Program of China
  grantid: J18RA053
GroupedDBID -EM
.4S
.DC
0R~
188
203
2UF
4.4
406
5GY
9RA
A8Z
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFKRA
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ARAPS
ARCSS
ATFKH
AVXWI
AXYYD
BENPR
BGLVJ
BGNMA
CCPQU
CNMHZ
CSCUP
CVCKV
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GJIRD
HCIFZ
HG6
HRMNR
I-F
IKXTQ
IWAJR
IXD
J-C
J9A
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
OK1
P2P
PT4
PTHSS
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
TUXDW
UG4
UOJIU
UTJUX
UZ4
UZXMN
VFIZW
Z88
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-ddf8164b5bb89fa1a2d53d5131f5793c7f6c81d2c101452937ae052c210148a3
IEDL.DBID RSV
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553290600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1562-2479
IngestDate Wed Nov 05 04:03:33 EST 2025
Tue Nov 18 22:23:23 EST 2025
Sat Nov 29 05:19:49 EST 2025
Fri Feb 21 02:32:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Road–rail intermodal routing
Fuzzy chance-constrained programming
Fuzzy programming model
Fuzzy expected value
Soft time windows
Simulation-based reliability
Fuzzy ranking
Capacity uncertainty
Demand uncertainty
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-ddf8164b5bb89fa1a2d53d5131f5793c7f6c81d2c101452937ae052c210148a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4704-5578
PQID 2932386328
PQPubID 2043640
PageCount 30
ParticipantIDs proquest_journals_2932386328
crossref_citationtrail_10_1007_s40815_020_00905_x
crossref_primary_10_1007_s40815_020_00905_x
springer_journals_10_1007_s40815_020_00905_x
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of fuzzy systems
PublicationTitleAbbrev Int. J. Fuzzy Syst
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SunYLiangXLiXZhangCA fuzzy programming method for modeling demand uncertainty in the capacitated road-rail multimodal routing problem with time windowsSymmetry2019111911423.90025
JiménezMRanking fuzzy numbers through the comparison of its expected intervalsInt. J. Uncertain. Fuzzin. Knowl. Based Syst.199640437938814143551232.03040
SawadogoMAnciauxDDanielROYReducing intermodal transportation impacts on society and environment by path selection: a multiobjective shortest path approachIFAC Proc. Vol.2012456505513
Yang, K., Wang, R., & Yang, L. Fuzzy reliability-oriented optimization for the road–rail intermodal transport system using tabu search algorithm. J. Intell. Fuzzy Syst., 1–17
TokcaerSÖzpeynirciÖA bi-objective multimodal transportation planning problem with an application to a petrochemical ethylene manufacturerMaritime Econ. Logist.20182017288
WangQZChenJMTsengMLLuanHMAliMHModelling green multimodal transport route performance with witness simulation softwareJ Clean. Prod.2020248119245
MocciaLCordeauJFLaporteGRopkeSValentiniMPModeling and solving a multimodal transportation problem with flexible-time and scheduled servicesNetworks2011571536827683111205.90053
ChenSMEvaluating weapon systems using fuzzy arithmetic operationsFuzzy Sets Syst.19967732652761415941
DemirEHrušovskýMJammerneggWVan WoenselTGreen intermodal freight transportation: bi-objective modelling and analysisInt. J. Prod. Res.2019571961626180
KunduPKarSMaitiMMulti-objective multi-item solid transportation problem in fuzzy environmentAppl. Math. Model.20133742028203830022971349.90095
PishvaeeMSRabbaniMTorabiSAA robust optimization approach to closed-loop supply chain network design under uncertaintyAppl. Math. Model.201135263764927184601205.90056
DuaASinhaDQuality of multimodal freight transportation: a systematic literature reviewWorld Rev. Int. Transport. Res.201982167194
WangRYangKYangLGaoZModeling and optimization of a road–rail intermodal transport system under uncertain informationEng. Appl. Artif. Intell.201872423436
ZhengYLiuBFuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithmAppl. Math. Comput.2006176267368322320581104.90030
HoogeboomMDullaertWLaiDVigoDEfficient neighborhood evaluations for the vehicle routing problem with multiple time windowsTransport. Sci.2020542299564
SunYGreen and reliable freight routing problem in the road-rail intermodal transportation network with uncertain parameters: a fuzzy goal programming approachJ Adv. Transport.20202020121
Zhu, H., & Zhang, J. (2009, November). A credibility-based fuzzy programming model for APP problem. In 2009 International Conference on Artificial Intelligence and Computational Intelligence (Vol. 1, pp. 455–459). IEEE
ZahiriBTavakkoli-MoghaddamRPishvaeeMSA robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertaintyComput. Ind. Eng.201474139148
ResatHGTurkayMDesign and operation of intermodal transportation network in the Marmara region of TurkeyTransport. Res. E2015831633
MulaJPeidroDPolerRThe effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demandInt. J. Prod. Econ.201012811361431190.90299
TangJPanZFungRYLauHVehicle routing problem with fuzzy time windowsFuzzy Sets Syst.2009160568369526568931173.90328
Karoonsoontawong, A., Punyim, P., Nueangnitnaraporn, W., & Ratanavaraha, V. (2020). Multi-Trip Time-Dependent Vehicle Routing Problem with Soft Time Windows and Overtime Constraints. Networks and Spatial Economics, 1–50
Castillo, O. et al: Special Issue “Trends and Developments on Type-2 Fuzzy Sets and Systems” of International Journal of Fuzzy Systems. https://www.springer.com/journal/40815/updates/17750482. Accessed 20 Apr 2020
Mi, X., Mei, M., & Zheng, X. (2019, May). Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 512–516). IEEE
China State Railway Group Company: http://hyfw.95306.cn/hyinfo/page/home-hyzx-index. Accessed 20 April 2020
FazayeliSEydiAKamalabadiINLocation–routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithmComput. Industr. Eng.2018119233246
PishvaeeMSTorabiSAA possibilistic programming approach for closed-loop supply chain network design under uncertaintyFuzzy Sets Syst.2010161202668268326736101230.90204
GovindanKPaamPAbtahiARA fuzzy multi-objective optimization model for sustainable reverse logistics network designEcol. Ind.201667753768
J-SharahiSKhalili-DamghaniKAbtahiARRashidi-KomijanAType-II fuzzy multi-product, multi-level, multi-period location-allocation, production-distribution problem in supply chains: modelling and optimisation approachFuzzy Inform. Eng.2018102260283
LiuPYangLWangLLiSA solid transportation problem with type-2 fuzzy variablesAppl. Soft Comput.201424543558
Grossmann, I. E., Apap, R. M., Calfa, B. A., Garcia-Herreros, P., & Zhang, Q. (2015). Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. In Computer Aided Chemical Engineering (Vol. 37, pp. 1–14). Elsevier
RabbaniMHosseini-MokhallesunSAAOrdibazarAHFarrokhi-AslHA hybrid robust possibilistic approach for a sustainable supply chain location–allocation network designInt. J. Syst. Sci.2020716075
BastHRoute planning in transportation networksLect. Notes Comput. Sci.2016922019803609420
ZhangDHeRLiSWangZA multimodal logistics service network design with time windows and environmental concernsPLoS ONE2017129e0185001
DemirEBurgholzerWHrušovskýMArıkanEJammerneggWVan WoenselTA green intermodal service network design problem with travel time uncertaintyTransport. Res. B.201693789807
TianWCaoCA generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertaintyEng. Optimiz.20174934814983590814
GöçmenEErolRTransportation problems for intermodal networks: mathematical models, exact and heuristic algorithms, and machine learningExpert Syst. Appl.2019135374387
DaiZZhengXDesign of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming modelComput. Ind. Eng.201588444457
National Development and Reform Commission of China: http://jgjc.ndrc.gov.cn/Detail.aspx?TId=706&newsId=6894. Accessed 20 April 2020
CarisAMacharisCJanssensGKDecision support in intermodal transport: a new research agendaComput. Ind.2013642105112
ChangTSBest routes selection in international intermodal networksComput. Oper. Res.2008359287728911144.90322
ZhaoYLiuRZhangXWhiteingAA chance-constrained stochastic approach to intermodal container routing problemsPLoS ONE2018132e0192275
BaykasoğluASubulanKTaşanASDudaklıNA review of fleet planning problems in single and multimodal transportation systemsTransportmetrica A2019152631697
Sun, Y., & Lang, M. (2015). Modeling the multicommodity multimodal routing problem with schedule-based services and carbon dioxide emission costs. Mathematical Problems in Engineering, 2015
UddinMHuynhNReliable routing of road-rail intermodal freight under uncertaintyNetw. Spatial Econ.2019193929952
Ministry of Transport of China: http://cyfd.cnki.com.cn/Article/N2007030054000163.htm. Accessed 20 April 2020
AyarBYamanHAn intermodal multicommodity routing problem with scheduled servicesComput. Optimiz. Appl.201253113115329648381259.90007
SunYHrušovskýMZhangCLangMA time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestionComplexity201820181221398.90037
LuYLangMSunYLiSA fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approachesIEEE Access202082753227548
DalmanHGüzelNSivriMA fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertaintyInt. J. Fuzzy Syst.20161847167293530254
BoardmanBSMalstromEMButlerDPColeMHComputer assisted routing of intermodal shipmentsComput. Ind. Eng.1997331–2311314
ÖzceylanEPaksoyTInteractive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertaintyInt. J. Prod. Res.201452823632387
XuZElomriAPokharelSMutluFA model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windowsComput. Ind. Eng.2019137106011
MinHInternational intermodal choices via chance-constrained goal programmingTransport. Res. A1991256351362
IshfaqRSoxCRDesign of intermodal logistics networks with hub delaysEur. J. Oper. Res.2012220362964129115891253.90047
VermaMVerterVZuffereyNA bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materialsTransport. Res. E2012481132149
BontekoningYMMacharisCTripJJIs a new applied transportation research field emerging?-A review of intermodal rail-truck freight transport literatureTransport. Res. A2004381134
KuzmiczKAPeschEApproaches to empty container repositioning problems in the context of Eurasian intermodal transportationOmega201985194213
Guo, W., Atasoy, B., Beelaerts van Blokland, W., & Negenborn, R. R. (2020). Dynamic and Stochastic Shipment Matching Problem in Multimodal Transportation. Transport. Res. Rec., 0361198120905592
GrossmannIEApapRMCalfaBAGarcía-HerrerosPZhangQRecent advances in mathematical programming techniques for the optimization of process systems under uncertaintyComput. Chem. Eng.201691314
WinebrakeJJCorbettJJFalzaranoAHawkerJSKorfmacherKKethaSZiloraSAssessing energy, environmental, and economic tradeoffs in intermodal freight transportationJ. Air Waste Manag. Assoc.200858810041013
KhalilpourazariSPasandidehSHRGhodratnamaARobust possibilistic programming for multi-item EOQ model with defective supply batches: whale Optimization and Water Cycle AlgorithmsNeural Comput. Appl.2019311065876614
BierwirthCKirschsteinTMeiselFOn transport service selection
H Dalman (905_CR57) 2016; 18
J Mula (905_CR45) 2010; 128
S J-Sharahi (905_CR47) 2018; 10
B Ayar (905_CR22) 2012; 53
905_CR67
Y Zheng (905_CR60) 2006; 176
905_CR66
HG Resat (905_CR4) 2015; 83
IE Grossmann (905_CR36) 2016; 91
E Özceylan (905_CR46) 2014; 52
905_CR68
Y Sun (905_CR42) 2018; 2018
905_CR29
SM Chen (905_CR58) 1996; 77
P Liu (905_CR44) 2014; 24
M Jiménez (905_CR59) 1996; 4
E Demir (905_CR51) 2016; 93
Y Sun (905_CR6) 2020; 2020
M Sawadogo (905_CR24) 2012; 45
MS Pishvaee (905_CR52) 2011; 35
905_CR64
P Kundu (905_CR43) 2013; 37
H Min (905_CR16) 1991; 25
MS Pishvaee (905_CR48) 2010; 161
Y Sun (905_CR40) 2019; 7
905_CR1
B Zahiri (905_CR71) 2014; 74
905_CR7
905_CR33
BS Boardman (905_CR18) 1997; 33
D Zhang (905_CR35) 2017; 12
YK Liu (905_CR56) 2003; 2
905_CR37
H Bast (905_CR9) 2016; 9220
905_CR72
YM Bontekoning (905_CR15) 2004; 38
A Dua (905_CR26) 2019; 8
M Hrušovský (905_CR39) 2018; 30
A Baykasoğlu (905_CR13) 2019; 15
E Göçmen (905_CR12) 2019; 135
M Uddin (905_CR38) 2019; 19
Z Xu (905_CR30) 2019; 137
JJ Winebrake (905_CR10) 2008; 58
K Govindan (905_CR61) 2016; 67
TS Chang (905_CR20) 2008; 35
Y Lu (905_CR41) 2020; 8
L Moccia (905_CR21) 2011; 57
E Demir (905_CR25) 2019; 57
M Rabbani (905_CR70) 2020; 7
Y Zhao (905_CR34) 2018; 13
A Caris (905_CR11) 2013; 64
M Hoogeboom (905_CR27) 2020; 54
J Tang (905_CR31) 2009; 160
Z Dai (905_CR63) 2015; 88
S Tokcaer (905_CR5) 2018; 20
S Khalilpourazari (905_CR69) 2019; 31
C Bierwirth (905_CR2) 2012; 5
B Vahdani (905_CR62) 2013; 45
JH Bookbinder (905_CR19) 1998; 34
MHF Zarandi (905_CR50) 2011; 38
W Tian (905_CR49) 2017; 49
Y Sun (905_CR32) 2019; 11
R Wang (905_CR53) 2018; 72
QZ Wang (905_CR14) 2020; 248
905_CR55
KA Kuzmicz (905_CR3) 2019; 85
Y Xie (905_CR65) 2012; 227
R Liu (905_CR28) 2019; 101
R Ishfaq (905_CR54) 2012; 220
C Barnhart (905_CR17) 1993; 14
S Fazayeli (905_CR8) 2018; 119
M Verma (905_CR23) 2012; 48
References_xml – reference: GöçmenEErolRTransportation problems for intermodal networks: mathematical models, exact and heuristic algorithms, and machine learningExpert Syst. Appl.2019135374387
– reference: HoogeboomMDullaertWLaiDVigoDEfficient neighborhood evaluations for the vehicle routing problem with multiple time windowsTransport. Sci.2020542299564
– reference: Castillo, O. et al: Special Issue “Trends and Developments on Type-2 Fuzzy Sets and Systems” of International Journal of Fuzzy Systems. https://www.springer.com/journal/40815/updates/17750482. Accessed 20 Apr 2020
– reference: SunYHrušovskýMZhangCLangMA time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestionComplexity201820181221398.90037
– reference: Grossmann, I. E., Apap, R. M., Calfa, B. A., Garcia-Herreros, P., & Zhang, Q. (2015). Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. In Computer Aided Chemical Engineering (Vol. 37, pp. 1–14). Elsevier
– reference: DemirEBurgholzerWHrušovskýMArıkanEJammerneggWVan WoenselTA green intermodal service network design problem with travel time uncertaintyTransport. Res. B.201693789807
– reference: BierwirthCKirschsteinTMeiselFOn transport service selection in intermodal rail/road distribution networksBusiness Res.201252198219
– reference: XuZElomriAPokharelSMutluFA model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windowsComput. Ind. Eng.2019137106011
– reference: UddinMHuynhNReliable routing of road-rail intermodal freight under uncertaintyNetw. Spatial Econ.2019193929952
– reference: BastHRoute planning in transportation networksLect. Notes Comput. Sci.2016922019803609420
– reference: ZhangDHeRLiSWangZA multimodal logistics service network design with time windows and environmental concernsPLoS ONE2017129e0185001
– reference: TangJPanZFungRYLauHVehicle routing problem with fuzzy time windowsFuzzy Sets Syst.2009160568369526568931173.90328
– reference: MocciaLCordeauJFLaporteGRopkeSValentiniMPModeling and solving a multimodal transportation problem with flexible-time and scheduled servicesNetworks2011571536827683111205.90053
– reference: GrossmannIEApapRMCalfaBAGarcía-HerrerosPZhangQRecent advances in mathematical programming techniques for the optimization of process systems under uncertaintyComput. Chem. Eng.201691314
– reference: ZhengYLiuBFuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithmAppl. Math. Comput.2006176267368322320581104.90030
– reference: KunduPKarSMaitiMMulti-objective multi-item solid transportation problem in fuzzy environmentAppl. Math. Model.20133742028203830022971349.90095
– reference: Sun, Y., & Lang, M. (2015). Modeling the multicommodity multimodal routing problem with schedule-based services and carbon dioxide emission costs. Mathematical Problems in Engineering, 2015
– reference: KuzmiczKAPeschEApproaches to empty container repositioning problems in the context of Eurasian intermodal transportationOmega201985194213
– reference: HrušovskýMDemirEJammerneggWVan WoenselTHybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertaintyFlexible Serv. Manuf. J.2018303486516
– reference: ZarandiMHFHemmatiADavariSThe multi-depot capacitated location–routing problem with fuzzy travel timesExpert Syst. Appl.20113881007510084
– reference: VermaMVerterVZuffereyNA bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materialsTransport. Res. E2012481132149
– reference: China State Railway Group Company: http://hyfw.95306.cn/hyinfo/page/home-hyzx-index. Accessed 20 April 2020
– reference: ChenSMEvaluating weapon systems using fuzzy arithmetic operationsFuzzy Sets Syst.19967732652761415941
– reference: Guo, W., Atasoy, B., Beelaerts van Blokland, W., & Negenborn, R. R. (2020). Dynamic and Stochastic Shipment Matching Problem in Multimodal Transportation. Transport. Res. Rec., 0361198120905592
– reference: BarnhartCRatliffHDModeling intermodal routingJ. Busin. Log.1993141205
– reference: CarisAMacharisCJanssensGKDecision support in intermodal transport: a new research agendaComput. Ind.2013642105112
– reference: LuYLangMSunYLiSA fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approachesIEEE Access202082753227548
– reference: BoardmanBSMalstromEMButlerDPColeMHComputer assisted routing of intermodal shipmentsComput. Ind. Eng.1997331–2311314
– reference: VahdaniBTavakkoli-MoghaddamRJolaiFBaboliAReliable design of a closed loop supply chain network under uncertainty: an interval fuzzy possibilistic chance-constrained modelEng. Optimiz.20134567457653061611
– reference: Mi, X., Mei, M., & Zheng, X. (2019, May). Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 512–516). IEEE
– reference: TokcaerSÖzpeynirciÖA bi-objective multimodal transportation planning problem with an application to a petrochemical ethylene manufacturerMaritime Econ. Logist.20182017288
– reference: TianWCaoCA generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertaintyEng. Optimiz.20174934814983590814
– reference: Zhu, H., & Zhang, J. (2009, November). A credibility-based fuzzy programming model for APP problem. In 2009 International Conference on Artificial Intelligence and Computational Intelligence (Vol. 1, pp. 455–459). IEEE
– reference: BookbinderJHFoxNSIntermodal routing of Canada-Mexico shipments under NAFTATransport Res. Part E1998344289303
– reference: ÖzceylanEPaksoyTInteractive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertaintyInt. J. Prod. Res.201452823632387
– reference: ZhaoYLiuRZhangXWhiteingAA chance-constrained stochastic approach to intermodal container routing problemsPLoS ONE2018132e0192275
– reference: AyarBYamanHAn intermodal multicommodity routing problem with scheduled servicesComput. Optimiz. Appl.201253113115329648381259.90007
– reference: BaykasoğluASubulanKTaşanASDudaklıNA review of fleet planning problems in single and multimodal transportation systemsTransportmetrica A2019152631697
– reference: ChangTSBest routes selection in international intermodal networksComput. Oper. Res.2008359287728911144.90322
– reference: DuaASinhaDQuality of multimodal freight transportation: a systematic literature reviewWorld Rev. Int. Transport. Res.201982167194
– reference: LiuPYangLWangLLiSA solid transportation problem with type-2 fuzzy variablesAppl. Soft Comput.201424543558
– reference: SunYGreen and reliable freight routing problem in the road-rail intermodal transportation network with uncertain parameters: a fuzzy goal programming approachJ Adv. Transport.20202020121
– reference: RabbaniMHosseini-MokhallesunSAAOrdibazarAHFarrokhi-AslHA hybrid robust possibilistic approach for a sustainable supply chain location–allocation network designInt. J. Syst. Sci.2020716075
– reference: BontekoningYMMacharisCTripJJIs a new applied transportation research field emerging?-A review of intermodal rail-truck freight transport literatureTransport. Res. A2004381134
– reference: PishvaeeMSTorabiSAA possibilistic programming approach for closed-loop supply chain network design under uncertaintyFuzzy Sets Syst.2010161202668268326736101230.90204
– reference: KhalilpourazariSPasandidehSHRGhodratnamaARobust possibilistic programming for multi-item EOQ model with defective supply batches: whale Optimization and Water Cycle AlgorithmsNeural Comput. Appl.2019311065876614
– reference: DalmanHGüzelNSivriMA fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertaintyInt. J. Fuzzy Syst.20161847167293530254
– reference: DemirEHrušovskýMJammerneggWVan WoenselTGreen intermodal freight transportation: bi-objective modelling and analysisInt. J. Prod. Res.2019571961626180
– reference: ResatHGTurkayMDesign and operation of intermodal transportation network in the Marmara region of TurkeyTransport. Res. E2015831633
– reference: ZahiriBTavakkoli-MoghaddamRPishvaeeMSA robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertaintyComput. Ind. Eng.201474139148
– reference: GovindanKPaamPAbtahiARA fuzzy multi-objective optimization model for sustainable reverse logistics network designEcol. Ind.201667753768
– reference: WangQZChenJMTsengMLLuanHMAliMHModelling green multimodal transport route performance with witness simulation softwareJ Clean. Prod.2020248119245
– reference: SunYLiXFuzzy programming approaches for modeling a customer-centred freight routing problem in the road-rail intermodal hub-and-spoke network with fuzzy soft time windows and multiple sources of time uncertaintyMathematics201978739
– reference: J-SharahiSKhalili-DamghaniKAbtahiARRashidi-KomijanAType-II fuzzy multi-product, multi-level, multi-period location-allocation, production-distribution problem in supply chains: modelling and optimisation approachFuzzy Inform. Eng.2018102260283
– reference: SawadogoMAnciauxDDanielROYReducing intermodal transportation impacts on society and environment by path selection: a multiobjective shortest path approachIFAC Proc. Vol.2012456505513
– reference: PishvaeeMSRabbaniMTorabiSAA robust optimization approach to closed-loop supply chain network design under uncertaintyAppl. Math. Model.201135263764927184601205.90056
– reference: Yang, K., Wang, R., & Yang, L. Fuzzy reliability-oriented optimization for the road–rail intermodal transport system using tabu search algorithm. J. Intell. Fuzzy Syst., 1–17
– reference: FazayeliSEydiAKamalabadiINLocation–routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithmComput. Industr. Eng.2018119233246
– reference: Ministry of Transport of China: http://cyfd.cnki.com.cn/Article/N2007030054000163.htm. Accessed 20 April 2020
– reference: SunYLiangXLiXZhangCA fuzzy programming method for modeling demand uncertainty in the capacitated road-rail multimodal routing problem with time windowsSymmetry2019111911423.90025
– reference: Karoonsoontawong, A., Punyim, P., Nueangnitnaraporn, W., & Ratanavaraha, V. (2020). Multi-Trip Time-Dependent Vehicle Routing Problem with Soft Time Windows and Overtime Constraints. Networks and Spatial Economics, 1–50
– reference: IshfaqRSoxCRDesign of intermodal logistics networks with hub delaysEur. J. Oper. Res.2012220362964129115891253.90047
– reference: LiuRTaoYXieXAn adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and synchronized visitsComput. Oper. Res.2019101250262386406906988108
– reference: National Development and Reform Commission of China: http://jgjc.ndrc.gov.cn/Detail.aspx?TId=706&newsId=6894. Accessed 20 April 2020
– reference: WangRYangKYangLGaoZModeling and optimization of a road–rail intermodal transport system under uncertain informationEng. Appl. Artif. Intell.201872423436
– reference: JiménezMRanking fuzzy numbers through the comparison of its expected intervalsInt. J. Uncertain. Fuzzin. Knowl. Based Syst.199640437938814143551232.03040
– reference: MulaJPeidroDPolerRThe effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demandInt. J. Prod. Econ.201012811361431190.90299
– reference: DaiZZhengXDesign of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming modelComput. Ind. Eng.201588444457
– reference: LiuYKLiuBFuzzy random variables: a scalar expected value operatorFuzzy Optim. Decis. Making20032214316019993031436.60009
– reference: MinHInternational intermodal choices via chance-constrained goal programmingTransport. Res. A1991256351362
– reference: XieYLuWWangWQuadrifoglioLA multimodal location and routing model for hazardous materials transportationJ. Hazard. Mater.2012227135141
– reference: WinebrakeJJCorbettJJFalzaranoAHawkerJSKorfmacherKKethaSZiloraSAssessing energy, environmental, and economic tradeoffs in intermodal freight transportationJ. Air Waste Manag. Assoc.200858810041013
– volume: 37
  start-page: 2028
  issue: 4
  year: 2013
  ident: 905_CR43
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.04.026
– volume: 20
  start-page: 72
  issue: 1
  year: 2018
  ident: 905_CR5
  publication-title: Maritime Econ. Logist.
  doi: 10.1057/s41278-016-0001-4
– volume: 12
  start-page: e0185001
  issue: 9
  year: 2017
  ident: 905_CR35
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185001
– volume: 2018
  start-page: 1
  year: 2018
  ident: 905_CR42
  publication-title: Complexity
– volume: 31
  start-page: 6587
  issue: 10
  year: 2019
  ident: 905_CR69
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3492-3
– volume: 49
  start-page: 481
  issue: 3
  year: 2017
  ident: 905_CR49
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2016.1190351
– ident: 905_CR67
– volume: 53
  start-page: 131
  issue: 1
  year: 2012
  ident: 905_CR22
  publication-title: Comput. Optimiz. Appl.
  doi: 10.1007/s10589-011-9409-z
– volume: 137
  start-page: 106011
  year: 2019
  ident: 905_CR30
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2019.106011
– volume: 7
  start-page: 60
  issue: 1
  year: 2020
  ident: 905_CR70
  publication-title: Int. J. Syst. Sci.
– ident: 905_CR37
  doi: 10.1016/B978-0-444-63578-5.50001-3
– volume: 4
  start-page: 379
  issue: 04
  year: 1996
  ident: 905_CR59
  publication-title: Int. J. Uncertain. Fuzzin. Knowl. Based Syst.
  doi: 10.1142/S0218488596000226
– volume: 11
  start-page: 91
  issue: 1
  year: 2019
  ident: 905_CR32
  publication-title: Symmetry
  doi: 10.3390/sym11010091
– volume: 34
  start-page: 289
  issue: 4
  year: 1998
  ident: 905_CR19
  publication-title: Transport Res. Part E
  doi: 10.1016/S1366-5545(98)00017-9
– volume: 227
  start-page: 135
  year: 2012
  ident: 905_CR65
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.05.028
– volume: 35
  start-page: 2877
  issue: 9
  year: 2008
  ident: 905_CR20
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2006.12.025
– volume: 45
  start-page: 505
  issue: 6
  year: 2012
  ident: 905_CR24
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20120523-3-RO-2023.00063
– volume: 91
  start-page: 3
  year: 2016
  ident: 905_CR36
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.03.002
– ident: 905_CR33
  doi: 10.1109/CSCWD.2019.8791930
– volume: 7
  start-page: 739
  issue: 8
  year: 2019
  ident: 905_CR40
  publication-title: Mathematics
  doi: 10.3390/math7080739
– volume: 161
  start-page: 2668
  issue: 20
  year: 2010
  ident: 905_CR48
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2010.04.010
– volume: 33
  start-page: 311
  issue: 1–2
  year: 1997
  ident: 905_CR18
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/S0360-8352(97)00100-9
– ident: 905_CR72
– volume: 5
  start-page: 198
  issue: 2
  year: 2012
  ident: 905_CR2
  publication-title: Business Res.
  doi: 10.1007/BF03342738
– volume: 8
  start-page: 167
  issue: 2
  year: 2019
  ident: 905_CR26
  publication-title: World Rev. Int. Transport. Res.
– volume: 176
  start-page: 673
  issue: 2
  year: 2006
  ident: 905_CR60
  publication-title: Appl. Math. Comput.
– ident: 905_CR68
– volume: 24
  start-page: 543
  year: 2014
  ident: 905_CR44
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.005
– volume: 135
  start-page: 374
  year: 2019
  ident: 905_CR12
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.023
– volume: 101
  start-page: 250
  year: 2019
  ident: 905_CR28
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2018.08.002
– volume: 2020
  start-page: 1
  year: 2020
  ident: 905_CR6
  publication-title: J Adv. Transport.
– volume: 58
  start-page: 1004
  issue: 8
  year: 2008
  ident: 905_CR10
  publication-title: J. Air Waste Manag. Assoc.
  doi: 10.3155/1047-3289.58.8.1004
– volume: 57
  start-page: 53
  issue: 1
  year: 2011
  ident: 905_CR21
  publication-title: Networks
  doi: 10.1002/net.20383
– volume: 54
  start-page: 299
  issue: 2
  year: 2020
  ident: 905_CR27
  publication-title: Transport. Sci.
  doi: 10.1287/trsc.2019.0912
– volume: 67
  start-page: 753
  year: 2016
  ident: 905_CR61
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2016.03.017
– ident: 905_CR64
  doi: 10.1109/AICI.2009.204
– volume: 9220
  start-page: 19
  year: 2016
  ident: 905_CR9
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-49487-6_2
– volume: 38
  start-page: 1
  issue: 1
  year: 2004
  ident: 905_CR15
  publication-title: Transport. Res. A
  doi: 10.1016/S0191-2615(02)00074-7
– volume: 72
  start-page: 423
  year: 2018
  ident: 905_CR53
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.022
– volume: 8
  start-page: 27532
  year: 2020
  ident: 905_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971027
– volume: 13
  start-page: e0192275
  issue: 2
  year: 2018
  ident: 905_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192275
– volume: 85
  start-page: 194
  year: 2019
  ident: 905_CR3
  publication-title: Omega
  doi: 10.1016/j.omega.2018.06.004
– volume: 64
  start-page: 105
  issue: 2
  year: 2013
  ident: 905_CR11
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2012.12.001
– volume: 2
  start-page: 143
  issue: 2
  year: 2003
  ident: 905_CR56
  publication-title: Fuzzy Optim. Decis. Making
  doi: 10.1023/A:1023447217758
– volume: 35
  start-page: 637
  issue: 2
  year: 2011
  ident: 905_CR52
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.07.013
– volume: 88
  start-page: 444
  year: 2015
  ident: 905_CR63
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.08.004
– volume: 93
  start-page: 789
  year: 2016
  ident: 905_CR51
  publication-title: Transport. Res. B.
  doi: 10.1016/j.trb.2015.09.007
– volume: 18
  start-page: 716
  issue: 4
  year: 2016
  ident: 905_CR57
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-015-0081-9
– volume: 119
  start-page: 233
  year: 2018
  ident: 905_CR8
  publication-title: Comput. Industr. Eng.
  doi: 10.1016/j.cie.2018.03.041
– volume: 15
  start-page: 631
  issue: 2
  year: 2019
  ident: 905_CR13
  publication-title: Transportmetrica A
  doi: 10.1080/23249935.2018.1523249
– volume: 83
  start-page: 16
  year: 2015
  ident: 905_CR4
  publication-title: Transport. Res. E
  doi: 10.1016/j.tre.2015.08.006
– volume: 57
  start-page: 6162
  issue: 19
  year: 2019
  ident: 905_CR25
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1620363
– volume: 14
  start-page: 205
  issue: 1
  year: 1993
  ident: 905_CR17
  publication-title: J. Busin. Log.
– ident: 905_CR1
– ident: 905_CR29
  doi: 10.1007/s11067-019-09492-3
– volume: 77
  start-page: 265
  issue: 3
  year: 1996
  ident: 905_CR58
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(95)00096-8
– ident: 905_CR66
– volume: 25
  start-page: 351
  issue: 6
  year: 1991
  ident: 905_CR16
  publication-title: Transport. Res. A
  doi: 10.1016/0191-2607(91)90013-G
– volume: 74
  start-page: 139
  year: 2014
  ident: 905_CR71
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2014.05.008
– volume: 30
  start-page: 486
  issue: 3
  year: 2018
  ident: 905_CR39
  publication-title: Flexible Serv. Manuf. J.
  doi: 10.1007/s10696-016-9267-1
– volume: 45
  start-page: 745
  issue: 6
  year: 2013
  ident: 905_CR62
  publication-title: Eng. Optimiz.
  doi: 10.1080/0305215X.2012.704029
– volume: 220
  start-page: 629
  issue: 3
  year: 2012
  ident: 905_CR54
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2012.03.010
– ident: 905_CR55
  doi: 10.1155/2015/406218
– ident: 905_CR7
  doi: 10.1016/j.dss.2020.113289
– volume: 19
  start-page: 929
  issue: 3
  year: 2019
  ident: 905_CR38
  publication-title: Netw. Spatial Econ.
  doi: 10.1007/s11067-018-9438-6
– volume: 128
  start-page: 136
  issue: 1
  year: 2010
  ident: 905_CR45
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2010.06.007
– volume: 52
  start-page: 2363
  issue: 8
  year: 2014
  ident: 905_CR46
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2013.865852
– volume: 10
  start-page: 260
  issue: 2
  year: 2018
  ident: 905_CR47
  publication-title: Fuzzy Inform. Eng.
  doi: 10.1080/16168658.2018.1517978
– volume: 248
  start-page: 119245
  year: 2020
  ident: 905_CR14
  publication-title: J Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119245
– volume: 48
  start-page: 132
  issue: 1
  year: 2012
  ident: 905_CR23
  publication-title: Transport. Res. E
  doi: 10.1016/j.tre.2011.06.001
– volume: 160
  start-page: 683
  issue: 5
  year: 2009
  ident: 905_CR31
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2008.09.016
– volume: 38
  start-page: 10075
  issue: 8
  year: 2011
  ident: 905_CR50
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.006
SSID ssib031263563
ssib053833614
ssib026410675
ssj0002147029
ssib008679421
Score 2.3849385
Snippet In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2119
SubjectTerms Artificial Intelligence
Computational Intelligence
Costs
Customer services
Demand
Engineering
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Integer programming
Intermodal
Intermodal transportation
Management Science
Mixed integer
Nonlinear programming
North American Free Trade Agreement
Operations Research
Optimization
Parameters
Reliability analysis
Roads & highways
Routing
Schedules
Simulation
Transportation services
Transportation systems
Windows (intervals)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BywEO_CMCBc2BG6yId-3u-oTa0ohTFKVF9Gatd9dSpMQusfuTnvoOPApvxJMws9kkBYleOOQQ2bt2MrPzjdcz38fYO-9I_EQ7npdZyhGvU557k3OvTOpVmaTK6CA2oYZDfXKSj-KGWxvLKlcxMQRq11jaI_-IsITosiuF_nT6nZNqFL1djRIad9k2MZWhn2_vHw5H47VHEZ3cjU5ORH-iTFt7sEyIi2VDQIWrX8oIWCGWk4pPP0id4XOO4CJVeey8Cf13KQIqNThTc3bez_jln-i2SVn_essawGvw6H9_9mP2MKatsLf0syfsjq-fsgc3yAyfsZ-Ds6urBexFknLfgqkdHE1mUSCM7yNgOqAa6CU3-AJIiI3a4aFr4KiZnnswMG6M-3X9Y2wmUwjblbPG4ZWpconOHC0FcID2j3FM1cFnnALX4wKomwW-TWrXXLSAIFPjoRndA30OMCmwdE0z9_AVPT1UQjxnx4PD44MvPEpCcCuV6LhzlcYHvDIrS51XJjHCZdJliUyqDCONVdWuxQxc2CBBjH-eMr6fCSvouzbyBduqm9q_pJKukmQgcyU1pmBJWuqMRvYNpZDKlD2WrCxZ2EiXTqod02JN9BysX6D1i2D94rLH3q_HnC7JQm49e2dl8iIGjrbY2LvHPqycZnP437O9un221-y-ID8NZYg7bKubn_k37J497ybt_G1cNr8BpHYYcA
  priority: 102
  providerName: ProQuest
Title Fuzzy Approaches and Simulation-Based Reliability Modeling to Solve a Road–Rail Intermodal Routing Problem with Soft Delivery Time Windows When Demand and Capacity are Uncertain
URI https://link.springer.com/article/10.1007/s40815-020-00905-x
https://www.proquest.com/docview/2932386328
Volume 22
WOSCitedRecordID wos000553290600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: P5Z
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: K7-
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: M7S
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: BENPR
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link Contemporary 1997-Present
  customDbUrl:
  eissn: 2199-3211
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002147029
  issn: 1562-2479
  databaseCode: RSV
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datswFBZdu4v1Yu3-aLo26GJ3myCWrUq-7F8oDEJIuq3sxsiWDIHEHrH7k171HfYoe6M9yc5RZKcbXWG7sMFYsmR0pO_IPuf7CHlnDYqfKMPiVEQM8DpisdUxs1JHVqZBJLVyYhNyMFAXF_HQJ4VVTbR780vSrdRtslsE6IXZxJgJHfcEA89xQyDbDO7Rx59bK0IKuXvZm4D4SJPWWm0YIP_KinQKZnwYepBy6zcq9_ScvBnsbTjjkYx9ts3D3fgd0VZu6h9_Vh1g9bf-71W3yXPvoNLDpUW9IGu2eEk279EWviI_-pe3twt66OnIbUV1Yeh4MvNSYOwIoNFQjHZesoAvKEquYeI7rUs6LqdXlmo6KrX5efd9pCdT6j5MzkoDLWOMEpYcLqVuKH4phjp5TU_gETDzFhTzVuiXSWHK64oCnBRwa4Z9wOMY4D_DNvXc0k9g0y7m4TU575-eH58xL_7AslDymhmTK9jKpSJNVZzrQHMjQiOCMMgFrCmZzA8y8LV55sSGwWmR2vYEzzheKx2-IetFWdgdDN5KUfARDEWBsxVEqRJYs6fRWZQ67ZCgGb8k88ToqM8xTVpKZzceCYxH4sYjuemQ922db0takEdL7zVmkfglokqgy-AuHYRcdciHxgxWt__-tN1_K_6WPONoSS4AcY-s1_NLu0-eZlf1pJp3ycbR6WA46pInHyXrYuTrGM5D8bXrJtUv1zMSLg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYIe-EcsFPABTmB1Yyd1ckCotKxabVlV7SJ6sxzbkVbaTdpN-rM98Q48ByfeiCdhxkl2CxK99cAhhyixHSXfeMbOzPcR8tpZFD-JLUvSKGTgr0OWOJ0wJ3XoZBqEUsdebEIOBvHhYbK3RH60tTCYVtnOiX6itoXBPfI1cEvgXdYFjz8cHTNUjcK_q62ERg2LvpudwZKtfL-zBd_3Dee9T8PNbdaoCjAjJK-YtVkMa4Q0StM4yXSguY2EjQIRZBGA1chs3UAQx41XsYVhpXbdiBuO57EW0O0NcjOEZ0GD6ks2hy9y110qG4VQA_nZ5uYiAiR-WbBdwVQjROMdveNAyaCu11WDRRVnPJRJU-bji_1C8N5YTY2V4Ek3Yud_utJFfPzXL13vKXv3_rN3fJ_cbUJyulHb0AOy5PKHZOUSUeMj8rN3cnExoxsNAbsrqc4tPRhNGvEz9hGCAUsxv7vmPZ9RFJnDUn9aFfSgGJ86qul-oe2vb9_39WhM_VbspLAwMmZl4Z17tbgPxb1xaJNVdAu6gLlmRrFSh34d5bY4Kyk40BwuTfAZ8NiEgMfgmHrq6BewYp_l8ZgMr-OlPSHLeZG7p5iulqLEZSJFDOFlEKZxhC27GsNjqdMOCVrgKNNQwaMiyVjNSaw92BSATXmwqfMOeTtvc1QToVx592qLMNVMiqVawKtD3rUYXVz-d2_Pru7tFbm9Pfy8q3Z3Bv3n5A5HE_HplqtkuZqeuBfkljmtRuX0pbdXStQ1Y_c3oxpw8g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5VpUJwgPInAm2ZAzdYNd61u-tjaRu1AkVRUqA3a-1dS5ESu0rcQnriHXgU3ognYWbtOAEBEuLgg-X9s3Z2Z9ae7_sYe-ksiZ9oy-M0Cjn665DHzsTcKRM6lQahMtqLTah-X19cxIM1FL_Pdl_-kqwxDcTSVFT7lzbfb4FvIXoyQhYTKjruRhyjyFshnmQoqWs4-tBaFNHJrSE50fsTZVprwTIgLpYVARWufikbh-X3clLx6XqpMzznCC5CFTfIm98P42fvtgpZf_nL6p1X7_7_v_Y2u9cErnBYW9oDtuGKh-zuGp3hI_atd3Vzs4DDhqbczcEUFkbjaSMRxt-gy7RAWdA1O_gCSIqNAPFQlTAqJ9cODAxLY79_-To04wn4D5bT0mLPlLtEJQe1BA7QF2Ssk1dwjE3gilwA4Vng47iw5ac5oJsp8NGUxkDXEYYFGfVpZg7eo637XIjH7Lx3cn50yhtRCJ5JJSpuba7xiJdGaarj3ARG2EjaKJBBHuFek6n8IMMYXGRehBiDGWVcNxKZoHtt5BO2WZSFe0pJXSkJQcZKagzCgjDVEdXsGgoilUk7LFjOZZI1hOmk2zFJWqpnPx8Jzkfi5yP53GGv2jqXNV3IX0vvLE0kabaOeYJDxjDqQArdYa-XJrF6_OfWnv1b8Rfs9uC4l7w76799zu4IMiqfo7jDNqvZldtlW9l1NZ7P9vyK-gFnfBmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Approaches+and+Simulation-Based+Reliability+Modeling+to+Solve+a+Road%E2%80%93Rail+Intermodal+Routing+Problem+with+Soft+Delivery+Time+Windows+When+Demand+and+Capacity+are+Uncertain&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Sun%2C+Yan&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=22&rft.issue=7&rft.spage=2119&rft.epage=2148&rft_id=info:doi/10.1007%2Fs40815-020-00905-x&rft.externalDocID=10_1007_s40815_020_00905_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon