The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems

•Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water research (Oxford) Ročník 202; s. 117428
Hlavní autoři: Li, Changchao, Wang, Lifei, Ji, Shuping, Chang, Mengjie, Wang, Longfei, Gan, Yandong, Liu, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2021
Témata:
ISSN:0043-1354, 1879-2448, 1879-2448
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisphere microbial community.•The plastisphere plays a diverse role in microbial networks in different ecosystems. Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3−, NO2−, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems. [Display omitted]
AbstractList Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO₃⁻, NO₂⁻, and NH₄⁺), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems.
Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3-, NO2-, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem-plastisphere-is unique and exerts different effects in freshwater and seawater ecosystems.Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3-, NO2-, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem-plastisphere-is unique and exerts different effects in freshwater and seawater ecosystems.
•Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were explored.•The plastisphere could cause different ecological impacts in different ecosystems.•Niche-based processes govern the assembly of the plastisphere microbial community.•The plastisphere plays a diverse role in microbial networks in different ecosystems. Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition, functions, assembly processes, and interaction networks, needs to be understood. Here, we collected microplastics and their surrounding water samples in freshwater and seawater ecosystems. The bacterial and fungal communities of the plastisphere and the aquatic environment were studied based on 16S and internal transcribed spacer (ITS) high-throughput sequencing. We found that the plastisphere had a distinct microbial community and recruited a noteworthy proportion of unique species compared to the aquatic environment community, potentially altering ecosystem microbial community and causing microbial invasion. Using a random-forest machine-learning model, we identified a group of biomarkers that could best distinguish the plastisphere from the aquatic environment. Significant differences exist in microbial functions between the plastisphere and the aquatic environment, including functions of pathogenicity, compound degradation, as well as functions related to the cycling of carbon, nitrogen, and sulfur. And these functional differences were expressed differently in freshwater and seawater ecosystems. The oxidation-reduction potential, salinity, the concentrations of nitrogen-related ions (NO3−, NO2−, and NH4+), and the concentration of dissolved organic carbon in the surrounding environment drive the variation of the plastisphere. But environmental physicochemical properties explain less of the microbial community variation in the plastisphere than that in the aquatic environment. Niche-based processes govern the assembly of the plastisphere community, while neutral-based processes dominate the community assembly of the aquatic environment. Furthermore, compared to the aquatic environment, the plastisphere has a network of less complexity, more modules, higher modularity, and more competitive links in freshwater ecosystems, but the pattern is reversed in seawater ecosystems. Altogether, the microbial ecology of the new anthropogenic ecosystem—plastisphere—is unique and exerts different effects in freshwater and seawater ecosystems. [Display omitted]
ArticleNumber 117428
Author Gan, Yandong
Wang, Longfei
Liu, Jian
Li, Changchao
Ji, Shuping
Chang, Mengjie
Wang, Lifei
Author_xml – sequence: 1
  givenname: Changchao
  surname: Li
  fullname: Li, Changchao
  organization: Environment Research Institute, Shandong University, Qingdao 266237, China
– sequence: 2
  givenname: Lifei
  surname: Wang
  fullname: Wang, Lifei
  organization: Environment Research Institute, Shandong University, Qingdao 266237, China
– sequence: 3
  givenname: Shuping
  surname: Ji
  fullname: Ji, Shuping
  organization: Environment Research Institute, Shandong University, Qingdao 266237, China
– sequence: 4
  givenname: Mengjie
  surname: Chang
  fullname: Chang, Mengjie
  organization: Environment Research Institute, Shandong University, Qingdao 266237, China
– sequence: 5
  givenname: Longfei
  surname: Wang
  fullname: Wang, Longfei
  organization: College of Environment, Hohai University, Nanjing 210098, China
– sequence: 6
  givenname: Yandong
  surname: Gan
  fullname: Gan, Yandong
  organization: School of Life Sciences, Qufu Normal University, Qufu 273165, China
– sequence: 7
  givenname: Jian
  orcidid: 0000-0003-1920-2641
  surname: Liu
  fullname: Liu, Jian
  email: ecology@sdu.edu.cn
  organization: Environment Research Institute, Shandong University, Qingdao 266237, China
BookMark eNqFUU1v1DAQtVArsW35Bxxy5EAW24njpAckVPElFfXSnq2JM2G9JHbweKn2yD_H23DiQE8z43nvefTeBTvzwSNjrwXfCi6ad_vtI6SItJVciq0QupbtC7YRre5KWdftGdtwXlelqFT9kl0Q7TnnUlbdhv2-32GBNkzh-7EIY5HyuExAydGyw4jXxTdnY-gdTIUN8xLIJRf822I8eLt2QIRzPx1z54fCY3oM8Ufh_JPWmM_a5eswPm0JYR3yl3SkhDNdsfMRJsJXf-sle_j08f7mS3l79_nrzYfb0lZapnJQna0UWKUVCI3VOErRSz1qiwJkLTVAa0G1HbcSuvzao1C6HSxwVfcdVJfszaq7xPDzgJTM7MjiNIHHcCAjm6pRQnWSPw9VSgneNM0Jer1Cs0lEEUdjXYKTMSmCm4zg5hSR2Zs1InOKyKwRZXL9D3mJboZ4fI72fqVhtuuXw2jIOvQWBxfRJjME93-BPyiFsi4
CitedBy_id crossref_primary_10_1016_j_jhazmat_2024_135192
crossref_primary_10_1016_j_molliq_2023_123637
crossref_primary_10_1016_j_scitotenv_2024_176576
crossref_primary_10_1016_j_jhazmat_2025_139391
crossref_primary_10_1080_10643389_2025_2560435
crossref_primary_10_1016_j_scitotenv_2023_163665
crossref_primary_10_1016_j_envint_2024_108809
crossref_primary_10_1016_j_jhazmat_2024_134783
crossref_primary_10_1016_j_scitotenv_2022_156179
crossref_primary_10_1016_j_watres_2023_120574
crossref_primary_10_1093_ismeco_ycae056
crossref_primary_10_3389_fmicb_2023_1290441
crossref_primary_10_1016_j_jhazmat_2025_138078
crossref_primary_10_1016_j_jece_2023_110447
crossref_primary_10_1016_j_jhazmat_2024_135867
crossref_primary_10_1016_j_jhazmat_2024_135620
crossref_primary_10_3389_fmicb_2022_888343
crossref_primary_10_1016_j_scitotenv_2022_156068
crossref_primary_10_1016_j_jhazmat_2025_138755
crossref_primary_10_1016_j_apsoil_2025_106294
crossref_primary_10_1038_s43705_023_00275_z
crossref_primary_10_1016_j_jhazmat_2023_131208
crossref_primary_10_1016_j_marpolbul_2023_115402
crossref_primary_10_1016_j_scitotenv_2024_175226
crossref_primary_10_1016_j_jhazmat_2025_138641
crossref_primary_10_1016_j_jhazmat_2023_133152
crossref_primary_10_1016_j_oneear_2025_101446
crossref_primary_10_1016_j_cbpc_2025_110333
crossref_primary_10_1016_j_enceco_2024_10_010
crossref_primary_10_1016_j_trac_2024_117996
crossref_primary_10_1021_acs_est_5c06538
crossref_primary_10_1016_j_fuel_2022_126917
crossref_primary_10_3390_microorganisms12122547
crossref_primary_10_1016_j_jhazmat_2022_129737
crossref_primary_10_1016_j_envres_2025_121676
crossref_primary_10_1016_j_envpol_2024_124603
crossref_primary_10_1016_j_scitotenv_2023_165807
crossref_primary_10_1016_j_catena_2024_108634
crossref_primary_10_1016_j_jhazmat_2023_133166
crossref_primary_10_1016_j_jhazmat_2024_135763
crossref_primary_10_1016_j_jwpe_2023_103669
crossref_primary_10_1016_j_jhazmat_2025_139868
crossref_primary_10_1016_j_jhazmat_2022_130714
crossref_primary_10_1016_j_apsoil_2024_105287
crossref_primary_10_1016_j_jece_2025_117700
crossref_primary_10_1016_j_envint_2025_109309
crossref_primary_10_1016_j_ecolind_2024_112452
crossref_primary_10_1016_j_jhazmat_2022_129700
crossref_primary_10_1007_s11368_024_03845_3
crossref_primary_10_1016_j_cell_2024_12_036
crossref_primary_10_1016_j_envres_2024_118156
crossref_primary_10_1016_j_geoderma_2022_116311
crossref_primary_10_1016_j_soilbio_2024_109425
crossref_primary_10_1016_j_psep_2025_107117
crossref_primary_10_3389_fmicb_2022_1056147
crossref_primary_10_1016_j_envpol_2022_119385
crossref_primary_10_3390_su16052163
crossref_primary_10_1016_j_scitotenv_2022_153488
crossref_primary_10_1016_j_cej_2023_147756
crossref_primary_10_1016_j_jenvman_2023_118710
crossref_primary_10_1016_j_jhazmat_2023_131080
crossref_primary_10_1016_j_watres_2024_121849
crossref_primary_10_1021_acs_est_5c06662
crossref_primary_10_3390_ijerph20021150
crossref_primary_10_1007_s43546_025_00845_4
crossref_primary_10_1007_s00248_023_02305_8
crossref_primary_10_1007_s00343_022_2189_8
crossref_primary_10_1016_j_envres_2025_121053
crossref_primary_10_1016_j_jhazmat_2022_130011
crossref_primary_10_1016_j_decarb_2023_100006
crossref_primary_10_1016_j_jhydrol_2025_133980
crossref_primary_10_1016_j_scitotenv_2022_159775
crossref_primary_10_1016_j_seh_2023_100002
crossref_primary_10_1016_j_watres_2022_119406
crossref_primary_10_3390_agronomy13020481
crossref_primary_10_1016_j_watres_2023_119704
crossref_primary_10_1016_j_cej_2025_164640
crossref_primary_10_1016_j_jhazmat_2025_139012
crossref_primary_10_1016_j_watres_2025_123417
crossref_primary_10_1038_s41467_022_31584_x
crossref_primary_10_1016_j_envpol_2024_124197
crossref_primary_10_1016_j_scitotenv_2023_168696
crossref_primary_10_1039_D2EN01018F
crossref_primary_10_3389_fmicb_2021_660024
crossref_primary_10_1016_j_gecco_2024_e03171
crossref_primary_10_1016_j_scitotenv_2022_158330
crossref_primary_10_1038_s41598_025_87983_9
crossref_primary_10_1016_j_jhazmat_2024_135974
crossref_primary_10_1016_j_jhazmat_2025_139932
crossref_primary_10_1016_j_ecoenv_2025_119003
crossref_primary_10_1016_j_watres_2023_120581
crossref_primary_10_1016_j_chemosphere_2022_134990
crossref_primary_10_1007_s11356_024_35658_9
crossref_primary_10_1016_j_jece_2025_115551
crossref_primary_10_1016_j_envpol_2023_123136
crossref_primary_10_1016_j_envpol_2023_121873
crossref_primary_10_1002_imt2_101
crossref_primary_10_1016_j_envpol_2023_121196
crossref_primary_10_1016_j_scitotenv_2023_163308
crossref_primary_10_3389_fmicb_2021_785737
crossref_primary_10_1016_j_scitotenv_2023_164523
crossref_primary_10_1016_j_jhazmat_2025_137889
crossref_primary_10_1016_j_scitotenv_2023_167478
crossref_primary_10_1016_j_scitotenv_2022_157016
crossref_primary_10_1134_S0026261722020126
crossref_primary_10_1007_s10653_025_02607_5
crossref_primary_10_1016_j_envres_2024_120362
crossref_primary_10_1016_j_envres_2025_121072
crossref_primary_10_1016_j_jhazmat_2023_131989
crossref_primary_10_1016_j_watres_2023_120590
crossref_primary_10_1007_s11104_022_05445_x
crossref_primary_10_1016_j_jclepro_2023_136066
crossref_primary_10_1016_j_chemosphere_2024_143842
crossref_primary_10_1016_j_watres_2023_121013
crossref_primary_10_1016_j_watres_2024_122506
crossref_primary_10_1016_j_cej_2024_152484
crossref_primary_10_1016_j_scitotenv_2022_157781
crossref_primary_10_1016_j_jhazmat_2023_131399
crossref_primary_10_1016_j_watres_2022_118920
crossref_primary_10_1016_j_jhazmat_2023_132921
crossref_primary_10_1007_s10682_025_10358_z
crossref_primary_10_1016_j_jhazmat_2023_130868
crossref_primary_10_1016_j_chemosphere_2024_143718
crossref_primary_10_1080_12298093_2022_2152951
crossref_primary_10_1016_j_chemosphere_2022_134451
crossref_primary_10_3390_w16182637
crossref_primary_10_3389_fmicb_2022_851450
crossref_primary_10_1016_j_jenvman_2023_118756
crossref_primary_10_1016_j_rhisph_2025_101091
crossref_primary_10_1128_msystems_00014_23
crossref_primary_10_3390_foods12193712
crossref_primary_10_1016_j_envpol_2022_120185
crossref_primary_10_1016_j_compbiolchem_2025_108444
crossref_primary_10_3389_fmicb_2024_1395401
crossref_primary_10_1016_j_jhazmat_2024_136555
crossref_primary_10_1016_j_envpol_2025_127074
crossref_primary_10_1016_j_biortech_2024_131750
crossref_primary_10_1016_j_scitotenv_2024_172933
crossref_primary_10_3389_fmicb_2025_1531875
crossref_primary_10_3389_fevo_2023_1279589
crossref_primary_10_1016_j_ecolind_2022_108695
crossref_primary_10_1016_j_watres_2023_120946
crossref_primary_10_1016_j_jenvman_2025_125755
crossref_primary_10_1007_s11104_022_05528_9
crossref_primary_10_1016_j_cej_2023_141969
crossref_primary_10_1021_envhealth_4c00148
crossref_primary_10_3389_fmicb_2023_1219655
crossref_primary_10_1016_j_watres_2024_123057
crossref_primary_10_3390_microorganisms13081726
crossref_primary_10_1080_27658511_2025_2516898
crossref_primary_10_1111_1462_2920_16400
crossref_primary_10_1016_j_biortech_2024_131643
crossref_primary_10_1016_j_envpol_2025_125796
crossref_primary_10_1111_1462_2920_16536
crossref_primary_10_1016_j_ecoenv_2024_116541
crossref_primary_10_1016_j_enceco_2025_08_006
crossref_primary_10_1016_j_scitotenv_2024_171952
crossref_primary_10_1016_j_jenvman_2025_126856
crossref_primary_10_1016_j_jhazmat_2024_135241
crossref_primary_10_1021_acs_est_4c09766
crossref_primary_10_1016_j_envpol_2022_120955
crossref_primary_10_1016_j_scitotenv_2025_179968
crossref_primary_10_1016_j_scitotenv_2022_157459
crossref_primary_10_1016_j_scitotenv_2024_173209
crossref_primary_10_1007_s00449_024_03059_4
crossref_primary_10_1016_j_jhazmat_2021_127646
crossref_primary_10_1111_1758_2229_13286
crossref_primary_10_1007_s44169_024_00063_3
crossref_primary_10_1038_s41598_024_63859_2
crossref_primary_10_1016_j_envint_2025_109708
crossref_primary_10_1016_j_watres_2022_119018
crossref_primary_10_3390_ijerph20105868
crossref_primary_10_1016_j_jwpe_2025_107582
crossref_primary_10_3390_agriculture15070778
crossref_primary_10_1016_j_jhazmat_2024_134343
crossref_primary_10_1016_j_scitotenv_2022_161322
crossref_primary_10_1016_j_ecoenv_2025_118332
crossref_primary_10_1016_j_jhazmat_2024_136409
crossref_primary_10_1016_j_envpol_2025_127153
crossref_primary_10_1016_j_jclepro_2024_142097
crossref_primary_10_1016_j_scitotenv_2024_174001
crossref_primary_10_1016_j_envpol_2024_124465
crossref_primary_10_1016_j_jhazmat_2023_132693
crossref_primary_10_1016_j_ecoenv_2022_113213
crossref_primary_10_1016_j_jhazmat_2022_130535
crossref_primary_10_1016_j_pedsph_2023_07_007
crossref_primary_10_1371_journal_pone_0312157
crossref_primary_10_1016_j_apsoil_2024_105783
crossref_primary_10_1016_j_cej_2022_140193
crossref_primary_10_1016_j_scitotenv_2024_170653
crossref_primary_10_3389_fmicb_2024_1416256
crossref_primary_10_1016_j_jhazmat_2025_139532
crossref_primary_10_1016_j_envpol_2025_126977
crossref_primary_10_1016_j_ecolind_2024_112274
crossref_primary_10_1016_j_jhazmat_2024_136660
crossref_primary_10_1016_j_scitotenv_2024_170094
crossref_primary_10_1038_s43247_023_01127_3
crossref_primary_10_1002_imt2_79
crossref_primary_10_1016_j_jhazmat_2025_137910
crossref_primary_10_1016_j_jhazmat_2023_131699
crossref_primary_10_1007_s11356_024_34214_9
crossref_primary_10_3389_fmicb_2025_1530553
crossref_primary_10_1016_j_jenvman_2024_121107
crossref_primary_10_1016_j_jhazmat_2024_137061
crossref_primary_10_1016_j_watres_2024_121105
crossref_primary_10_1016_j_watres_2023_120875
crossref_primary_10_1080_10852352_2025_2474909
crossref_primary_10_1016_j_envint_2024_108901
crossref_primary_10_1016_j_envres_2024_119410
crossref_primary_10_1021_acs_est_5c06285
crossref_primary_10_1038_s42004_023_00998_z
crossref_primary_10_11626_KJEB_2025_43_1_010
crossref_primary_10_3389_fpls_2022_1011001
crossref_primary_10_3390_microorganisms11112797
crossref_primary_10_1007_s00248_022_01960_7
crossref_primary_10_1007_s40726_023_00262_x
crossref_primary_10_1016_j_biortech_2024_131971
crossref_primary_10_3389_fsufs_2025_1634747
crossref_primary_10_3390_w17101421
Cites_doi 10.1016/j.envpol.2018.10.110
10.1016/j.envpol.2020.115756
10.1016/j.scitotenv.2020.141434
10.1038/s41467-020-20271-4
10.1016/j.marpolbul.2017.06.039
10.1038/s41467-018-03825-5
10.1021/es401288x
10.1016/j.tim.2020.06.011
10.1038/nrmicro3417
10.1073/pnas.0706375104
10.1186/s41610-020-00161-y
10.1111/j.1462-2920.2005.00956.x
10.1021/acs.est.0c02305
10.1016/j.scitotenv.2020.138682
10.1038/s41467-020-17201-9
10.1038/s41396-020-00814-9
10.1016/j.scitotenv.2020.140218
10.1890/11-1144.1
10.1016/j.envint.2020.106274
10.1016/j.jhazmat.2019.121846
10.1021/acs.est.9b01339
10.1126/science.abb5979
10.1128/AEM.00062-07
10.1038/ismej.2017.183
10.1126/sciadv.1700782
10.1007/698_2016_12
10.1021/acs.est.0c07952
10.1016/j.watres.2020.116574
10.1126/science.abc3134
10.1111/jfpp.13384
10.1016/j.chemosphere.2020.126740
10.1016/j.soilbio.2019.107696
10.1126/science.aaf4507
10.1016/j.jhazmat.2020.122994
10.1016/j.watres.2021.116852
10.1007/s13131-014-0528-0
10.1016/j.watres.2020.116021
10.1038/s41467-020-16235-3
10.1021/acs.est.0c04292
10.1016/j.chemosphere.2019.124409
10.1038/s41579-018-0024-1
10.1111/mec.12481
10.1016/j.scitotenv.2018.12.480
10.1021/acs.est.9b05995
10.1016/j.chemosphere.2019.125491
10.1007/s11033-018-4303-8
10.1038/s41396-019-0522-9
10.1016/j.watres.2020.116776
10.1021/acs.est.6b04702
10.1038/nmeth.f.303
10.1111/mec.15825
10.1038/s41565-020-0707-4
10.1016/j.marpolbul.2021.112322
10.1016/j.watres.2017.05.053
10.1007/s11157-020-09529-x
10.1021/es0010498
10.7717/peerj.2584
10.1016/j.watres.2020.116113
10.1128/MMBR.00002-17
10.1038/s41893-020-0567-9
10.1126/science.1261359
10.1038/s41579-019-0308-0
10.1016/j.jhazmat.2017.10.014
10.1016/j.marpolbul.2018.05.068
10.1016/j.funeco.2015.06.006
10.1128/msystems.00783-19
10.1093/bioinformatics/btq461
10.1111/geb.13266
10.1016/j.earscirev.2020.103118
10.1016/j.marpolbul.2018.03.011
10.1016/j.envpol.2020.114641
10.1021/acs.est.0c00917
10.1128/msystems.00704-19
10.1086/284382
10.1021/acs.est.7b03331
10.1088/1748-9326/10/12/124006
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2021.117428
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2021_117428
S0043135421006266
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-d59c35ac575a17e3ff21b27f7ce1a2427aa8ca5890c2a97cebe1578dca054b9a3
ISICitedReferencesCount 245
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691522600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sat Sep 27 23:20:52 EDT 2025
Sun Sep 28 07:26:11 EDT 2025
Tue Nov 18 22:22:02 EST 2025
Sat Nov 29 07:25:33 EST 2025
Fri Feb 23 02:41:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aquatic environment
Microplastic
Assembly process
Microbial community
Interaction network
Plastisphere
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-d59c35ac575a17e3ff21b27f7ce1a2427aa8ca5890c2a97cebe1578dca054b9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1920-2641
PQID 2555106660
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636515920
proquest_miscellaneous_2555106660
crossref_citationtrail_10_1016_j_watres_2021_117428
crossref_primary_10_1016_j_watres_2021_117428
elsevier_sciencedirect_doi_10_1016_j_watres_2021_117428
PublicationCentury 2000
PublicationDate 2021-09-01
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Huang, Wang, Sun, Zhao, Huang (bib0061) 2020; 726
Wright, Erni-Cassola, Zadjelovic, Latva, Christie-Oleza (bib0068) 2020; 54
Banerjee, Schlaeppi, van der Heijden (bib0002) 2018; 16
Dąbrowska (bib0011) 2021; 167
Clark, Underwood, McGenity, Dumbrell (bib0010) 2021; 30
Ragusa, Svelato, Santacroce, Catalano, Notarstefano, Carnevali, Papa, Rongioletti, Baiocco, Draghi, D'Amore, Rinaldo, Matta, Giorgini (bib0045) 2021; 146
Hou, Hong, Wang, Yan, Wang, Dong, Li, Liu, Zhou, Zhang (bib0019) 2021; 268
Sun, Ren, Ni (bib0054) 2020; 742
PlasticsEurope, 2020. Plastics—the Facts 2020.
Rognes, Flouri, Nichols, Quince, Mahé (bib0050) 2016; 4
Sunagawa, Coelho, Chaffron, Kultima, Labadie, Salazar, Djahanschiri, Zeller, Mende, Alberti, Cornejo-Castillo, Costea, Cruaud, D'Ovidio, Engelen, Ferrera, Gasol, Guidi, Hildebrand, Kokoszka, Lepoivre, Lima-Mendez, Poulain, Poulos, Royo-Llonch, Sarmento, Vieira-Silva, Dimier, Picheral, Searson, Kandels-Lewis, Bowler, de Vargas, Gorsky, Grimsley, Hingamp, Iudicone, Jaillon, Not, Ogata, Pesant, Speich, Stemmann, Sullivan, Weissenbach, Wincker, Karsenti, Raes, Acinas, Bork (bib0056) 2015; 348
Jacob, Besson, Swarzenski, Lecchini, Metian (bib0020) 2020; 54
Wang, Zou, Li, Yao, Zang, Li, Yu, Wang (bib0066) 2019; 245
Chen, Huang, Xie, Guo, Song, Li, Liu (bib0007) 2014; 33
Peeken, Primpke, Beyer, Gütermann, Katlein, Krumpen, Bergmann, Hehemann, Gerdts (bib0043) 2018; 9
Wang, Garrity, Tiedje, Cole (bib0064) 2007; 73
Birch, Potter, Pinto, Dionysiou, Al-Abed (bib0005) 2020; 19
Wang, Han, Li, Yu, Wang, Ginawi, Ning, Yan (bib0063) 2021; 30
Li, Li, Dumbrell, Liu, Li, Wu, Jiang, Li (bib0031) 2020; 5
Louca, Parfrey, Doebeli (bib0032) 2016; 353
Wang, Qin, Guo, Jia, Wang, Zhang, Huang (bib0062) 2020; 183
Bowley, Baker-Austin, Porter, Hartnell, Lewis (bib0006) 2021; 29
Mughini-Gras, van der Plaats, van der Wielen, Bauerlein, de Roda Husman (bib0038) 2021; 192
Munari, Infantini, Scoponi, Rastelli, Corinaldesi, Mistri (bib0039) 2017; 122
Chen, Tsui, Lam, Hu, Wang, Zhou, Lam (bib0008) 2019; 660
Edgar (bib78) 2010; 26
Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib0035) 2001; 35
Gad, Hou, Li, Wu, Rashid, Chen, Hu (bib0016) 2020; 748
Kooi, van Nes, Scheffer, Koelmans (bib0027) 2017; 51
Wan, Gao, Zhao, Feng, van Nostrand, Yang, Zhou (bib0060) 2020; 142
Li, Gan, Zhang, He, Fang, Wang, Wang, Liu (bib0029) 2021; 188
Kanhai, Gårdfeldt, Lyashevska, Hassellöv, Thompson, O'Connor (bib0023) 2018; 130
.
Li, Luo, Li, Zhou, Peijnenburg, Yin, Yang, Tu, Zhang (bib0030) 2020; 3
Van Sebille, Wilcox, Lebreton, Maximenko, Hardesty, van Franeker, Eriksen, Siegel, Galgani, Law (bib0059) 2015; 10
Zhou, Ning (bib0076) 2017; 81
Wang, Yu, Chu, Wang, Lan, Wang (bib0065) 2020; 244
Nguyen, Song, Bates, Branco, Tedersoo, Menke, Schilling, Kennedy (bib0040) 2016; 20
Wang, Li, Liu, Zhu, Song, Li (bib0067) 2020; 389
Amaral-Zettler, Zettler, Mincer (bib0001) 2020; 18
Zhang, Kang, Allen, Allen, Gao, Sillanpää (bib0075) 2020; 203
Cheung, Fok (bib0009) 2017; 122
Farjalla, Srivastava, Marino, Azevedo, Dib, Lopes, Rosado, Bozelli, Esteves (bib0014) 2012; 93
Ding, Zhu, Wang, Lassen, Chen, Li, Lv, Zhu (bib0012) 2020; 54
Wright, Langille, Walker (bib0069) 2021; 15
Zettler, Mincer, Amaral-Zettler (bib0073) 2013; 47
Miller (bib0036) 2020; 368
Trojánek, Kovařík, Španová, Marošiová, Horák, Rittich (bib0058) 2018; 42
Yang, Chen, Chen, Li, Liao, Pu, Zhu, Cui (bib0072) 2020; 54
Bergmann, Wirzberger, Krumpen, Lorenz, Primpke, Tekman, Gerdts (bib0003) 2017; 51
Machado, Lau, Kloas, Bergmann, Bacheher, Faltin, Becker, Goerlich, Rillig (bib0034) 2019; 53
Tilman (bib0057) 1985; 125
Zhang, Delgado-Baquerizo, Zhu, Chu (bib0074) 2020; 5
Caporaso, Kuczynski, Stombaugh, Caporaso, Goodrich, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon, Huttley, Kelley, Knights, Koenig, Ley, Lozupone, McDonald, Muegge, Pirrung, Reeder, Sevinsky, Turnbaugh, Walters, Widmann, Yatsunenko, Fierer, Gordon, Zaneveld, Knight (bib0025) 2010; 7
Fuhrman, Cram, Needham (bib0015) 2015; 13
Jiao, Yang, Xu, Zhang, Lu (bib0021) 2020; 14
Seeley, Song, Passie, Hale (bib0051) 2020; 11
Raimundo, Reis, Ribeiro (bib0046) 2018; 45
Kim, Ohr (bib0024) 2020; 44
Sun, Yuan, Jia, Feng, Zhu, Dong, Liu, Kong, Tian, Duan, Ding, Wang, Xing (bib0055) 2020; 15
Wu, Lu, Sastri, Yeh, Gong, Chou, Hsieh (bib0070) 2018; 12
Mincer, Zettler, Amaral-Zettler (bib0037) 2016
Luan, Jiang, Cheng, Dini-Andreote, Sui, Xu, Geisen, Sun (bib0033) 2020; 11
Olesen, Bascompte, Dupont, Jordano (bib0042) 2007; 104
Reed, Clark, Thompson, Hughes (bib0047) 2018; 133
Hahladakis, Velis, Weber, Iacovidou, Purnell (bib0018) 2018; 344
Koljalg, Nilsson, Abarenkov, Tedersoo, Taylor, Bahram, Bates, Bruns, Bengtsson-Palme, Callaghan, Douglas, Drenkhan, Eberhardt, Duenas, Grebenc, Griffith, Hartmann, Kirk, Kohout, Larsson, Lindahl, Luecking, Martin, Matheny, Nguyen, Niskanen, Oja, Peay, Peintner, Peterson, Poldmaa, Saag, Saar, Schuessler, Scott, Senes, Smith, Suija, Taylor, Telleria, Weiss, Larsson (bib0026) 2013; 22
Sharma, Elanjickal, Mankar, Krupadam (bib0052) 2020; 398
Rillig, Lehmann (bib0048) 2020; 368
Ó Briain, Marques Mendes, McCarron, Healy, Morrison (bib0041) 2020; 182
Evangeliou, Grythe, Klimont, Heyes, Eckhardt, Lopez-Aparicio, Stohl (bib0013) 2020; 11
Bhagwat, Zhu, O Connor, Subashchandrabose, Grainge, Knight, Palanisami (bib0004) 2021
Sloan, Lunn, Woodcock, Head, Nee, Curtis (bib0053) 2006; 8
Julienne, Delorme, Lagarde (bib0022) 2019; 236
Xue, Wang, Li, Wang, Pan, Zhang (bib0071) 2020; 265
Zhou, Zhou, Tang, Zhang, Jang, Székely, Jeppesen (bib0077) 2021; 190
Geyer, Jambeck, Law (bib0017) 2017; 3
Li, Gan, Dong, Fang, Chen, Quan, Liu (bib0028) 2020; 253
Zhang (10.1016/j.watres.2021.117428_bib0074) 2020; 5
Rillig (10.1016/j.watres.2021.117428_bib0048) 2020; 368
Yang (10.1016/j.watres.2021.117428_bib0072) 2020; 54
Zhou (10.1016/j.watres.2021.117428_bib0076) 2017; 81
Van Sebille (10.1016/j.watres.2021.117428_bib0059) 2015; 10
Bowley (10.1016/j.watres.2021.117428_bib0006) 2021; 29
Clark (10.1016/j.watres.2021.117428_bib0010) 2021; 30
Wang (10.1016/j.watres.2021.117428_bib0064) 2007; 73
Jacob (10.1016/j.watres.2021.117428_bib0020) 2020; 54
Hahladakis (10.1016/j.watres.2021.117428_bib0018) 2018; 344
Sharma (10.1016/j.watres.2021.117428_bib0052) 2020; 398
Gad (10.1016/j.watres.2021.117428_bib0016) 2020; 748
Li (10.1016/j.watres.2021.117428_bib0029) 2021; 188
Mughini-Gras (10.1016/j.watres.2021.117428_bib0038) 2021; 192
Li (10.1016/j.watres.2021.117428_bib0030) 2020; 3
Kooi (10.1016/j.watres.2021.117428_bib0027) 2017; 51
Evangeliou (10.1016/j.watres.2021.117428_bib0013) 2020; 11
Zhang (10.1016/j.watres.2021.117428_bib0075) 2020; 203
Nguyen (10.1016/j.watres.2021.117428_bib0040) 2016; 20
Kim (10.1016/j.watres.2021.117428_bib0024) 2020; 44
Munari (10.1016/j.watres.2021.117428_bib0039) 2017; 122
Dąbrowska (10.1016/j.watres.2021.117428_bib0011) 2021; 167
Jiao (10.1016/j.watres.2021.117428_bib0021) 2020; 14
Sloan (10.1016/j.watres.2021.117428_bib0053) 2006; 8
Ding (10.1016/j.watres.2021.117428_bib0012) 2020; 54
Wan (10.1016/j.watres.2021.117428_bib0060) 2020; 142
Bhagwat (10.1016/j.watres.2021.117428_bib0004) 2021
Mato (10.1016/j.watres.2021.117428_bib0035) 2001; 35
Edgar (10.1016/j.watres.2021.117428_bib78) 2010; 26
Amaral-Zettler (10.1016/j.watres.2021.117428_bib0001) 2020; 18
Bergmann (10.1016/j.watres.2021.117428_bib0003) 2017; 51
Seeley (10.1016/j.watres.2021.117428_bib0051) 2020; 11
Wright (10.1016/j.watres.2021.117428_bib0068) 2020; 54
Geyer (10.1016/j.watres.2021.117428_bib0017) 2017; 3
Trojánek (10.1016/j.watres.2021.117428_bib0058) 2018; 42
Wang (10.1016/j.watres.2021.117428_bib0065) 2020; 244
Birch (10.1016/j.watres.2021.117428_bib0005) 2020; 19
Wang (10.1016/j.watres.2021.117428_bib0062) 2020; 183
Hou (10.1016/j.watres.2021.117428_bib0019) 2021; 268
Sun (10.1016/j.watres.2021.117428_bib0054) 2020; 742
Rognes (10.1016/j.watres.2021.117428_bib0050) 2016; 4
Chen (10.1016/j.watres.2021.117428_bib0007) 2014; 33
Miller (10.1016/j.watres.2021.117428_bib0036) 2020; 368
Cheung (10.1016/j.watres.2021.117428_bib0009) 2017; 122
Li (10.1016/j.watres.2021.117428_bib0031) 2020; 5
10.1016/j.watres.2021.117428_bib0044
Wang (10.1016/j.watres.2021.117428_bib0066) 2019; 245
Caporaso (10.1016/j.watres.2021.117428_bib0025) 2010; 7
Fuhrman (10.1016/j.watres.2021.117428_bib0015) 2015; 13
Banerjee (10.1016/j.watres.2021.117428_bib0002) 2018; 16
Kanhai (10.1016/j.watres.2021.117428_bib0023) 2018; 130
Wang (10.1016/j.watres.2021.117428_bib0063) 2021; 30
Wu (10.1016/j.watres.2021.117428_bib0070) 2018; 12
Ó Briain (10.1016/j.watres.2021.117428_bib0041) 2020; 182
Wang (10.1016/j.watres.2021.117428_bib0067) 2020; 389
Ragusa (10.1016/j.watres.2021.117428_bib0045) 2021; 146
Sunagawa (10.1016/j.watres.2021.117428_bib0056) 2015; 348
Raimundo (10.1016/j.watres.2021.117428_bib0046) 2018; 45
Reed (10.1016/j.watres.2021.117428_bib0047) 2018; 133
Zettler (10.1016/j.watres.2021.117428_bib0073) 2013; 47
Farjalla (10.1016/j.watres.2021.117428_bib0014) 2012; 93
Mincer (10.1016/j.watres.2021.117428_bib0037) 2016
Li (10.1016/j.watres.2021.117428_bib0028) 2020; 253
Koljalg (10.1016/j.watres.2021.117428_bib0026) 2013; 22
Machado (10.1016/j.watres.2021.117428_bib0034) 2019; 53
Xue (10.1016/j.watres.2021.117428_bib0071) 2020; 265
Zhou (10.1016/j.watres.2021.117428_bib0077) 2021; 190
Sun (10.1016/j.watres.2021.117428_bib0055) 2020; 15
Chen (10.1016/j.watres.2021.117428_bib0008) 2019; 660
Louca (10.1016/j.watres.2021.117428_bib0032) 2016; 353
Olesen (10.1016/j.watres.2021.117428_bib0042) 2007; 104
Luan (10.1016/j.watres.2021.117428_bib0033) 2020; 11
Wright (10.1016/j.watres.2021.117428_bib0069) 2021; 15
Julienne (10.1016/j.watres.2021.117428_bib0022) 2019; 236
Peeken (10.1016/j.watres.2021.117428_bib0043) 2018; 9
Wang (10.1016/j.watres.2021.117428_bib0061) 2020; 726
Tilman (10.1016/j.watres.2021.117428_bib0057) 1985; 125
References_xml – volume: 245
  start-page: 965
  year: 2019
  end-page: 974
  ident: bib0066
  article-title: Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example
  publication-title: Environ. Pollut.
– volume: 133
  start-page: 460
  year: 2018
  end-page: 463
  ident: bib0047
  article-title: Microplastics in marine sediments near Rothera Research Station, Antarctica
  publication-title: Mar. Pollut. Bull.
– volume: 44
  start-page: 19
  year: 2020
  ident: bib0024
  article-title: Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks
  publication-title: J. Ecol. Environ.
– volume: 244
  year: 2020
  ident: bib0065
  article-title: Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films
  publication-title: Chemosphere
– volume: 9
  start-page: 1505
  year: 2018
  ident: bib0043
  article-title: Arctic sea ice is an important temporal sink and means of transport for microplastic
  publication-title: Nat. Commun.
– volume: 10
  year: 2015
  ident: bib0059
  article-title: A global inventory of small floating plastic debris
  publication-title: Environ. Res. Lett.
– volume: 183
  year: 2020
  ident: bib0062
  article-title: Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers
  publication-title: Water Res.
– volume: 19
  start-page: 275
  year: 2020
  end-page: 336
  ident: bib0005
  article-title: Sources, transport, measurement and impact of nano and microplastics in Urban watersheds
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 93
  start-page: 1752
  year: 2012
  end-page: 1759
  ident: bib0014
  article-title: Ecological determinism increases with organism size
  publication-title: Ecology
– volume: 35
  start-page: 318
  year: 2001
  end-page: 324
  ident: bib0035
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
– volume: 353
  start-page: 1272
  year: 2016
  end-page: 1277
  ident: bib0032
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science
– year: 2016
  ident: bib0037
  article-title: Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility
  publication-title: The Handbook of Environmental Chemistry
– volume: 51
  year: 2017
  ident: bib0003
  article-title: High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory
  publication-title: Environ. Sci. Technol.
– volume: 81
  year: 2017
  ident: bib0076
  article-title: Stochastic community assembly: does it matter in microbial ecology?
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 742
  year: 2020
  ident: bib0054
  article-title: Incidence of microplastics in personal care products: an appreciable part of plastic pollution
  publication-title: Sci. Total Environ.
– volume: 3
  start-page: 929
  year: 2020
  end-page: 937
  ident: bib0030
  article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode
  publication-title: Nat. Sustain.
– volume: 748
  year: 2020
  ident: bib0016
  article-title: Distinct mechanisms underlying the assembly of microeukaryotic generalists and specialists in an anthropogenically impacted river
  publication-title: Sci. Total Environ.
– volume: 104
  start-page: 19891
  year: 2007
  end-page: 19896
  ident: bib0042
  article-title: The modularity of pollination networks
  publication-title: Proc. Natl. Acad. Sci.
– volume: 368
  start-page: 1430
  year: 2020
  end-page: 1431
  ident: bib0048
  article-title: Microplastic in terrestrial ecosystems
  publication-title: Science
– volume: 348
  year: 2015
  ident: bib0056
  article-title: Ocean plankton. Structure and function of the global ocean microbiome
  publication-title: Science
– volume: 20
  start-page: 241
  year: 2016
  end-page: 248
  ident: bib0040
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecol.
– volume: 268
  year: 2021
  ident: bib0019
  article-title: Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage
  publication-title: Environ. Pollut.
– volume: 190
  year: 2021
  ident: bib0077
  article-title: Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter
  publication-title: Water Res.
– volume: 4
  start-page: e2584
  year: 2016
  ident: bib0050
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
– reference: PlasticsEurope, 2020. Plastics—the Facts 2020.
– volume: 236
  year: 2019
  ident: bib0022
  article-title: From macroplastics to microplastics: role of water in the fragmentation of polyethylene
  publication-title: Chemosphere
– volume: 122
  start-page: 161
  year: 2017
  end-page: 165
  ident: bib0039
  article-title: Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica)
  publication-title: Mar. Pollut. Bull.
– volume: 30
  start-page: 811
  year: 2021
  end-page: 825
  ident: bib0010
  article-title: What drives study-dependent differences in distance–decay relationships of microbial communities?
  publication-title: Glob. Ecol. Biogeogr.
– volume: 344
  start-page: 179
  year: 2018
  end-page: 199
  ident: bib0018
  article-title: An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling
  publication-title: J. Hazard. Mater.
– volume: 30
  start-page: 1492
  year: 2021
  end-page: 1504
  ident: bib0063
  article-title: Mechanisms of niche-neutrality balancing can drive the assembling of microbial community
  publication-title: Mol. Ecol.
– volume: 51
  start-page: 7963
  year: 2017
  end-page: 7971
  ident: bib0027
  article-title: Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics
  publication-title: Environ. Sci. Technol.
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: bib0064
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microb.
– volume: 182
  year: 2020
  ident: bib0041
  article-title: The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment
  publication-title: Water Res.
– volume: 146
  year: 2021
  ident: bib0045
  article-title: Plasticenta: first evidence of microplastics in human placenta
  publication-title: Environ. Int.
– volume: 45
  start-page: 1405
  year: 2018
  end-page: 1412
  ident: bib0046
  article-title: Rapid, simple and potentially universal method for DNA extraction from
  publication-title: Mol. Biol. Rep.
– volume: 42
  start-page: e13384
  year: 2018
  ident: bib0058
  article-title: Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin
  publication-title: J. Food Process. Preserv.
– volume: 11
  start-page: 3381
  year: 2020
  ident: bib0013
  article-title: Atmospheric transport is a major pathway of microplastics to remote regions
  publication-title: Nat. Commun.
– volume: 203
  year: 2020
  ident: bib0075
  article-title: Atmospheric microplastics: a review on current status and perspectives
  publication-title: Earth Sci. Rev.
– volume: 265
  year: 2020
  ident: bib0071
  article-title: Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient
  publication-title: Environ. Pollut.
– volume: 13
  start-page: 133
  year: 2015
  end-page: 146
  ident: bib0015
  article-title: Marine microbial community dynamics and their ecological interpretation
  publication-title: Nat. Rev. Microbiol.
– volume: 53
  start-page: 6044
  year: 2019
  end-page: 6052
  ident: bib0034
  article-title: Microplastics can change soil properties and affect plant performance
  publication-title: Environ. Sci. Technol.
– volume: 122
  start-page: 53
  year: 2017
  end-page: 61
  ident: bib0009
  article-title: Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China
  publication-title: Water Res.
– volume: 389
  year: 2020
  ident: bib0067
  article-title: Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source
  publication-title: J. Hazard. Mater.
– volume: 142
  year: 2020
  ident: bib0060
  article-title: Biogeographic patterns of microbial association networks in paddy soil within Eastern China
  publication-title: Soil Biol. Biochem.
– volume: 54
  start-page: 7450
  year: 2020
  end-page: 7460
  ident: bib0012
  article-title: Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 202
  year: 2020
  end-page: 216
  ident: bib0021
  article-title: Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China
  publication-title: ISME J.
– volume: 26
  start-page: 2460
  year: 2010
  end-page: 2461
  ident: bib78
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
– volume: 8
  start-page: 732
  year: 2006
  end-page: 740
  ident: bib0053
  article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure
  publication-title: Environ. Microbiol.
– volume: 16
  start-page: 567
  year: 2018
  end-page: 576
  ident: bib0002
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat. Rev. Microbiol.
– volume: 398
  year: 2020
  ident: bib0052
  article-title: Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons
  publication-title: J. Hazard. Mater.
– volume: 54
  start-page: 4733
  year: 2020
  end-page: 4745
  ident: bib0020
  article-title: Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives
  publication-title: Environ. Sci. Technol.
– volume: 125
  start-page: 827
  year: 1985
  end-page: 852
  ident: bib0057
  article-title: The resource-ratio hypothesis of plant succession
  publication-title: Am. Nat.
– volume: 3
  year: 2017
  ident: bib0017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
– volume: 11
  start-page: 2372
  year: 2020
  ident: bib0051
  article-title: Microplastics affect sedimentary microbial communities and nitrogen cycling
  publication-title: Nat. Commun.
– volume: 54
  start-page: 11657
  year: 2020
  end-page: 11672
  ident: bib0068
  article-title: Marine plastic debris: a new surface for microbial colonization
  publication-title: Environ. Sci. Technol.
– volume: 130
  start-page: 8
  year: 2018
  end-page: 18
  ident: bib0023
  article-title: Microplastics in sub-surface waters of the Arctic Central Basin
  publication-title: Mar. Pollut. Bull.
– volume: 253
  year: 2020
  ident: bib0028
  article-title: Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China
  publication-title: Chemosphere
– volume: 15
  start-page: 755
  year: 2020
  end-page: 760
  ident: bib0055
  article-title: Differentially charged nanoplastics demonstrate distinct accumulation in
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 485
  year: 2018
  end-page: 494
  ident: bib0070
  article-title: Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities
  publication-title: ISME J.
– volume: 167
  year: 2021
  ident: bib0011
  article-title: A roadmap for a Plastisphere
  publication-title: Mar. Pollut. Bull.
– volume: 22
  start-page: 5271
  year: 2013
  end-page: 5277
  ident: bib0026
  article-title: Towards a unified paradigm for sequence-based identification of fungi
  publication-title: Mol. Ecol.
– volume: 47
  start-page: 7137
  year: 2013
  end-page: 7146
  ident: bib0073
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
– volume: 18
  start-page: 139
  year: 2020
  end-page: 151
  ident: bib0001
  article-title: Ecology of the plastisphere
  publication-title: Nat. Rev. Microbiol.
– volume: 11
  start-page: 6406
  year: 2020
  ident: bib0033
  article-title: Organism body size structures the soil microbial and nematode community assembly at a continental and global scale
  publication-title: Nat. Commun.
– volume: 15
  start-page: 789
  year: 2021
  end-page: 806
  ident: bib0069
  article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere
  publication-title: ISME J.
– reference: .
– volume: 660
  start-page: 136
  year: 2019
  end-page: 144
  ident: bib0008
  article-title: Variation in microbial community structure in surface seawater from Pearl River Delta: discerning the influencing factors
  publication-title: Sci. Total Environ.
– volume: 192
  year: 2021
  ident: bib0038
  article-title: Riverine microplastic and microbial community compositions: a field study in the Netherlands
  publication-title: Water Res.
– volume: 54
  start-page: 11322
  year: 2020
  end-page: 11332
  ident: bib0072
  article-title: Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 166
  year: 2014
  end-page: 177
  ident: bib0007
  article-title: The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production
  publication-title: Acta Oceanol. Sin.
– volume: 5
  year: 2020
  ident: bib0074
  article-title: Space is more important than season when shaping soil microbial communities at a large spatial scale
  publication-title: MSystems
– volume: 29
  start-page: 107
  year: 2021
  end-page: 116
  ident: bib0006
  article-title: Oceanic hitchhikers – assessing pathogen risks from marine microplastic
  publication-title: Trends Microbiol.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bib0025
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 368
  start-page: 1183
  year: 2020
  end-page: 1184
  ident: bib0036
  article-title: Mapping Earth's deepest secrets
  publication-title: Science
– year: 2021
  ident: bib0004
  article-title: Exploring the composition and functions of plastic microbiome using whole-genome sequencing
  publication-title: Environ. Sci. Technol.
– volume: 188
  year: 2021
  ident: bib0029
  article-title: Microplastic communities” in different environments: differences, links, and role of diversity index in source analysis
  publication-title: Water Res.
– volume: 5
  year: 2020
  ident: bib0031
  article-title: Spatial variation in soil fungal communities across paddy fields in subtropical China
  publication-title: MSystems
– volume: 726
  year: 2020
  ident: bib0061
  article-title: LDPE microplastics significantly alter the temporal turnover of soil microbial communities
  publication-title: Sci. Total Environ.
– volume: 245
  start-page: 965
  year: 2019
  ident: 10.1016/j.watres.2021.117428_bib0066
  article-title: Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.10.110
– volume: 268
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0019
  article-title: Prokaryotic community succession and assembly on different types of microplastics in a mariculture cage
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115756
– volume: 748
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0016
  article-title: Distinct mechanisms underlying the assembly of microeukaryotic generalists and specialists in an anthropogenically impacted river
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141434
– volume: 11
  start-page: 6406
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0033
  article-title: Organism body size structures the soil microbial and nematode community assembly at a continental and global scale
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20271-4
– ident: 10.1016/j.watres.2021.117428_bib0044
– volume: 122
  start-page: 161
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0039
  article-title: Microplastics in the sediments of Terra Nova Bay (Ross Sea, Antarctica)
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.06.039
– volume: 9
  start-page: 1505
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0043
  article-title: Arctic sea ice is an important temporal sink and means of transport for microplastic
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03825-5
– volume: 47
  start-page: 7137
  year: 2013
  ident: 10.1016/j.watres.2021.117428_bib0073
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401288x
– volume: 29
  start-page: 107
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0006
  article-title: Oceanic hitchhikers – assessing pathogen risks from marine microplastic
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2020.06.011
– volume: 13
  start-page: 133
  year: 2015
  ident: 10.1016/j.watres.2021.117428_bib0015
  article-title: Marine microbial community dynamics and their ecological interpretation
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3417
– volume: 104
  start-page: 19891
  year: 2007
  ident: 10.1016/j.watres.2021.117428_bib0042
  article-title: The modularity of pollination networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706375104
– volume: 44
  start-page: 19
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0024
  article-title: Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks
  publication-title: J. Ecol. Environ.
  doi: 10.1186/s41610-020-00161-y
– volume: 8
  start-page: 732
  year: 2006
  ident: 10.1016/j.watres.2021.117428_bib0053
  article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00956.x
– volume: 54
  start-page: 11657
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0068
  article-title: Marine plastic debris: a new surface for microbial colonization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02305
– volume: 726
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0061
  article-title: LDPE microplastics significantly alter the temporal turnover of soil microbial communities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138682
– volume: 11
  start-page: 3381
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0013
  article-title: Atmospheric transport is a major pathway of microplastics to remote regions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17201-9
– volume: 15
  start-page: 789
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0069
  article-title: Food or just a free ride? A meta-analysis reveals the global diversity of the Plastisphere
  publication-title: ISME J.
  doi: 10.1038/s41396-020-00814-9
– volume: 742
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0054
  article-title: Incidence of microplastics in personal care products: an appreciable part of plastic pollution
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140218
– volume: 93
  start-page: 1752
  year: 2012
  ident: 10.1016/j.watres.2021.117428_bib0014
  article-title: Ecological determinism increases with organism size
  publication-title: Ecology
  doi: 10.1890/11-1144.1
– volume: 146
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0045
  article-title: Plasticenta: first evidence of microplastics in human placenta
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106274
– volume: 389
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0067
  article-title: Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121846
– volume: 53
  start-page: 6044
  year: 2019
  ident: 10.1016/j.watres.2021.117428_bib0034
  article-title: Microplastics can change soil properties and affect plant performance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01339
– volume: 368
  start-page: 1430
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0048
  article-title: Microplastic in terrestrial ecosystems
  publication-title: Science
  doi: 10.1126/science.abb5979
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.watres.2021.117428_bib0064
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.00062-07
– volume: 12
  start-page: 485
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0070
  article-title: Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.183
– volume: 3
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700782
– year: 2016
  ident: 10.1016/j.watres.2021.117428_bib0037
  article-title: Biofilms on plastic debris and their influence on marine nutrient cycling, productivity, and hazardous chemical mobility
  doi: 10.1007/698_2016_12
– year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0004
  article-title: Exploring the composition and functions of plastic microbiome using whole-genome sequencing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07952
– volume: 188
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0029
  article-title: Microplastic communities” in different environments: differences, links, and role of diversity index in source analysis
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116574
– volume: 368
  start-page: 1183
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0036
  article-title: Mapping Earth's deepest secrets
  publication-title: Science
  doi: 10.1126/science.abc3134
– volume: 42
  start-page: e13384
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0058
  article-title: Application of magnetic polymethacrylate-based microspheres for the isolation of DNA from raw vegetables and processed foods of plant origin
  publication-title: J. Food Process. Preserv.
  doi: 10.1111/jfpp.13384
– volume: 253
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0028
  article-title: Impact of microplastics on microbial community in sediments of the Huangjinxia Reservoir—water source of a water diversion project in western China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126740
– volume: 142
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0060
  article-title: Biogeographic patterns of microbial association networks in paddy soil within Eastern China
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107696
– volume: 353
  start-page: 1272
  year: 2016
  ident: 10.1016/j.watres.2021.117428_bib0032
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science
  doi: 10.1126/science.aaf4507
– volume: 398
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0052
  article-title: Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122994
– volume: 192
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0038
  article-title: Riverine microplastic and microbial community compositions: a field study in the Netherlands
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.116852
– volume: 33
  start-page: 166
  year: 2014
  ident: 10.1016/j.watres.2021.117428_bib0007
  article-title: The bacterial abundance and production in the East China Sea: seasonal variations and relationships with the phytoplankton biomass and production
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-014-0528-0
– volume: 182
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0041
  article-title: The role of wet wipes and sanitary towels as a source of white microplastic fibres in the marine environment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116021
– volume: 11
  start-page: 2372
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0051
  article-title: Microplastics affect sedimentary microbial communities and nitrogen cycling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16235-3
– volume: 54
  start-page: 11322
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0072
  article-title: Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c04292
– volume: 236
  year: 2019
  ident: 10.1016/j.watres.2021.117428_bib0022
  article-title: From macroplastics to microplastics: role of water in the fragmentation of polyethylene
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124409
– volume: 16
  start-page: 567
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0002
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0024-1
– volume: 22
  start-page: 5271
  year: 2013
  ident: 10.1016/j.watres.2021.117428_bib0026
  article-title: Towards a unified paradigm for sequence-based identification of fungi
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12481
– volume: 660
  start-page: 136
  year: 2019
  ident: 10.1016/j.watres.2021.117428_bib0008
  article-title: Variation in microbial community structure in surface seawater from Pearl River Delta: discerning the influencing factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.480
– volume: 54
  start-page: 4733
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0020
  article-title: Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05995
– volume: 244
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0065
  article-title: Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125491
– volume: 45
  start-page: 1405
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0046
  article-title: Rapid, simple and potentially universal method for DNA extraction from Opuntia spp. fresh cladode tissues suitable for PCR amplification
  publication-title: Mol. Biol. Rep.
  doi: 10.1007/s11033-018-4303-8
– volume: 14
  start-page: 202
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0021
  article-title: Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0522-9
– volume: 190
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0077
  article-title: Resource aromaticity affects bacterial community successions in response to different sources of dissolved organic matter
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116776
– volume: 51
  start-page: 7963
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0027
  article-title: Ups and downs in the ocean: effects of biofouling on vertical transport of microplastics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04702
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.watres.2021.117428_bib0025
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 30
  start-page: 1492
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0063
  article-title: Mechanisms of niche-neutrality balancing can drive the assembling of microbial community
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.15825
– volume: 15
  start-page: 755
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0055
  article-title: Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0707-4
– volume: 167
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0011
  article-title: A roadmap for a Plastisphere
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.112322
– volume: 122
  start-page: 53
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0009
  article-title: Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.05.053
– volume: 19
  start-page: 275
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0005
  article-title: Sources, transport, measurement and impact of nano and microplastics in Urban watersheds
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-020-09529-x
– volume: 35
  start-page: 318
  year: 2001
  ident: 10.1016/j.watres.2021.117428_bib0035
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0010498
– volume: 4
  start-page: e2584
  year: 2016
  ident: 10.1016/j.watres.2021.117428_bib0050
  article-title: VSEARCH: a versatile open source tool for metagenomics
  publication-title: PeerJ
  doi: 10.7717/peerj.2584
– volume: 183
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0062
  article-title: Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116113
– volume: 81
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0076
  article-title: Stochastic community assembly: does it matter in microbial ecology?
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00002-17
– volume: 3
  start-page: 929
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0030
  article-title: Effective uptake of submicrometre plastics by crop plants via a crack-entry mode
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0567-9
– volume: 348
  year: 2015
  ident: 10.1016/j.watres.2021.117428_bib0056
  article-title: Ocean plankton. Structure and function of the global ocean microbiome
  publication-title: Science
  doi: 10.1126/science.1261359
– volume: 18
  start-page: 139
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0001
  article-title: Ecology of the plastisphere
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0308-0
– volume: 344
  start-page: 179
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0018
  article-title: An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.10.014
– volume: 133
  start-page: 460
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0047
  article-title: Microplastics in marine sediments near Rothera Research Station, Antarctica
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.05.068
– volume: 20
  start-page: 241
  year: 2016
  ident: 10.1016/j.watres.2021.117428_bib0040
  article-title: FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild
  publication-title: Fungal Ecol.
  doi: 10.1016/j.funeco.2015.06.006
– volume: 5
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0074
  article-title: Space is more important than season when shaping soil microbial communities at a large spatial scale
  publication-title: MSystems
  doi: 10.1128/msystems.00783-19
– volume: 26
  start-page: 2460
  year: 2010
  ident: 10.1016/j.watres.2021.117428_bib78
  article-title: Search and clustering orders of magnitude faster than BLAST
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq461
– volume: 30
  start-page: 811
  year: 2021
  ident: 10.1016/j.watres.2021.117428_bib0010
  article-title: What drives study-dependent differences in distance–decay relationships of microbial communities?
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13266
– volume: 203
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0075
  article-title: Atmospheric microplastics: a review on current status and perspectives
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103118
– volume: 130
  start-page: 8
  year: 2018
  ident: 10.1016/j.watres.2021.117428_bib0023
  article-title: Microplastics in sub-surface waters of the Arctic Central Basin
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.03.011
– volume: 265
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0071
  article-title: Increased inheritance of structure and function of bacterial communities and pathogen propagation in plastisphere along a river with increasing antibiotics pollution gradient
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114641
– volume: 54
  start-page: 7450
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0012
  article-title: Dysbiosis in the gut microbiota of soil fauna explains the toxicity of tire tread particles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00917
– volume: 5
  year: 2020
  ident: 10.1016/j.watres.2021.117428_bib0031
  article-title: Spatial variation in soil fungal communities across paddy fields in subtropical China
  publication-title: MSystems
  doi: 10.1128/msystems.00704-19
– volume: 125
  start-page: 827
  year: 1985
  ident: 10.1016/j.watres.2021.117428_bib0057
  article-title: The resource-ratio hypothesis of plant succession
  publication-title: Am. Nat.
  doi: 10.1086/284382
– volume: 51
  year: 2017
  ident: 10.1016/j.watres.2021.117428_bib0003
  article-title: High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03331
– volume: 10
  year: 2015
  ident: 10.1016/j.watres.2021.117428_bib0059
  article-title: A global inventory of small floating plastic debris
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/12/124006
SSID ssj0002239
Score 2.7049727
Snippet •Biomarkers of the plastisphere were identified by random-forest machine learning.•Environmental drivers of the plastisphere community variation were...
Microplastics provide a unique habitat for microorganisms, forming the plastisphere. Yet the ecology of the plastisphere, including the microbial composition,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117428
SubjectTerms Aquatic environment
artificial intelligence
Assembly process
biomarkers
dissolved organic carbon
freshwater
fungi
habitats
Interaction network
internal transcribed spacers
Microbial community
Microplastic
microplastics
nitrogen
pathogenicity
Plastisphere
redox potential
salinity
seawater
sulfur
Title The ecology of the plastisphere: Microbial composition, function, assembly, and network in the freshwater and seawater ecosystems
URI https://dx.doi.org/10.1016/j.watres.2021.117428
https://www.proquest.com/docview/2555106660
https://www.proquest.com/docview/2636515920
Volume 202
WOSCitedRecordID wos000691522600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lKQc4IJ5qeVSLxLGOvH7tmluFigCFCqlFys1ar9fEUetEbdLm2l_CX2VmH3agggISF8ux117H83l2ZnbmW0Je51yGpdRlwFiVBUki4ZMCsQOWQ14DQiqmDbv-mB8dickk_zwYfPO1MJenvG3Fep0v_quo4RgIG0tn_0Lc3U3hAOyD0GELYoftHwteK0ut5BIAFmAiL5sLZBAwpeifGkO_ZKhBznzaFr5sHOX8PljV-qy0C1FjdL21CeM-MbIGP316JZFj0cTetbQ_oOuLDRb0mV9lBs85ZqGp4Thd27T6LhAxbtz0f_tVTeW8j_RbbTRuat10-T6m7fF0tfAjr81QsE0xU3fW6M2ARsS6jC0XZfOVNn1ak9HcSKUaW8LpkbbKWnCcHbJMnV6bR6aA--bIYIMUsxG8C_izI-wYJ6wTV5r-I-f2MXaHvYFDHILLl22R7YinuRiS7YMPh5OP3WAP1lXukxjwAl-daVIIb_b1K-vnJzvAGDcnD8h955XQA4umh2Sg20fk3gZX5WNyDbiiDld0XlPAAN3E1RvaoYpuoGqfekztU48o2Gsr6vBEm9bcq8eTOevxRHs8PSFf3h2evH0fuPU7AhXzaBlUaa7iVCrwCCTjOq7riJURr7nSTIJpyKUUSqYiD1UkczhaaobqQUnwI8pcxk_JsJ23eofQpAyjSlciixOVpKISkiWsEqBWVJbrKtwlsX-vhXLk9rjGymnhsxhnhZVGgdIorDR2SdBdtbDkLre0515khTNQreFZAMpuufKVl3AB-hsn5WSr5ytolILPgkGE8DdtsjhDvyMKn_3zEzwnd_uP7QUZLs9X-iW5oy4BJud7ZItPxJ4D93co29OR
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ecology+of+the+plastisphere%3A+Microbial+composition%2C+function%2C+assembly%2C+and+network+in+the+freshwater+and+seawater+ecosystems&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Changchao&rft.au=Wang%2C+Lifei&rft.au=Ji%2C+Shuping&rft.au=Chang%2C+Mengjie&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0043-1354&rft.eissn=1879-2448&rft.volume=202&rft_id=info:doi/10.1016%2Fj.watres.2021.117428&rft.externalDocID=S0043135421006266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon