Fuzzy Approaches and Simulation-Based Reliability Modeling to Solve a Road–Rail Intermodal Routing Problem with Soft Delivery Time Windows When Demand and Capacity are Uncertain
In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft...
Uložené v:
| Vydané v: | International journal of fuzzy systems Ročník 22; číslo 7; s. 2119 - 2148 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1562-2479, 2199-3211 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft delivery time windows under a fuzzy environment is established, in which fuzzy periods caused by early and late deliveries that lead to penalty are modeled based on maximum functions. To solve the routing problem yielding the above characteristics, this study designs a fuzzy mixed-integer nonlinear programming model whose objective is to minimize the total costs created in the road–rail intermodal transportation activities. After using the fuzzy expected value method to address the fuzzy objective, two fuzzy approaches, i.e., fuzzy chance-constrained programming method and fuzzy ranking method, are separately adopted to undertake the defuzzification of the fuzzy constraints. Improved linear formulations of the model are then produced to make it easier to solve. A simulation-based reliability modeling is developed to quantify the reliability of the optimization results given by different fuzzy approaches under different parameter settings in a simulation environment. Finally, an empirical case is presented to verify the feasibility of the proposed methods. The effects of demand and capacity fuzziness on the routing optimization are revealed, and an optimization procedure that helps decision-makers to select a more suitable fuzzy approach and determine the best parameter setting for a given case is demonstrated. Some insights that are helpful for organizing a reliable transportation are also drawn. |
|---|---|
| AbstractList | In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal transportation system is investigated. According to fuzzy set theory, uncertain demands and capacities are formulated as trapezoidal fuzzy numbers. Soft delivery time windows under a fuzzy environment is established, in which fuzzy periods caused by early and late deliveries that lead to penalty are modeled based on maximum functions. To solve the routing problem yielding the above characteristics, this study designs a fuzzy mixed-integer nonlinear programming model whose objective is to minimize the total costs created in the road–rail intermodal transportation activities. After using the fuzzy expected value method to address the fuzzy objective, two fuzzy approaches, i.e., fuzzy chance-constrained programming method and fuzzy ranking method, are separately adopted to undertake the defuzzification of the fuzzy constraints. Improved linear formulations of the model are then produced to make it easier to solve. A simulation-based reliability modeling is developed to quantify the reliability of the optimization results given by different fuzzy approaches under different parameter settings in a simulation environment. Finally, an empirical case is presented to verify the feasibility of the proposed methods. The effects of demand and capacity fuzziness on the routing optimization are revealed, and an optimization procedure that helps decision-makers to select a more suitable fuzzy approach and determine the best parameter setting for a given case is demonstrated. Some insights that are helpful for organizing a reliable transportation are also drawn. |
| Author | Sun, Yan |
| Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-4704-5578 surname: Sun fullname: Sun, Yan email: sunyanbjtu@163.com organization: School of Management Science and Engineering, Shandong University of Finance and Economics |
| BookMark | eNp9kU1uFDEQhS0UJIaQC7CyxNrgn3H_LMNAIFIQaDIoS6vadmeMuu3BdieZrLgDR-FGnAR3BgmJRRaWVfb7qp7qPUdHPniL0EtGXzNK6zdpSRsmCeWUUNpSSe6eoAVnbUsEZ-wILZisOOHLun2GTlJyHRWMV0JWYoF-nU3393t8utvFAHprEwZv8KUbpwGyC568hWQNXtvBQecGl_f4UzCl8tc4B3wZhhuLAa8DmN8_fq7BDfjcZxvHYGAoz1OelV9i6AY74luXt4XpM35XWtzYuMcbN1p85bwJtwlfba0vX-PsYT4r2IGeZ0K0-KvXNmZw_gV62sOQ7Mnf-xhtzt5vVh_JxecP56vTC6JFzTMxpm9Ytexk1zVtDwy4kcJIJlgv61bouq90wwzXjLKl5K2owVLJNZ_rBsQxenVoW1bzfbIpq29hir5MVEXMRVMJ3hRVc1DpGFKKtlfF8MPqcizbUIyqOSR1CEmVkNRDSOquoPw_dBfdCHH_OCQOUCpif23jP1ePUH8AuJKqTw |
| CitedBy_id | crossref_primary_10_3390_systems12110468 crossref_primary_10_3934_jimo_2025137 crossref_primary_10_3390_ijerph18062986 crossref_primary_10_3390_su132212766 crossref_primary_10_3846_tede_2021_14433 crossref_primary_10_3390_su17136071 crossref_primary_10_1109_ACCESS_2020_3025315 crossref_primary_10_3390_systems10050156 crossref_primary_10_1016_j_ins_2024_121112 crossref_primary_10_1007_s40747_023_01308_9 crossref_primary_10_1007_s40815_022_01435_4 crossref_primary_10_3390_math11143244 crossref_primary_10_3390_electronics9122010 crossref_primary_10_3390_systems11080403 crossref_primary_10_3390_su15054376 crossref_primary_10_3390_su14052985 crossref_primary_10_3390_s22228896 crossref_primary_10_1016_j_aei_2023_101956 crossref_primary_10_1016_j_rser_2025_115420 crossref_primary_10_3390_app11209551 crossref_primary_10_3390_systems12060212 crossref_primary_10_1109_TITS_2025_3555286 crossref_primary_10_3390_vehicles7020043 crossref_primary_10_3390_systems12120547 crossref_primary_10_1016_j_ocecoaman_2023_106675 crossref_primary_10_1016_j_swevo_2022_101129 crossref_primary_10_3390_a14020045 crossref_primary_10_3390_axioms13040220 crossref_primary_10_1007_s40747_021_00598_1 crossref_primary_10_1016_j_tre_2024_103915 crossref_primary_10_3390_asi8030068 crossref_primary_10_3390_designs5040067 crossref_primary_10_1016_j_fss_2023_108539 crossref_primary_10_3390_systems12120560 crossref_primary_10_1007_s40815_020_01048_9 crossref_primary_10_3390_axioms13030200 crossref_primary_10_3390_ijerph18042096 crossref_primary_10_3390_f15112003 |
| Cites_doi | 10.1016/j.apm.2012.04.026 10.1057/s41278-016-0001-4 10.1371/journal.pone.0185001 10.1007/s00521-018-3492-3 10.1080/0305215X.2016.1190351 10.1007/s10589-011-9409-z 10.1016/j.cie.2019.106011 10.1016/B978-0-444-63578-5.50001-3 10.1142/S0218488596000226 10.3390/sym11010091 10.1016/S1366-5545(98)00017-9 10.1016/j.jhazmat.2012.05.028 10.1016/j.cor.2006.12.025 10.3182/20120523-3-RO-2023.00063 10.1016/j.compchemeng.2016.03.002 10.1109/CSCWD.2019.8791930 10.3390/math7080739 10.1016/j.fss.2010.04.010 10.1016/S0360-8352(97)00100-9 10.1007/BF03342738 10.1016/j.asoc.2014.08.005 10.1016/j.eswa.2019.06.023 10.1016/j.cor.2018.08.002 10.3155/1047-3289.58.8.1004 10.1002/net.20383 10.1287/trsc.2019.0912 10.1016/j.ecolind.2016.03.017 10.1109/AICI.2009.204 10.1007/978-3-319-49487-6_2 10.1016/S0191-2615(02)00074-7 10.1016/j.engappai.2018.04.022 10.1109/ACCESS.2020.2971027 10.1371/journal.pone.0192275 10.1016/j.omega.2018.06.004 10.1016/j.compind.2012.12.001 10.1023/A:1023447217758 10.1016/j.apm.2010.07.013 10.1016/j.cie.2015.08.004 10.1016/j.trb.2015.09.007 10.1007/s40815-015-0081-9 10.1016/j.cie.2018.03.041 10.1080/23249935.2018.1523249 10.1016/j.tre.2015.08.006 10.1080/00207543.2019.1620363 10.1007/s11067-019-09492-3 10.1016/0165-0114(95)00096-8 10.1016/0191-2607(91)90013-G 10.1016/j.cie.2014.05.008 10.1007/s10696-016-9267-1 10.1080/0305215X.2012.704029 10.1016/j.ejor.2012.03.010 10.1155/2015/406218 10.1016/j.dss.2020.113289 10.1007/s11067-018-9438-6 10.1016/j.ijpe.2010.06.007 10.1080/00207543.2013.865852 10.1080/16168658.2018.1517978 10.1016/j.jclepro.2019.119245 10.1016/j.tre.2011.06.001 10.1016/j.fss.2008.09.016 10.1016/j.eswa.2011.02.006 |
| ContentType | Journal Article |
| Copyright | Taiwan Fuzzy Systems Association 2020 Taiwan Fuzzy Systems Association 2020. |
| Copyright_xml | – notice: Taiwan Fuzzy Systems Association 2020 – notice: Taiwan Fuzzy Systems Association 2020. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s40815-020-00905-x |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-3211 |
| EndPage | 2148 |
| ExternalDocumentID | 10_1007_s40815_020_00905_x |
| GrantInformation_xml | – fundername: Project for Humanities and Social Sciences Research of Ministry of Education of China grantid: 19YJC630149 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2019BG006 funderid: http://dx.doi.org/10.13039/501100007129 – fundername: Shandong Provincial Higher Educational Social Science Program of China grantid: J18RA053 |
| GroupedDBID | -EM .4S .DC 0R~ 188 203 2UF 4.4 406 5GY 9RA A8Z AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFKRA AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AILAN AINHJ AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ARAPS ARCSS ATFKH AVXWI AXYYD BENPR BGLVJ BGNMA CCPQU CNMHZ CSCUP CVCKV DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GJIRD HCIFZ HG6 HRMNR I-F IKXTQ IWAJR IXD J-C J9A JBSCW JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J OK1 P2P PT4 PTHSS RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS TUXDW UG4 UOJIU UTJUX UZ4 UZXMN VFIZW Z88 ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c372t-ddf8164b5bb89fa1a2d53d5131f5793c7f6c81d2c101452937ae052c210148a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000553290600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1562-2479 |
| IngestDate | Wed Nov 05 04:03:33 EST 2025 Tue Nov 18 22:23:23 EST 2025 Sat Nov 29 05:19:49 EST 2025 Fri Feb 21 02:32:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Road–rail intermodal routing Fuzzy chance-constrained programming Fuzzy programming model Fuzzy expected value Soft time windows Simulation-based reliability Fuzzy ranking Capacity uncertainty Demand uncertainty |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-ddf8164b5bb89fa1a2d53d5131f5793c7f6c81d2c101452937ae052c210148a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4704-5578 |
| PQID | 2932386328 |
| PQPubID | 2043640 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2932386328 crossref_citationtrail_10_1007_s40815_020_00905_x crossref_primary_10_1007_s40815_020_00905_x springer_journals_10_1007_s40815_020_00905_x |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of fuzzy systems |
| PublicationTitleAbbrev | Int. J. Fuzzy Syst |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | SunYLiangXLiXZhangCA fuzzy programming method for modeling demand uncertainty in the capacitated road-rail multimodal routing problem with time windowsSymmetry2019111911423.90025 JiménezMRanking fuzzy numbers through the comparison of its expected intervalsInt. J. Uncertain. Fuzzin. Knowl. Based Syst.199640437938814143551232.03040 SawadogoMAnciauxDDanielROYReducing intermodal transportation impacts on society and environment by path selection: a multiobjective shortest path approachIFAC Proc. Vol.2012456505513 Yang, K., Wang, R., & Yang, L. Fuzzy reliability-oriented optimization for the road–rail intermodal transport system using tabu search algorithm. J. Intell. Fuzzy Syst., 1–17 TokcaerSÖzpeynirciÖA bi-objective multimodal transportation planning problem with an application to a petrochemical ethylene manufacturerMaritime Econ. Logist.20182017288 WangQZChenJMTsengMLLuanHMAliMHModelling green multimodal transport route performance with witness simulation softwareJ Clean. Prod.2020248119245 MocciaLCordeauJFLaporteGRopkeSValentiniMPModeling and solving a multimodal transportation problem with flexible-time and scheduled servicesNetworks2011571536827683111205.90053 ChenSMEvaluating weapon systems using fuzzy arithmetic operationsFuzzy Sets Syst.19967732652761415941 DemirEHrušovskýMJammerneggWVan WoenselTGreen intermodal freight transportation: bi-objective modelling and analysisInt. J. Prod. Res.2019571961626180 KunduPKarSMaitiMMulti-objective multi-item solid transportation problem in fuzzy environmentAppl. Math. Model.20133742028203830022971349.90095 PishvaeeMSRabbaniMTorabiSAA robust optimization approach to closed-loop supply chain network design under uncertaintyAppl. Math. Model.201135263764927184601205.90056 DuaASinhaDQuality of multimodal freight transportation: a systematic literature reviewWorld Rev. Int. Transport. Res.201982167194 WangRYangKYangLGaoZModeling and optimization of a road–rail intermodal transport system under uncertain informationEng. Appl. Artif. Intell.201872423436 ZhengYLiuBFuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithmAppl. Math. Comput.2006176267368322320581104.90030 HoogeboomMDullaertWLaiDVigoDEfficient neighborhood evaluations for the vehicle routing problem with multiple time windowsTransport. Sci.2020542299564 SunYGreen and reliable freight routing problem in the road-rail intermodal transportation network with uncertain parameters: a fuzzy goal programming approachJ Adv. Transport.20202020121 Zhu, H., & Zhang, J. (2009, November). A credibility-based fuzzy programming model for APP problem. In 2009 International Conference on Artificial Intelligence and Computational Intelligence (Vol. 1, pp. 455–459). IEEE ZahiriBTavakkoli-MoghaddamRPishvaeeMSA robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertaintyComput. Ind. Eng.201474139148 ResatHGTurkayMDesign and operation of intermodal transportation network in the Marmara region of TurkeyTransport. Res. E2015831633 MulaJPeidroDPolerRThe effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demandInt. J. Prod. Econ.201012811361431190.90299 TangJPanZFungRYLauHVehicle routing problem with fuzzy time windowsFuzzy Sets Syst.2009160568369526568931173.90328 Karoonsoontawong, A., Punyim, P., Nueangnitnaraporn, W., & Ratanavaraha, V. (2020). Multi-Trip Time-Dependent Vehicle Routing Problem with Soft Time Windows and Overtime Constraints. Networks and Spatial Economics, 1–50 Castillo, O. et al: Special Issue “Trends and Developments on Type-2 Fuzzy Sets and Systems” of International Journal of Fuzzy Systems. https://www.springer.com/journal/40815/updates/17750482. Accessed 20 Apr 2020 Mi, X., Mei, M., & Zheng, X. (2019, May). Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 512–516). IEEE China State Railway Group Company: http://hyfw.95306.cn/hyinfo/page/home-hyzx-index. Accessed 20 April 2020 FazayeliSEydiAKamalabadiINLocation–routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithmComput. Industr. Eng.2018119233246 PishvaeeMSTorabiSAA possibilistic programming approach for closed-loop supply chain network design under uncertaintyFuzzy Sets Syst.2010161202668268326736101230.90204 GovindanKPaamPAbtahiARA fuzzy multi-objective optimization model for sustainable reverse logistics network designEcol. Ind.201667753768 J-SharahiSKhalili-DamghaniKAbtahiARRashidi-KomijanAType-II fuzzy multi-product, multi-level, multi-period location-allocation, production-distribution problem in supply chains: modelling and optimisation approachFuzzy Inform. Eng.2018102260283 LiuPYangLWangLLiSA solid transportation problem with type-2 fuzzy variablesAppl. Soft Comput.201424543558 Grossmann, I. E., Apap, R. M., Calfa, B. A., Garcia-Herreros, P., & Zhang, Q. (2015). Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. In Computer Aided Chemical Engineering (Vol. 37, pp. 1–14). Elsevier RabbaniMHosseini-MokhallesunSAAOrdibazarAHFarrokhi-AslHA hybrid robust possibilistic approach for a sustainable supply chain location–allocation network designInt. J. Syst. Sci.2020716075 BastHRoute planning in transportation networksLect. Notes Comput. Sci.2016922019803609420 ZhangDHeRLiSWangZA multimodal logistics service network design with time windows and environmental concernsPLoS ONE2017129e0185001 DemirEBurgholzerWHrušovskýMArıkanEJammerneggWVan WoenselTA green intermodal service network design problem with travel time uncertaintyTransport. Res. B.201693789807 TianWCaoCA generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertaintyEng. Optimiz.20174934814983590814 GöçmenEErolRTransportation problems for intermodal networks: mathematical models, exact and heuristic algorithms, and machine learningExpert Syst. Appl.2019135374387 DaiZZhengXDesign of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming modelComput. Ind. Eng.201588444457 National Development and Reform Commission of China: http://jgjc.ndrc.gov.cn/Detail.aspx?TId=706&newsId=6894. Accessed 20 April 2020 CarisAMacharisCJanssensGKDecision support in intermodal transport: a new research agendaComput. Ind.2013642105112 ChangTSBest routes selection in international intermodal networksComput. Oper. Res.2008359287728911144.90322 ZhaoYLiuRZhangXWhiteingAA chance-constrained stochastic approach to intermodal container routing problemsPLoS ONE2018132e0192275 BaykasoğluASubulanKTaşanASDudaklıNA review of fleet planning problems in single and multimodal transportation systemsTransportmetrica A2019152631697 Sun, Y., & Lang, M. (2015). Modeling the multicommodity multimodal routing problem with schedule-based services and carbon dioxide emission costs. Mathematical Problems in Engineering, 2015 UddinMHuynhNReliable routing of road-rail intermodal freight under uncertaintyNetw. Spatial Econ.2019193929952 Ministry of Transport of China: http://cyfd.cnki.com.cn/Article/N2007030054000163.htm. Accessed 20 April 2020 AyarBYamanHAn intermodal multicommodity routing problem with scheduled servicesComput. Optimiz. Appl.201253113115329648381259.90007 SunYHrušovskýMZhangCLangMA time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestionComplexity201820181221398.90037 LuYLangMSunYLiSA fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approachesIEEE Access202082753227548 DalmanHGüzelNSivriMA fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertaintyInt. J. Fuzzy Syst.20161847167293530254 BoardmanBSMalstromEMButlerDPColeMHComputer assisted routing of intermodal shipmentsComput. Ind. Eng.1997331–2311314 ÖzceylanEPaksoyTInteractive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertaintyInt. J. Prod. Res.201452823632387 XuZElomriAPokharelSMutluFA model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windowsComput. Ind. Eng.2019137106011 MinHInternational intermodal choices via chance-constrained goal programmingTransport. Res. A1991256351362 IshfaqRSoxCRDesign of intermodal logistics networks with hub delaysEur. J. Oper. Res.2012220362964129115891253.90047 VermaMVerterVZuffereyNA bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materialsTransport. Res. E2012481132149 BontekoningYMMacharisCTripJJIs a new applied transportation research field emerging?-A review of intermodal rail-truck freight transport literatureTransport. Res. A2004381134 KuzmiczKAPeschEApproaches to empty container repositioning problems in the context of Eurasian intermodal transportationOmega201985194213 Guo, W., Atasoy, B., Beelaerts van Blokland, W., & Negenborn, R. R. (2020). Dynamic and Stochastic Shipment Matching Problem in Multimodal Transportation. Transport. Res. Rec., 0361198120905592 GrossmannIEApapRMCalfaBAGarcía-HerrerosPZhangQRecent advances in mathematical programming techniques for the optimization of process systems under uncertaintyComput. Chem. Eng.201691314 WinebrakeJJCorbettJJFalzaranoAHawkerJSKorfmacherKKethaSZiloraSAssessing energy, environmental, and economic tradeoffs in intermodal freight transportationJ. Air Waste Manag. Assoc.200858810041013 KhalilpourazariSPasandidehSHRGhodratnamaARobust possibilistic programming for multi-item EOQ model with defective supply batches: whale Optimization and Water Cycle AlgorithmsNeural Comput. Appl.2019311065876614 BierwirthCKirschsteinTMeiselFOn transport service selection H Dalman (905_CR57) 2016; 18 J Mula (905_CR45) 2010; 128 S J-Sharahi (905_CR47) 2018; 10 B Ayar (905_CR22) 2012; 53 905_CR67 Y Zheng (905_CR60) 2006; 176 905_CR66 HG Resat (905_CR4) 2015; 83 IE Grossmann (905_CR36) 2016; 91 E Özceylan (905_CR46) 2014; 52 905_CR68 Y Sun (905_CR42) 2018; 2018 905_CR29 SM Chen (905_CR58) 1996; 77 P Liu (905_CR44) 2014; 24 M Jiménez (905_CR59) 1996; 4 E Demir (905_CR51) 2016; 93 Y Sun (905_CR6) 2020; 2020 M Sawadogo (905_CR24) 2012; 45 MS Pishvaee (905_CR52) 2011; 35 905_CR64 P Kundu (905_CR43) 2013; 37 H Min (905_CR16) 1991; 25 MS Pishvaee (905_CR48) 2010; 161 Y Sun (905_CR40) 2019; 7 905_CR1 B Zahiri (905_CR71) 2014; 74 905_CR7 905_CR33 BS Boardman (905_CR18) 1997; 33 D Zhang (905_CR35) 2017; 12 YK Liu (905_CR56) 2003; 2 905_CR37 H Bast (905_CR9) 2016; 9220 905_CR72 YM Bontekoning (905_CR15) 2004; 38 A Dua (905_CR26) 2019; 8 M Hrušovský (905_CR39) 2018; 30 A Baykasoğlu (905_CR13) 2019; 15 E Göçmen (905_CR12) 2019; 135 M Uddin (905_CR38) 2019; 19 Z Xu (905_CR30) 2019; 137 JJ Winebrake (905_CR10) 2008; 58 K Govindan (905_CR61) 2016; 67 TS Chang (905_CR20) 2008; 35 Y Lu (905_CR41) 2020; 8 L Moccia (905_CR21) 2011; 57 E Demir (905_CR25) 2019; 57 M Rabbani (905_CR70) 2020; 7 Y Zhao (905_CR34) 2018; 13 A Caris (905_CR11) 2013; 64 M Hoogeboom (905_CR27) 2020; 54 J Tang (905_CR31) 2009; 160 Z Dai (905_CR63) 2015; 88 S Tokcaer (905_CR5) 2018; 20 S Khalilpourazari (905_CR69) 2019; 31 C Bierwirth (905_CR2) 2012; 5 B Vahdani (905_CR62) 2013; 45 JH Bookbinder (905_CR19) 1998; 34 MHF Zarandi (905_CR50) 2011; 38 W Tian (905_CR49) 2017; 49 Y Sun (905_CR32) 2019; 11 R Wang (905_CR53) 2018; 72 QZ Wang (905_CR14) 2020; 248 905_CR55 KA Kuzmicz (905_CR3) 2019; 85 Y Xie (905_CR65) 2012; 227 R Liu (905_CR28) 2019; 101 R Ishfaq (905_CR54) 2012; 220 C Barnhart (905_CR17) 1993; 14 S Fazayeli (905_CR8) 2018; 119 M Verma (905_CR23) 2012; 48 |
| References_xml | – reference: GöçmenEErolRTransportation problems for intermodal networks: mathematical models, exact and heuristic algorithms, and machine learningExpert Syst. Appl.2019135374387 – reference: HoogeboomMDullaertWLaiDVigoDEfficient neighborhood evaluations for the vehicle routing problem with multiple time windowsTransport. Sci.2020542299564 – reference: Castillo, O. et al: Special Issue “Trends and Developments on Type-2 Fuzzy Sets and Systems” of International Journal of Fuzzy Systems. https://www.springer.com/journal/40815/updates/17750482. Accessed 20 Apr 2020 – reference: SunYHrušovskýMZhangCLangMA time-dependent fuzzy programming approach for the green multimodal routing problem with rail service capacity uncertainty and road traffic congestionComplexity201820181221398.90037 – reference: Grossmann, I. E., Apap, R. M., Calfa, B. A., Garcia-Herreros, P., & Zhang, Q. (2015). Recent advances in mathematical programming techniques for the optimization of process systems under uncertainty. In Computer Aided Chemical Engineering (Vol. 37, pp. 1–14). Elsevier – reference: DemirEBurgholzerWHrušovskýMArıkanEJammerneggWVan WoenselTA green intermodal service network design problem with travel time uncertaintyTransport. Res. B.201693789807 – reference: BierwirthCKirschsteinTMeiselFOn transport service selection in intermodal rail/road distribution networksBusiness Res.201252198219 – reference: XuZElomriAPokharelSMutluFA model for capacitated green vehicle routing problem with the time-varying vehicle speed and soft time windowsComput. Ind. Eng.2019137106011 – reference: UddinMHuynhNReliable routing of road-rail intermodal freight under uncertaintyNetw. Spatial Econ.2019193929952 – reference: BastHRoute planning in transportation networksLect. Notes Comput. Sci.2016922019803609420 – reference: ZhangDHeRLiSWangZA multimodal logistics service network design with time windows and environmental concernsPLoS ONE2017129e0185001 – reference: TangJPanZFungRYLauHVehicle routing problem with fuzzy time windowsFuzzy Sets Syst.2009160568369526568931173.90328 – reference: MocciaLCordeauJFLaporteGRopkeSValentiniMPModeling and solving a multimodal transportation problem with flexible-time and scheduled servicesNetworks2011571536827683111205.90053 – reference: GrossmannIEApapRMCalfaBAGarcía-HerrerosPZhangQRecent advances in mathematical programming techniques for the optimization of process systems under uncertaintyComput. Chem. Eng.201691314 – reference: ZhengYLiuBFuzzy vehicle routing model with credibility measure and its hybrid intelligent algorithmAppl. Math. Comput.2006176267368322320581104.90030 – reference: KunduPKarSMaitiMMulti-objective multi-item solid transportation problem in fuzzy environmentAppl. Math. Model.20133742028203830022971349.90095 – reference: Sun, Y., & Lang, M. (2015). Modeling the multicommodity multimodal routing problem with schedule-based services and carbon dioxide emission costs. Mathematical Problems in Engineering, 2015 – reference: KuzmiczKAPeschEApproaches to empty container repositioning problems in the context of Eurasian intermodal transportationOmega201985194213 – reference: HrušovskýMDemirEJammerneggWVan WoenselTHybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertaintyFlexible Serv. Manuf. J.2018303486516 – reference: ZarandiMHFHemmatiADavariSThe multi-depot capacitated location–routing problem with fuzzy travel timesExpert Syst. Appl.20113881007510084 – reference: VermaMVerterVZuffereyNA bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materialsTransport. Res. E2012481132149 – reference: China State Railway Group Company: http://hyfw.95306.cn/hyinfo/page/home-hyzx-index. Accessed 20 April 2020 – reference: ChenSMEvaluating weapon systems using fuzzy arithmetic operationsFuzzy Sets Syst.19967732652761415941 – reference: Guo, W., Atasoy, B., Beelaerts van Blokland, W., & Negenborn, R. R. (2020). Dynamic and Stochastic Shipment Matching Problem in Multimodal Transportation. Transport. Res. Rec., 0361198120905592 – reference: BarnhartCRatliffHDModeling intermodal routingJ. Busin. Log.1993141205 – reference: CarisAMacharisCJanssensGKDecision support in intermodal transport: a new research agendaComput. Ind.2013642105112 – reference: LuYLangMSunYLiSA fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approachesIEEE Access202082753227548 – reference: BoardmanBSMalstromEMButlerDPColeMHComputer assisted routing of intermodal shipmentsComput. Ind. Eng.1997331–2311314 – reference: VahdaniBTavakkoli-MoghaddamRJolaiFBaboliAReliable design of a closed loop supply chain network under uncertainty: an interval fuzzy possibilistic chance-constrained modelEng. Optimiz.20134567457653061611 – reference: Mi, X., Mei, M., & Zheng, X. (2019, May). Study on Optimal Routes of Multimodal Transport under Time Window Constraints. In: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 512–516). IEEE – reference: TokcaerSÖzpeynirciÖA bi-objective multimodal transportation planning problem with an application to a petrochemical ethylene manufacturerMaritime Econ. Logist.20182017288 – reference: TianWCaoCA generalized interval fuzzy mixed integer programming model for a multimodal transportation problem under uncertaintyEng. Optimiz.20174934814983590814 – reference: Zhu, H., & Zhang, J. (2009, November). A credibility-based fuzzy programming model for APP problem. In 2009 International Conference on Artificial Intelligence and Computational Intelligence (Vol. 1, pp. 455–459). IEEE – reference: BookbinderJHFoxNSIntermodal routing of Canada-Mexico shipments under NAFTATransport Res. Part E1998344289303 – reference: ÖzceylanEPaksoyTInteractive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertaintyInt. J. Prod. Res.201452823632387 – reference: ZhaoYLiuRZhangXWhiteingAA chance-constrained stochastic approach to intermodal container routing problemsPLoS ONE2018132e0192275 – reference: AyarBYamanHAn intermodal multicommodity routing problem with scheduled servicesComput. Optimiz. Appl.201253113115329648381259.90007 – reference: BaykasoğluASubulanKTaşanASDudaklıNA review of fleet planning problems in single and multimodal transportation systemsTransportmetrica A2019152631697 – reference: ChangTSBest routes selection in international intermodal networksComput. Oper. Res.2008359287728911144.90322 – reference: DuaASinhaDQuality of multimodal freight transportation: a systematic literature reviewWorld Rev. Int. Transport. Res.201982167194 – reference: LiuPYangLWangLLiSA solid transportation problem with type-2 fuzzy variablesAppl. Soft Comput.201424543558 – reference: SunYGreen and reliable freight routing problem in the road-rail intermodal transportation network with uncertain parameters: a fuzzy goal programming approachJ Adv. Transport.20202020121 – reference: RabbaniMHosseini-MokhallesunSAAOrdibazarAHFarrokhi-AslHA hybrid robust possibilistic approach for a sustainable supply chain location–allocation network designInt. J. Syst. Sci.2020716075 – reference: BontekoningYMMacharisCTripJJIs a new applied transportation research field emerging?-A review of intermodal rail-truck freight transport literatureTransport. Res. A2004381134 – reference: PishvaeeMSTorabiSAA possibilistic programming approach for closed-loop supply chain network design under uncertaintyFuzzy Sets Syst.2010161202668268326736101230.90204 – reference: KhalilpourazariSPasandidehSHRGhodratnamaARobust possibilistic programming for multi-item EOQ model with defective supply batches: whale Optimization and Water Cycle AlgorithmsNeural Comput. Appl.2019311065876614 – reference: DalmanHGüzelNSivriMA fuzzy set-based approach to multi-objective multi-item solid transportation problem under uncertaintyInt. J. Fuzzy Syst.20161847167293530254 – reference: DemirEHrušovskýMJammerneggWVan WoenselTGreen intermodal freight transportation: bi-objective modelling and analysisInt. J. Prod. Res.2019571961626180 – reference: ResatHGTurkayMDesign and operation of intermodal transportation network in the Marmara region of TurkeyTransport. Res. E2015831633 – reference: ZahiriBTavakkoli-MoghaddamRPishvaeeMSA robust possibilistic programming approach to multi-period location–allocation of organ transplant centers under uncertaintyComput. Ind. Eng.201474139148 – reference: GovindanKPaamPAbtahiARA fuzzy multi-objective optimization model for sustainable reverse logistics network designEcol. Ind.201667753768 – reference: WangQZChenJMTsengMLLuanHMAliMHModelling green multimodal transport route performance with witness simulation softwareJ Clean. Prod.2020248119245 – reference: SunYLiXFuzzy programming approaches for modeling a customer-centred freight routing problem in the road-rail intermodal hub-and-spoke network with fuzzy soft time windows and multiple sources of time uncertaintyMathematics201978739 – reference: J-SharahiSKhalili-DamghaniKAbtahiARRashidi-KomijanAType-II fuzzy multi-product, multi-level, multi-period location-allocation, production-distribution problem in supply chains: modelling and optimisation approachFuzzy Inform. Eng.2018102260283 – reference: SawadogoMAnciauxDDanielROYReducing intermodal transportation impacts on society and environment by path selection: a multiobjective shortest path approachIFAC Proc. Vol.2012456505513 – reference: PishvaeeMSRabbaniMTorabiSAA robust optimization approach to closed-loop supply chain network design under uncertaintyAppl. Math. Model.201135263764927184601205.90056 – reference: Yang, K., Wang, R., & Yang, L. Fuzzy reliability-oriented optimization for the road–rail intermodal transport system using tabu search algorithm. J. Intell. Fuzzy Syst., 1–17 – reference: FazayeliSEydiAKamalabadiINLocation–routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithmComput. Industr. Eng.2018119233246 – reference: Ministry of Transport of China: http://cyfd.cnki.com.cn/Article/N2007030054000163.htm. Accessed 20 April 2020 – reference: SunYLiangXLiXZhangCA fuzzy programming method for modeling demand uncertainty in the capacitated road-rail multimodal routing problem with time windowsSymmetry2019111911423.90025 – reference: Karoonsoontawong, A., Punyim, P., Nueangnitnaraporn, W., & Ratanavaraha, V. (2020). Multi-Trip Time-Dependent Vehicle Routing Problem with Soft Time Windows and Overtime Constraints. Networks and Spatial Economics, 1–50 – reference: IshfaqRSoxCRDesign of intermodal logistics networks with hub delaysEur. J. Oper. Res.2012220362964129115891253.90047 – reference: LiuRTaoYXieXAn adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and synchronized visitsComput. Oper. Res.2019101250262386406906988108 – reference: National Development and Reform Commission of China: http://jgjc.ndrc.gov.cn/Detail.aspx?TId=706&newsId=6894. Accessed 20 April 2020 – reference: WangRYangKYangLGaoZModeling and optimization of a road–rail intermodal transport system under uncertain informationEng. Appl. Artif. Intell.201872423436 – reference: JiménezMRanking fuzzy numbers through the comparison of its expected intervalsInt. J. Uncertain. Fuzzin. Knowl. Based Syst.199640437938814143551232.03040 – reference: MulaJPeidroDPolerRThe effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demandInt. J. Prod. Econ.201012811361431190.90299 – reference: DaiZZhengXDesign of close-loop supply chain network under uncertainty using hybrid genetic algorithm: a fuzzy and chance-constrained programming modelComput. Ind. Eng.201588444457 – reference: LiuYKLiuBFuzzy random variables: a scalar expected value operatorFuzzy Optim. Decis. Making20032214316019993031436.60009 – reference: MinHInternational intermodal choices via chance-constrained goal programmingTransport. Res. A1991256351362 – reference: XieYLuWWangWQuadrifoglioLA multimodal location and routing model for hazardous materials transportationJ. Hazard. Mater.2012227135141 – reference: WinebrakeJJCorbettJJFalzaranoAHawkerJSKorfmacherKKethaSZiloraSAssessing energy, environmental, and economic tradeoffs in intermodal freight transportationJ. Air Waste Manag. Assoc.200858810041013 – volume: 37 start-page: 2028 issue: 4 year: 2013 ident: 905_CR43 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.04.026 – volume: 20 start-page: 72 issue: 1 year: 2018 ident: 905_CR5 publication-title: Maritime Econ. Logist. doi: 10.1057/s41278-016-0001-4 – volume: 12 start-page: e0185001 issue: 9 year: 2017 ident: 905_CR35 publication-title: PLoS ONE doi: 10.1371/journal.pone.0185001 – volume: 2018 start-page: 1 year: 2018 ident: 905_CR42 publication-title: Complexity – volume: 31 start-page: 6587 issue: 10 year: 2019 ident: 905_CR69 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3492-3 – volume: 49 start-page: 481 issue: 3 year: 2017 ident: 905_CR49 publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2016.1190351 – ident: 905_CR67 – volume: 53 start-page: 131 issue: 1 year: 2012 ident: 905_CR22 publication-title: Comput. Optimiz. Appl. doi: 10.1007/s10589-011-9409-z – volume: 137 start-page: 106011 year: 2019 ident: 905_CR30 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.106011 – volume: 7 start-page: 60 issue: 1 year: 2020 ident: 905_CR70 publication-title: Int. J. Syst. Sci. – ident: 905_CR37 doi: 10.1016/B978-0-444-63578-5.50001-3 – volume: 4 start-page: 379 issue: 04 year: 1996 ident: 905_CR59 publication-title: Int. J. Uncertain. Fuzzin. Knowl. Based Syst. doi: 10.1142/S0218488596000226 – volume: 11 start-page: 91 issue: 1 year: 2019 ident: 905_CR32 publication-title: Symmetry doi: 10.3390/sym11010091 – volume: 34 start-page: 289 issue: 4 year: 1998 ident: 905_CR19 publication-title: Transport Res. Part E doi: 10.1016/S1366-5545(98)00017-9 – volume: 227 start-page: 135 year: 2012 ident: 905_CR65 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.05.028 – volume: 35 start-page: 2877 issue: 9 year: 2008 ident: 905_CR20 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2006.12.025 – volume: 45 start-page: 505 issue: 6 year: 2012 ident: 905_CR24 publication-title: IFAC Proc. Vol. doi: 10.3182/20120523-3-RO-2023.00063 – volume: 91 start-page: 3 year: 2016 ident: 905_CR36 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.03.002 – ident: 905_CR33 doi: 10.1109/CSCWD.2019.8791930 – volume: 7 start-page: 739 issue: 8 year: 2019 ident: 905_CR40 publication-title: Mathematics doi: 10.3390/math7080739 – volume: 161 start-page: 2668 issue: 20 year: 2010 ident: 905_CR48 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2010.04.010 – volume: 33 start-page: 311 issue: 1–2 year: 1997 ident: 905_CR18 publication-title: Comput. Ind. Eng. doi: 10.1016/S0360-8352(97)00100-9 – ident: 905_CR72 – volume: 5 start-page: 198 issue: 2 year: 2012 ident: 905_CR2 publication-title: Business Res. doi: 10.1007/BF03342738 – volume: 8 start-page: 167 issue: 2 year: 2019 ident: 905_CR26 publication-title: World Rev. Int. Transport. Res. – volume: 176 start-page: 673 issue: 2 year: 2006 ident: 905_CR60 publication-title: Appl. Math. Comput. – ident: 905_CR68 – volume: 24 start-page: 543 year: 2014 ident: 905_CR44 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.005 – volume: 135 start-page: 374 year: 2019 ident: 905_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.06.023 – volume: 101 start-page: 250 year: 2019 ident: 905_CR28 publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2018.08.002 – volume: 2020 start-page: 1 year: 2020 ident: 905_CR6 publication-title: J Adv. Transport. – volume: 58 start-page: 1004 issue: 8 year: 2008 ident: 905_CR10 publication-title: J. Air Waste Manag. Assoc. doi: 10.3155/1047-3289.58.8.1004 – volume: 57 start-page: 53 issue: 1 year: 2011 ident: 905_CR21 publication-title: Networks doi: 10.1002/net.20383 – volume: 54 start-page: 299 issue: 2 year: 2020 ident: 905_CR27 publication-title: Transport. Sci. doi: 10.1287/trsc.2019.0912 – volume: 67 start-page: 753 year: 2016 ident: 905_CR61 publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2016.03.017 – ident: 905_CR64 doi: 10.1109/AICI.2009.204 – volume: 9220 start-page: 19 year: 2016 ident: 905_CR9 publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-49487-6_2 – volume: 38 start-page: 1 issue: 1 year: 2004 ident: 905_CR15 publication-title: Transport. Res. A doi: 10.1016/S0191-2615(02)00074-7 – volume: 72 start-page: 423 year: 2018 ident: 905_CR53 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.022 – volume: 8 start-page: 27532 year: 2020 ident: 905_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971027 – volume: 13 start-page: e0192275 issue: 2 year: 2018 ident: 905_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192275 – volume: 85 start-page: 194 year: 2019 ident: 905_CR3 publication-title: Omega doi: 10.1016/j.omega.2018.06.004 – volume: 64 start-page: 105 issue: 2 year: 2013 ident: 905_CR11 publication-title: Comput. Ind. doi: 10.1016/j.compind.2012.12.001 – volume: 2 start-page: 143 issue: 2 year: 2003 ident: 905_CR56 publication-title: Fuzzy Optim. Decis. Making doi: 10.1023/A:1023447217758 – volume: 35 start-page: 637 issue: 2 year: 2011 ident: 905_CR52 publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.07.013 – volume: 88 start-page: 444 year: 2015 ident: 905_CR63 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.08.004 – volume: 93 start-page: 789 year: 2016 ident: 905_CR51 publication-title: Transport. Res. B. doi: 10.1016/j.trb.2015.09.007 – volume: 18 start-page: 716 issue: 4 year: 2016 ident: 905_CR57 publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-015-0081-9 – volume: 119 start-page: 233 year: 2018 ident: 905_CR8 publication-title: Comput. Industr. Eng. doi: 10.1016/j.cie.2018.03.041 – volume: 15 start-page: 631 issue: 2 year: 2019 ident: 905_CR13 publication-title: Transportmetrica A doi: 10.1080/23249935.2018.1523249 – volume: 83 start-page: 16 year: 2015 ident: 905_CR4 publication-title: Transport. Res. E doi: 10.1016/j.tre.2015.08.006 – volume: 57 start-page: 6162 issue: 19 year: 2019 ident: 905_CR25 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1620363 – volume: 14 start-page: 205 issue: 1 year: 1993 ident: 905_CR17 publication-title: J. Busin. Log. – ident: 905_CR1 – ident: 905_CR29 doi: 10.1007/s11067-019-09492-3 – volume: 77 start-page: 265 issue: 3 year: 1996 ident: 905_CR58 publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(95)00096-8 – ident: 905_CR66 – volume: 25 start-page: 351 issue: 6 year: 1991 ident: 905_CR16 publication-title: Transport. Res. A doi: 10.1016/0191-2607(91)90013-G – volume: 74 start-page: 139 year: 2014 ident: 905_CR71 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2014.05.008 – volume: 30 start-page: 486 issue: 3 year: 2018 ident: 905_CR39 publication-title: Flexible Serv. Manuf. J. doi: 10.1007/s10696-016-9267-1 – volume: 45 start-page: 745 issue: 6 year: 2013 ident: 905_CR62 publication-title: Eng. Optimiz. doi: 10.1080/0305215X.2012.704029 – volume: 220 start-page: 629 issue: 3 year: 2012 ident: 905_CR54 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.03.010 – ident: 905_CR55 doi: 10.1155/2015/406218 – ident: 905_CR7 doi: 10.1016/j.dss.2020.113289 – volume: 19 start-page: 929 issue: 3 year: 2019 ident: 905_CR38 publication-title: Netw. Spatial Econ. doi: 10.1007/s11067-018-9438-6 – volume: 128 start-page: 136 issue: 1 year: 2010 ident: 905_CR45 publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2010.06.007 – volume: 52 start-page: 2363 issue: 8 year: 2014 ident: 905_CR46 publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2013.865852 – volume: 10 start-page: 260 issue: 2 year: 2018 ident: 905_CR47 publication-title: Fuzzy Inform. Eng. doi: 10.1080/16168658.2018.1517978 – volume: 248 start-page: 119245 year: 2020 ident: 905_CR14 publication-title: J Clean. Prod. doi: 10.1016/j.jclepro.2019.119245 – volume: 48 start-page: 132 issue: 1 year: 2012 ident: 905_CR23 publication-title: Transport. Res. E doi: 10.1016/j.tre.2011.06.001 – volume: 160 start-page: 683 issue: 5 year: 2009 ident: 905_CR31 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2008.09.016 – volume: 38 start-page: 10075 issue: 8 year: 2011 ident: 905_CR50 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.006 |
| SSID | ssib031263563 ssib053833614 ssib026410675 ssj0002147029 ssib008679421 |
| Score | 2.3849385 |
| Snippet | In this study, a freight routing problem considering both soft delivery time windows and demand and capacity uncertainty in a road–rail intermodal... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2119 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Costs Customer services Demand Engineering Fuzzy logic Fuzzy set theory Fuzzy sets Integer programming Intermodal Intermodal transportation Management Science Mixed integer Nonlinear programming North American Free Trade Agreement Operations Research Optimization Parameters Reliability analysis Roads & highways Routing Schedules Simulation Transportation services Transportation systems Windows (intervals) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5BywEO_CMCBc2BG6yId-3u-oTa0ohTFKVF9Gatd9dSpMQusfuTnvoOPApvxJMws9kkBYleOOQQ2bt2MrPzjdcz38fYO-9I_EQ7npdZyhGvU557k3OvTOpVmaTK6CA2oYZDfXKSj-KGWxvLKlcxMQRq11jaI_-IsITosiuF_nT6nZNqFL1djRIad9k2MZWhn2_vHw5H47VHEZ3cjU5ORH-iTFt7sEyIi2VDQIWrX8oIWCGWk4pPP0id4XOO4CJVeey8Cf13KQIqNThTc3bez_jln-i2SVn_essawGvw6H9_9mP2MKatsLf0syfsjq-fsgc3yAyfsZ-Ds6urBexFknLfgqkdHE1mUSCM7yNgOqAa6CU3-AJIiI3a4aFr4KiZnnswMG6M-3X9Y2wmUwjblbPG4ZWpconOHC0FcID2j3FM1cFnnALX4wKomwW-TWrXXLSAIFPjoRndA30OMCmwdE0z9_AVPT1UQjxnx4PD44MvPEpCcCuV6LhzlcYHvDIrS51XJjHCZdJliUyqDCONVdWuxQxc2CBBjH-eMr6fCSvouzbyBduqm9q_pJKukmQgcyU1pmBJWuqMRvYNpZDKlD2WrCxZ2EiXTqod02JN9BysX6D1i2D94rLH3q_HnC7JQm49e2dl8iIGjrbY2LvHPqycZnP437O9un221-y-ID8NZYg7bKubn_k37J497ybt_G1cNr8BpHYYcA priority: 102 providerName: ProQuest |
| Title | Fuzzy Approaches and Simulation-Based Reliability Modeling to Solve a Road–Rail Intermodal Routing Problem with Soft Delivery Time Windows When Demand and Capacity are Uncertain |
| URI | https://link.springer.com/article/10.1007/s40815-020-00905-x https://www.proquest.com/docview/2932386328 |
| Volume | 22 |
| WOSCitedRecordID | wos000553290600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2199-3211 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: P5Z dateStart: 20150301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2199-3211 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: K7- dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2199-3211 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: M7S dateStart: 20150301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2199-3211 dateEnd: 20241214 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: BENPR dateStart: 20150301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature Link Contemporary 1997-Present customDbUrl: eissn: 2199-3211 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002147029 issn: 1562-2479 databaseCode: RSV dateStart: 20150301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datswFBZdu4v1Yu3-aLo26GJ3myCWrUq-7F8oDEJIuq3sxsiWDIHEHrH7k171HfYoe6M9yc5RZKcbXWG7sMFYsmR0pO_IPuf7CHlnDYqfKMPiVEQM8DpisdUxs1JHVqZBJLVyYhNyMFAXF_HQJ4VVTbR780vSrdRtslsE6IXZxJgJHfcEA89xQyDbDO7Rx59bK0IKuXvZm4D4SJPWWm0YIP_KinQKZnwYepBy6zcq9_ScvBnsbTjjkYx9ts3D3fgd0VZu6h9_Vh1g9bf-71W3yXPvoNLDpUW9IGu2eEk279EWviI_-pe3twt66OnIbUV1Yeh4MvNSYOwIoNFQjHZesoAvKEquYeI7rUs6LqdXlmo6KrX5efd9pCdT6j5MzkoDLWOMEpYcLqVuKH4phjp5TU_gETDzFhTzVuiXSWHK64oCnBRwa4Z9wOMY4D_DNvXc0k9g0y7m4TU575-eH58xL_7AslDymhmTK9jKpSJNVZzrQHMjQiOCMMgFrCmZzA8y8LV55sSGwWmR2vYEzzheKx2-IetFWdgdDN5KUfARDEWBsxVEqRJYs6fRWZQ67ZCgGb8k88ToqM8xTVpKZzceCYxH4sYjuemQ922db0takEdL7zVmkfglokqgy-AuHYRcdciHxgxWt__-tN1_K_6WPONoSS4AcY-s1_NLu0-eZlf1pJp3ycbR6WA46pInHyXrYuTrGM5D8bXrJtUv1zMSLg |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKQYIe-EcsFPABTmB1Yyd1ckCotKxabVlV7SJ6sxzbkVbaTdpN-rM98Q48ByfeiCdhxkl2CxK99cAhhyixHSXfeMbOzPcR8tpZFD-JLUvSKGTgr0OWOJ0wJ3XoZBqEUsdebEIOBvHhYbK3RH60tTCYVtnOiX6itoXBPfI1cEvgXdYFjz8cHTNUjcK_q62ERg2LvpudwZKtfL-zBd_3Dee9T8PNbdaoCjAjJK-YtVkMa4Q0StM4yXSguY2EjQIRZBGA1chs3UAQx41XsYVhpXbdiBuO57EW0O0NcjOEZ0GD6ks2hy9y110qG4VQA_nZ5uYiAiR-WbBdwVQjROMdveNAyaCu11WDRRVnPJRJU-bji_1C8N5YTY2V4Ek3Yud_utJFfPzXL13vKXv3_rN3fJ_cbUJyulHb0AOy5PKHZOUSUeMj8rN3cnExoxsNAbsrqc4tPRhNGvEz9hGCAUsxv7vmPZ9RFJnDUn9aFfSgGJ86qul-oe2vb9_39WhM_VbspLAwMmZl4Z17tbgPxb1xaJNVdAu6gLlmRrFSh34d5bY4Kyk40BwuTfAZ8NiEgMfgmHrq6BewYp_l8ZgMr-OlPSHLeZG7p5iulqLEZSJFDOFlEKZxhC27GsNjqdMOCVrgKNNQwaMiyVjNSaw92BSATXmwqfMOeTtvc1QToVx592qLMNVMiqVawKtD3rUYXVz-d2_Pru7tFbm9Pfy8q3Z3Bv3n5A5HE_HplqtkuZqeuBfkljmtRuX0pbdXStQ1Y_c3oxpw8g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF5VpUJwgPInAm2ZAzdYNd61u-tjaRu1AkVRUqA3a-1dS5ESu0rcQnriHXgU3ognYWbtOAEBEuLgg-X9s3Z2Z9ae7_sYe-ksiZ9oy-M0Cjn665DHzsTcKRM6lQahMtqLTah-X19cxIM1FL_Pdl_-kqwxDcTSVFT7lzbfb4FvIXoyQhYTKjruRhyjyFshnmQoqWs4-tBaFNHJrSE50fsTZVprwTIgLpYVARWufikbh-X3clLx6XqpMzznCC5CFTfIm98P42fvtgpZf_nL6p1X7_7_v_Y2u9cErnBYW9oDtuGKh-zuGp3hI_atd3Vzs4DDhqbczcEUFkbjaSMRxt-gy7RAWdA1O_gCSIqNAPFQlTAqJ9cODAxLY79_-To04wn4D5bT0mLPlLtEJQe1BA7QF2Ssk1dwjE3gilwA4Vng47iw5ac5oJsp8NGUxkDXEYYFGfVpZg7eo637XIjH7Lx3cn50yhtRCJ5JJSpuba7xiJdGaarj3ARG2EjaKJBBHuFek6n8IMMYXGRehBiDGWVcNxKZoHtt5BO2WZSFe0pJXSkJQcZKagzCgjDVEdXsGgoilUk7LFjOZZI1hOmk2zFJWqpnPx8Jzkfi5yP53GGv2jqXNV3IX0vvLE0kabaOeYJDxjDqQArdYa-XJrF6_OfWnv1b8Rfs9uC4l7w76799zu4IMiqfo7jDNqvZldtlW9l1NZ7P9vyK-gFnfBmU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Approaches+and+Simulation-Based+Reliability+Modeling+to+Solve+a+Road%E2%80%93Rail+Intermodal+Routing+Problem+with+Soft+Delivery+Time+Windows+When+Demand+and+Capacity+are+Uncertain&rft.jtitle=International+journal+of+fuzzy+systems&rft.au=Sun%2C+Yan&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1562-2479&rft.eissn=2199-3211&rft.volume=22&rft.issue=7&rft.spage=2119&rft.epage=2148&rft_id=info:doi/10.1007%2Fs40815-020-00905-x&rft.externalDocID=10_1007_s40815_020_00905_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1562-2479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1562-2479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1562-2479&client=summon |