Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach

In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control area...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research Vol. 204; no. Pt B; p. 112009
Main Authors: Zhang, Liankui, Yang, Guangfei
Format: Journal Article
Language:English
Published: Elsevier Inc 01.03.2022
Subjects:
ISSN:0013-9351, 1096-0953, 1096-0953
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.
AbstractList In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.
In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.
In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM₂.₅ pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM₂.₅ pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM₂.₅ spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.
ArticleNumber 112009
Author Yang, Guangfei
Zhang, Liankui
Author_xml – sequence: 1
  givenname: Liankui
  surname: Zhang
  fullname: Zhang, Liankui
– sequence: 2
  givenname: Guangfei
  surname: Yang
  fullname: Yang, Guangfei
  email: gfyang@dlut.edu.cn
BookMark eNqFkLtOxDAQRS0EEsvjDyhc0iR47DiJKZDQipcEgoKOwnKcCetV1llsB4m_J6tQUUA1M5p774zOEdn3g0dCzoDlwKC8WOfoPwPGnDMOOQBnTO2RBTBVZkxJsU8WjIHIlJBwSI5iXE8jSMEW5G3ZjzFhoMab_iu6SIeOvjzxXNLt0PdjcoOnztPlynlDx-j8O00rpF3AjxF9oi7hJmKids7Z7c12GwZjVyfkoDN9xNOfekxeb29el_fZ4_Pdw_L6MbOi4ilrJeO2brHDtjSK1cIo2cgOZamgrSWAaqqpAcuxrCRrrBVt0QA3jVINGHFMzufY6er0U0x646LFvjcehzFqXoqyECCr-n-prAqhVF0Uk7SYpTYMMQbs9Da4jQlfGpjeUddrPVPXO-p6pj7ZLn_ZrEtmRzEF4_r_zFezGSdanw6Djtaht9i6gDbpdnB_B3wDz7WioQ
CitedBy_id crossref_primary_10_3389_fenvs_2022_979133
crossref_primary_10_1371_journal_pone_0310190
crossref_primary_10_1016_j_jenvman_2025_124655
crossref_primary_10_2166_wst_2024_087
crossref_primary_10_3390_s23136160
crossref_primary_10_1038_s41598_024_75678_6
crossref_primary_10_1061_NHREFO_NHENG_1980
crossref_primary_10_1007_s10661_024_13477_2
Cites_doi 10.1016/j.atmosenv.2011.09.058
10.1016/j.atmosres.2017.12.013
10.1016/j.envpol.2020.115086
10.1016/j.atmosres.2020.105159
10.1145/568574.568575
10.1016/j.jenvman.2019.109377
10.2307/143141
10.1016/j.ecolind.2016.02.052
10.1145/3321386
10.1080/01431161.2016.1220031
10.1016/j.scitotenv.2018.03.057
10.1016/j.atmosres.2014.07.022
10.1023/B:DAMI.0000005258.31418.83
10.1016/j.atmosenv.2018.03.041
10.1016/j.scitotenv.2018.08.181
10.1016/j.jes.2019.02.031
10.1016/j.jclepro.2018.10.080
10.1016/j.atmosenv.2015.12.011
10.3390/ijerph13121219
10.1038/484161a
10.1038/s41561-021-00792-3
10.1016/j.oneear.2020.11.012
10.1002/joc.3905
10.1016/j.rse.2015.05.016
10.1002/widm.53
10.1016/j.jclepro.2015.05.006
10.1016/j.envpol.2017.01.013
10.1016/j.jeem.2013.10.001
10.1007/s11356-018-2082-3
10.1016/j.atmosenv.2017.11.027
10.1016/j.jenvman.2017.03.074
10.1016/j.chemosphere.2018.07.142
10.1093/bib/bbt074
10.1016/j.scitotenv.2016.02.122
10.3390/ijerph16214276
10.1016/j.jenvman.2020.110341
10.1016/j.asoc.2010.11.028
10.1016/j.envres.2019.108730
10.1016/j.jclepro.2017.09.162
10.1016/j.envpol.2017.07.093
10.1073/pnas.1300018110
10.5194/acp-13-5685-2013
10.1016/j.jenvman.2014.09.032
10.1016/j.apr.2018.05.008
10.1016/j.atmosenv.2017.06.003
10.1016/j.envpol.2020.114690
10.1016/j.envres.2014.06.029
10.1016/j.jclepro.2018.01.072
10.1016/j.atmosenv.2014.07.019
10.1016/j.atmosenv.2012.04.013
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envres.2021.112009
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 10_1016_j_envres_2021_112009
S0013935121013049
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADXHL
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
VOH
WH7
WUQ
XOL
XPP
ZCA
ZGI
ZKB
ZMT
ZU3
ZXP
~02
~G-
~KM
9DU
AAYXX
ACLOT
CITATION
EFLBG
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-d502c8defed6a9083a95b5fe5691d85119b71d81c2e6750bcc3d4b12ab99b1a3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704923300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-9351
1096-0953
IngestDate Fri Nov 14 18:39:25 EST 2025
Sun Nov 09 09:22:26 EST 2025
Tue Nov 18 21:48:15 EST 2025
Sat Nov 29 07:39:15 EST 2025
Sat Aug 30 17:17:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Cluster analysis
Urban air pollution
Pollution control
PM2.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-d502c8defed6a9083a95b5fe5691d85119b71d81c2e6750bcc3d4b12ab99b1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2574399844
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636431578
proquest_miscellaneous_2574399844
crossref_primary_10_1016_j_envres_2021_112009
crossref_citationtrail_10_1016_j_envres_2021_112009
elsevier_sciencedirect_doi_10_1016_j_envres_2021_112009
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Environmental research
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhao, Zhao, Xu (bib58) 2013; 13
Zong, Wang, Tian (bib59) 2018; 203
Teng, Yang, Shi (bib34) 2018
Ma, Duan, He (bib24) 2019; 83
Wu, Ding, Zhou (bib48) 2018; 9
Fournier-Viger, Lin, Vo (bib12) 2017; 7
Geng, Zheng, Zhang (bib14) 2021
Stranlund, Moffitt (bib32) 2014; 67
Chen, Xu, Cai (bib6) 2016; 127
Ministry (bib26) 2012
Timmermans, Kranenburg, Manders (bib35) 2017; 164
Hu, Wang, Ying (bib16) 2014; 95
Lu, Xu, Cheng (bib22) 2015; 136
Han, Pei, Yin (bib15) 2004; 8
Tan, Shi, Wang (bib33) 2012; 46
Zhang, Ma, Qin (bib55) 2018; 210
Chen, Chen, Xie (bib5) 2019; 207
Wang, Feng, Zeng (bib43) 2009; 43
Chen, Ebenstein, Greenstone (bib4) 2013; 110
Zou, Shi (bib60) 2020; 264
Lu, Wang, Wang (bib23) 2019; 249
Turap, Talifu, Wang (bib37) 2018; 25
Zhang, Yang, Li (bib54) 2020; 262
Wu (bib47) 2014; 34
Estivill-Castro (bib9) 2002; 4
Geng, Zhang, Martin (bib13) 2015; 166
Wang, Zhao, Xie (bib39) 2016; 553
Al-Hemoud, Gasana, Al-Dabbous (bib2) 2019; 179
Tobler (bib36) 1970; 46
Duan, Fu, Luo (bib8) 2015
Wu, Xu, Zhang (bib46) 2015; 149
Song, Wang, Maher (bib31) 2016; 112
Wang, Zhang, Fu (bib40) 2016; 67
Cao, Zheng, Singh (bib3) 2014; 150
Yang, Huang, Li (bib50) 2018; 170
Peng, Wang, Kou (bib30) 2011; 11
Naulaerts, Meysman, Bittremieux (bib29) 2015; 16
Khuzestani, Schauer, Wei (bib19) 2017; 229
Zhang, He, Huo (bib56) 2012; 484
Wang, Jiang, Zhang (bib44) 2016; 37
Yan, Lei, Shi (bib49) 2018; 183
Murtagh, Contreras (bib28) 2012; 2
Wang, Zhao (bib38) 2018; 174
Wang, Xiong, Wu (bib41) 2019; 16
Li, Wang, Cui (bib21) 2019; 648
Fernando, Fromont, Tuytelaars (bib10) 2012
Ming, Jin, Li (bib25) 2017; 223
Witten, Frank, Hall (bib45) 2016
Yao, Ge, Yang (bib51) 2020; 265
Agrawal, Imieliński, Swami (bib1) 1993
Zhang, Shi, Li (bib57) 2018; 179
Fontes, Li, Barros (bib11) 2017; 196
Mukaka (bib27) 2012; 24
Ye, Ma, Ha (bib52) 2018; 631–632
Li, Zhou, Wei (bib20) 2020; 3
Yu, Xu, Jiang (bib53) 2021; 248
Cohen-addad, Kanade, Mallmann-Trenn (bib7) 2019; 66
Wang, Xu, Yang (bib42) 2012; 56
Jin, Andersson, Zhang (bib18) 2016; 13
Yao (10.1016/j.envres.2021.112009_bib51) 2020; 265
Wang (10.1016/j.envres.2021.112009_bib38) 2018; 174
Yu (10.1016/j.envres.2021.112009_bib53) 2021; 248
Witten (10.1016/j.envres.2021.112009_bib45) 2016
Zhao (10.1016/j.envres.2021.112009_bib58) 2013; 13
Cao (10.1016/j.envres.2021.112009_bib3) 2014; 150
Fournier-Viger (10.1016/j.envres.2021.112009_bib12) 2017; 7
Lu (10.1016/j.envres.2021.112009_bib23) 2019; 249
Hu (10.1016/j.envres.2021.112009_bib16) 2014; 95
Yang (10.1016/j.envres.2021.112009_bib50) 2018; 170
Stranlund (10.1016/j.envres.2021.112009_bib32) 2014; 67
Wang (10.1016/j.envres.2021.112009_bib40) 2016; 67
Wang (10.1016/j.envres.2021.112009_bib43) 2009; 43
Wang (10.1016/j.envres.2021.112009_bib39) 2016; 553
Khuzestani (10.1016/j.envres.2021.112009_bib19) 2017; 229
Li (10.1016/j.envres.2021.112009_bib21) 2019; 648
Wu (10.1016/j.envres.2021.112009_bib48) 2018; 9
Tan (10.1016/j.envres.2021.112009_bib33) 2012; 46
Chen (10.1016/j.envres.2021.112009_bib4) 2013; 110
Fontes (10.1016/j.envres.2021.112009_bib11) 2017; 196
Agrawal (10.1016/j.envres.2021.112009_bib1) 1993
Cohen-addad (10.1016/j.envres.2021.112009_bib7) 2019; 66
Murtagh (10.1016/j.envres.2021.112009_bib28) 2012; 2
Zhang (10.1016/j.envres.2021.112009_bib54) 2020; 262
Song (10.1016/j.envres.2021.112009_bib31) 2016; 112
Al-Hemoud (10.1016/j.envres.2021.112009_bib2) 2019; 179
Duan (10.1016/j.envres.2021.112009_bib8) 2015
Geng (10.1016/j.envres.2021.112009_bib13) 2015; 166
Wang (10.1016/j.envres.2021.112009_bib41) 2019; 16
Zou (10.1016/j.envres.2021.112009_bib60) 2020; 264
Estivill-Castro (10.1016/j.envres.2021.112009_bib9) 2002; 4
Geng (10.1016/j.envres.2021.112009_bib14) 2021
Naulaerts (10.1016/j.envres.2021.112009_bib29) 2015; 16
Yan (10.1016/j.envres.2021.112009_bib49) 2018; 183
Li (10.1016/j.envres.2021.112009_bib20) 2020; 3
Ming (10.1016/j.envres.2021.112009_bib25) 2017; 223
Peng (10.1016/j.envres.2021.112009_bib30) 2011; 11
Mukaka (10.1016/j.envres.2021.112009_bib27) 2012; 24
Teng (10.1016/j.envres.2021.112009_bib34) 2018
Timmermans (10.1016/j.envres.2021.112009_bib35) 2017; 164
Wang (10.1016/j.envres.2021.112009_bib44) 2016; 37
Jin (10.1016/j.envres.2021.112009_bib18) 2016; 13
Lu (10.1016/j.envres.2021.112009_bib22) 2015; 136
Tobler (10.1016/j.envres.2021.112009_bib36) 1970; 46
Turap (10.1016/j.envres.2021.112009_bib37) 2018; 25
Zhang (10.1016/j.envres.2021.112009_bib57) 2018; 179
Ministry (10.1016/j.envres.2021.112009_bib26) 2012
Fernando (10.1016/j.envres.2021.112009_bib10) 2012
Ma (10.1016/j.envres.2021.112009_bib24) 2019; 83
Wu (10.1016/j.envres.2021.112009_bib46) 2015; 149
Zong (10.1016/j.envres.2021.112009_bib59) 2018; 203
Zhang (10.1016/j.envres.2021.112009_bib56) 2012; 484
Chen (10.1016/j.envres.2021.112009_bib6) 2016; 127
Ye (10.1016/j.envres.2021.112009_bib52) 2018; 631–632
Wang (10.1016/j.envres.2021.112009_bib42) 2012; 56
Wu (10.1016/j.envres.2021.112009_bib47) 2014; 34
Zhang (10.1016/j.envres.2021.112009_bib55) 2018; 210
Chen (10.1016/j.envres.2021.112009_bib5) 2019; 207
Han (10.1016/j.envres.2021.112009_bib15) 2004; 8
References_xml – volume: 37
  start-page: 4799
  year: 2016
  end-page: 4817
  ident: bib44
  article-title: Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories
  publication-title: Int. J. Rem. Sens.
– volume: 179
  start-page: 108730
  year: 2019
  ident: bib2
  article-title: Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait
  publication-title: Environ. Res.
– volume: 207
  start-page: 875
  year: 2019
  end-page: 881
  ident: bib5
  article-title: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering
  publication-title: J. Clean. Prod.
– volume: 631–632
  start-page: 524
  year: 2018
  end-page: 533
  ident: bib52
  article-title: Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities
  publication-title: Sci. Total Environ.
– volume: 67
  start-page: 20
  year: 2014
  end-page: 38
  ident: bib32
  article-title: Enforcement and price controls in emissions trading
  publication-title: J. Environ. Econ. Manag.
– year: 2012
  ident: bib26
  article-title: The Twelfth Five-Year Plan for Prevention and Control of Atmospheric Pollution in Key Regions
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib34
  article-title: Study on the temporal and spatial variation of PM2.5 in eight main cities of Yunnan province
  publication-title: 26th International Conference on Geoinformatics
– volume: 203
  start-page: 207
  year: 2018
  end-page: 215
  ident: bib59
  article-title: PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China
  publication-title: Atmos. Res.
– volume: 9
  start-page: 1221
  year: 2018
  end-page: 1230
  ident: bib48
  article-title: Temporal characteristic and source analysis of PM2.5 in the most polluted city agglomeration of China
  publication-title: Atmos. Pollut. Res.
– volume: 196
  start-page: 719
  year: 2017
  end-page: 732
  ident: bib11
  article-title: Trends of PM2.5 concentrations in China: a long term approach
  publication-title: J. Environ. Manag.
– volume: 13
  start-page: 5685
  year: 2013
  end-page: 5696
  ident: bib58
  article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain
  publication-title: Atmos. Chem. Phys.
– volume: 56
  start-page: 69
  year: 2012
  end-page: 79
  ident: bib42
  article-title: Understanding haze pollution over the southern Hebei area of China using the CMAQ model
  publication-title: Atmos. Environ.
– volume: 166
  start-page: 262
  year: 2015
  end-page: 270
  ident: bib13
  article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model
  publication-title: Remote Sens. Environ.
– volume: 136
  start-page: 196
  year: 2015
  end-page: 204
  ident: bib22
  article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population
  publication-title: Environ. Res.
– volume: 170
  start-page: 388
  year: 2018
  end-page: 398
  ident: bib50
  article-title: Mining sequential patterns of PM2.5 pollution in three zones in China
  publication-title: J. Clean. Prod.
– volume: 127
  start-page: 303
  year: 2016
  end-page: 315
  ident: bib6
  article-title: Understanding temporal patterns and characteristics of air quality in Beijing: a local and regional perspective
  publication-title: Atmos. Environ.
– start-page: 214
  year: 2012
  end-page: 227
  ident: bib10
  article-title: Effective Use of Frequent Itemset Mining for Image Classification, Computer Vision – ECCV 2012
– volume: 2
  start-page: 86
  year: 2012
  end-page: 97
  ident: bib28
  article-title: Algorithms for hierarchical clustering: an overview
  publication-title: WIREs Data Min. Knowledge. Dis.
– volume: 11
  start-page: 2906
  year: 2011
  end-page: 2915
  ident: bib30
  article-title: An empirical study of classification algorithm evaluation for financial risk prediction
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 69
  year: 2012
  end-page: 71
  ident: bib27
  article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med. J.
– volume: 67
  start-page: 250
  year: 2016
  end-page: 256
  ident: bib40
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Indicat.
– volume: 4
  start-page: 65
  year: 2002
  end-page: 75
  ident: bib9
  article-title: Why so many clustering algorithms: a position paper
  publication-title: SIGKDD Explor. Newslett.
– volume: 265
  start-page: 115086
  year: 2020
  ident: bib51
  article-title: Affinity zone identification approach for joint control of PM2.5 pollution over China
  publication-title: Environ. Pollut.
– volume: 229
  start-page: 1019
  year: 2017
  end-page: 1031
  ident: bib19
  article-title: Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China
  publication-title: Environ. Pollut.
– volume: 83
  start-page: 8
  year: 2019
  end-page: 20
  ident: bib24
  article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016
  publication-title: J. Environ. Sci.
– volume: 249
  start-page: 109377
  year: 2019
  ident: bib23
  article-title: Provincial analysis and zoning of atmospheric pollution in China from the atmospheric transmission and the trade transfer perspective
  publication-title: J. Environ. Manag.
– volume: 110
  start-page: 12936
  year: 2013
  end-page: 12941
  ident: bib4
  article-title: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 7
  year: 2017
  ident: bib12
  article-title: A survey of itemset mining
  publication-title: WIREs Data Min. Knowledge. Dis.
– volume: 174
  start-page: 25
  year: 2018
  end-page: 42
  ident: bib38
  article-title: A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration
  publication-title: Atmos. Environ.
– volume: 648
  start-page: 902
  year: 2019
  end-page: 915
  ident: bib21
  article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors
  publication-title: Sci. Total Environ.
– start-page: 207
  year: 1993
  end-page: 216
  ident: bib1
  article-title: Mining association rules between sets of items in large databases
  publication-title: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data
– volume: 484
  start-page: 161
  year: 2012
  end-page: 162
  ident: bib56
  article-title: Cleaning China's air
  publication-title: Nature
– volume: 3
  start-page: 777
  year: 2020
  end-page: 787
  ident: bib20
  article-title: China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits
  publication-title: One Earth
– volume: 16
  start-page: 216
  year: 2015
  end-page: 231
  ident: bib29
  article-title: A primer to frequent itemset mining for bioinformatics
  publication-title: Briefings Bioinf.
– volume: 150
  start-page: 129
  year: 2014
  end-page: 142
  ident: bib3
  article-title: Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China
  publication-title: Atmos. Res.
– volume: 264
  start-page: 114690
  year: 2020
  ident: bib60
  article-title: The heterogeneous effect of socioeconomic driving factors on PM2.5 in China's 30 province-level administrative regions: evidence from Bayesian hierarchical spatial quantile regression
  publication-title: Environ. Pollut.
– volume: 8
  start-page: 53
  year: 2004
  end-page: 87
  ident: bib15
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Data Min. Knowl. Discov.
– volume: 210
  start-page: 1176
  year: 2018
  end-page: 1184
  ident: bib55
  article-title: Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China
  publication-title: Chemosphere
– volume: 149
  start-page: 27
  year: 2015
  end-page: 36
  ident: bib46
  article-title: Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing–Tianjin–Hebei region
  publication-title: J. Environ. Manag.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: bib36
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
– volume: 164
  start-page: 370
  year: 2017
  end-page: 386
  ident: bib35
  article-title: Source apportionment of PM2.5 across China using LOTOS-EUROS
  publication-title: Atmos. Environ.
– volume: 34
  start-page: 3204
  year: 2014
  end-page: 3220
  ident: bib47
  article-title: Seasonal dependence of factors of year-to-year variations in South China AOD and Hong Kong air quality
  publication-title: Int. J. Climatol.
– volume: 183
  start-page: 225
  year: 2018
  end-page: 233
  ident: bib49
  article-title: Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a case study from the Beijing-Tianjin-Hebei region
  publication-title: Atmos. Environ.
– volume: 179
  start-page: 103
  year: 2018
  end-page: 113
  ident: bib57
  article-title: Correlating PM2.5 concentrations with air pollutant emissions: a longitudinal study of the Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
– year: 2021
  ident: bib14
  article-title: Drivers of PM2.5 air pollution deaths in China 2002–2017
  publication-title: Nat. Geosci.
– volume: 553
  start-page: 429
  year: 2016
  end-page: 438
  ident: bib39
  article-title: “APEC blue”—the effects and implications of joint pollution prevention and control program
  publication-title: Sci. Total Environ.
– volume: 112
  start-page: 1312
  year: 2016
  end-page: 1318
  ident: bib31
  article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China
  publication-title: J. Clean. Prod.
– volume: 25
  start-page: 22629
  year: 2018
  end-page: 22640
  ident: bib37
  article-title: Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 66
  start-page: 1
  year: 2019
  end-page: 42
  ident: bib7
  article-title: Hierarchical clustering: objective functions and algorithms
  publication-title: J. ACM
– volume: 223
  start-page: 200
  year: 2017
  end-page: 212
  ident: bib25
  article-title: PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events
  publication-title: Environ. Pollut.
– year: 2016
  ident: bib45
  article-title: Data Mining: Practical Machine Learning Tools and Techniques
– start-page: 5691
  year: 2015
  end-page: 5696
  ident: bib8
  article-title: Detective: automatically identify and analyze malware processes in forensic scenarios via DLLs, 2015
  publication-title: IEEE Int. Conf. Commun.
– volume: 16
  start-page: 4276
  year: 2019
  ident: bib41
  article-title: Spatio-temporal variation characteristics of PM2.5 in the Beijing–Tianjin–Hebei region, China, from 2013 to 2018
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 13
  start-page: 1219
  year: 2016
  ident: bib18
  article-title: Air pollution control policies in China: a retrospective and prospects
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 262
  start-page: 110341
  year: 2020
  ident: bib54
  article-title: Mining sequential patterns of PM2.5 pollution between 338 cities in China
  publication-title: J. Environ. Manag.
– volume: 46
  start-page: 299
  year: 2012
  end-page: 308
  ident: bib33
  article-title: Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas
  publication-title: Atmos. Environ.
– volume: 43
  start-page: 2823
  year: 2009
  end-page: 2828
  ident: bib43
  article-title: A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos
  publication-title: Environ. Times
– volume: 95
  start-page: 598
  year: 2014
  end-page: 609
  ident: bib16
  article-title: Spatial and temporal variability of PM2.5 and PM10 over the north China plain and the Yangtze River Delta, China
  publication-title: Atmos. Environ.
– volume: 248
  start-page: 105159
  year: 2021
  ident: bib53
  article-title: A modeling study of PM2.5 transboundary transport during a winter severe haze episode in southern Yangtze River Delta, China
  publication-title: Atmos. Res.
– year: 2016
  ident: 10.1016/j.envres.2021.112009_bib45
– volume: 46
  start-page: 299
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib33
  article-title: Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.09.058
– volume: 203
  start-page: 207
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib59
  article-title: PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2017.12.013
– volume: 265
  start-page: 115086
  year: 2020
  ident: 10.1016/j.envres.2021.112009_bib51
  article-title: Affinity zone identification approach for joint control of PM2.5 pollution over China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115086
– volume: 248
  start-page: 105159
  year: 2021
  ident: 10.1016/j.envres.2021.112009_bib53
  article-title: A modeling study of PM2.5 transboundary transport during a winter severe haze episode in southern Yangtze River Delta, China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105159
– volume: 4
  start-page: 65
  year: 2002
  ident: 10.1016/j.envres.2021.112009_bib9
  article-title: Why so many clustering algorithms: a position paper
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/568574.568575
– start-page: 207
  year: 1993
  ident: 10.1016/j.envres.2021.112009_bib1
  article-title: Mining association rules between sets of items in large databases
– volume: 249
  start-page: 109377
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib23
  article-title: Provincial analysis and zoning of atmospheric pollution in China from the atmospheric transmission and the trade transfer perspective
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.109377
– volume: 46
  start-page: 234
  year: 1970
  ident: 10.1016/j.envres.2021.112009_bib36
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 67
  start-page: 250
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib40
  article-title: A measure of spatial stratified heterogeneity
  publication-title: Ecol. Indicat.
  doi: 10.1016/j.ecolind.2016.02.052
– volume: 66
  start-page: 1
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib7
  article-title: Hierarchical clustering: objective functions and algorithms
  publication-title: J. ACM
  doi: 10.1145/3321386
– volume: 37
  start-page: 4799
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib44
  article-title: Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories
  publication-title: Int. J. Rem. Sens.
  doi: 10.1080/01431161.2016.1220031
– start-page: 1
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib34
  article-title: Study on the temporal and spatial variation of PM2.5 in eight main cities of Yunnan province
– volume: 631–632
  start-page: 524
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib52
  article-title: Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.057
– volume: 150
  start-page: 129
  year: 2014
  ident: 10.1016/j.envres.2021.112009_bib3
  article-title: Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2014.07.022
– start-page: 214
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib10
– volume: 8
  start-page: 53
  year: 2004
  ident: 10.1016/j.envres.2021.112009_bib15
  article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/B:DAMI.0000005258.31418.83
– volume: 183
  start-page: 225
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib49
  article-title: Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a case study from the Beijing-Tianjin-Hebei region
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2018.03.041
– volume: 648
  start-page: 902
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib21
  article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.181
– volume: 83
  start-page: 8
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib24
  article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2019.02.031
– volume: 207
  start-page: 875
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib5
  article-title: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.080
– volume: 127
  start-page: 303
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib6
  article-title: Understanding temporal patterns and characteristics of air quality in Beijing: a local and regional perspective
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.12.011
– start-page: 5691
  year: 2015
  ident: 10.1016/j.envres.2021.112009_bib8
  article-title: Detective: automatically identify and analyze malware processes in forensic scenarios via DLLs, 2015
  publication-title: IEEE Int. Conf. Commun.
– volume: 13
  start-page: 1219
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib18
  article-title: Air pollution control policies in China: a retrospective and prospects
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph13121219
– volume: 484
  start-page: 161
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib56
  article-title: Cleaning China's air
  publication-title: Nature
  doi: 10.1038/484161a
– year: 2021
  ident: 10.1016/j.envres.2021.112009_bib14
  article-title: Drivers of PM2.5 air pollution deaths in China 2002–2017
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00792-3
– volume: 3
  start-page: 777
  year: 2020
  ident: 10.1016/j.envres.2021.112009_bib20
  article-title: China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits
  publication-title: One Earth
  doi: 10.1016/j.oneear.2020.11.012
– volume: 7
  year: 2017
  ident: 10.1016/j.envres.2021.112009_bib12
  article-title: A survey of itemset mining
  publication-title: WIREs Data Min. Knowledge. Dis.
– volume: 24
  start-page: 69
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib27
  article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med. J.
– volume: 34
  start-page: 3204
  year: 2014
  ident: 10.1016/j.envres.2021.112009_bib47
  article-title: Seasonal dependence of factors of year-to-year variations in South China AOD and Hong Kong air quality
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.3905
– volume: 166
  start-page: 262
  year: 2015
  ident: 10.1016/j.envres.2021.112009_bib13
  article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.016
– volume: 2
  start-page: 86
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib28
  article-title: Algorithms for hierarchical clustering: an overview
  publication-title: WIREs Data Min. Knowledge. Dis.
  doi: 10.1002/widm.53
– volume: 112
  start-page: 1312
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib31
  article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.006
– volume: 223
  start-page: 200
  year: 2017
  ident: 10.1016/j.envres.2021.112009_bib25
  article-title: PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.01.013
– volume: 67
  start-page: 20
  year: 2014
  ident: 10.1016/j.envres.2021.112009_bib32
  article-title: Enforcement and price controls in emissions trading
  publication-title: J. Environ. Econ. Manag.
  doi: 10.1016/j.jeem.2013.10.001
– volume: 25
  start-page: 22629
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib37
  article-title: Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-2082-3
– volume: 174
  start-page: 25
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib38
  article-title: A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.11.027
– volume: 43
  start-page: 2823
  year: 2009
  ident: 10.1016/j.envres.2021.112009_bib43
  article-title: A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos
  publication-title: Environ. Times
– volume: 196
  start-page: 719
  year: 2017
  ident: 10.1016/j.envres.2021.112009_bib11
  article-title: Trends of PM2.5 concentrations in China: a long term approach
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2017.03.074
– volume: 210
  start-page: 1176
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib55
  article-title: Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.142
– volume: 16
  start-page: 216
  year: 2015
  ident: 10.1016/j.envres.2021.112009_bib29
  article-title: A primer to frequent itemset mining for bioinformatics
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbt074
– volume: 553
  start-page: 429
  year: 2016
  ident: 10.1016/j.envres.2021.112009_bib39
  article-title: “APEC blue”—the effects and implications of joint pollution prevention and control program
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.122
– volume: 16
  start-page: 4276
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib41
  article-title: Spatio-temporal variation characteristics of PM2.5 in the Beijing–Tianjin–Hebei region, China, from 2013 to 2018
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph16214276
– volume: 262
  start-page: 110341
  year: 2020
  ident: 10.1016/j.envres.2021.112009_bib54
  article-title: Mining sequential patterns of PM2.5 pollution between 338 cities in China
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.110341
– volume: 11
  start-page: 2906
  year: 2011
  ident: 10.1016/j.envres.2021.112009_bib30
  article-title: An empirical study of classification algorithm evaluation for financial risk prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.11.028
– volume: 179
  start-page: 108730
  year: 2019
  ident: 10.1016/j.envres.2021.112009_bib2
  article-title: Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2019.108730
– volume: 170
  start-page: 388
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib50
  article-title: Mining sequential patterns of PM2.5 pollution in three zones in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.162
– volume: 229
  start-page: 1019
  year: 2017
  ident: 10.1016/j.envres.2021.112009_bib19
  article-title: Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.093
– volume: 110
  start-page: 12936
  year: 2013
  ident: 10.1016/j.envres.2021.112009_bib4
  article-title: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1300018110
– year: 2012
  ident: 10.1016/j.envres.2021.112009_bib26
– volume: 13
  start-page: 5685
  year: 2013
  ident: 10.1016/j.envres.2021.112009_bib58
  article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-13-5685-2013
– volume: 149
  start-page: 27
  year: 2015
  ident: 10.1016/j.envres.2021.112009_bib46
  article-title: Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing–Tianjin–Hebei region
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.09.032
– volume: 9
  start-page: 1221
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib48
  article-title: Temporal characteristic and source analysis of PM2.5 in the most polluted city agglomeration of China
  publication-title: Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2018.05.008
– volume: 164
  start-page: 370
  year: 2017
  ident: 10.1016/j.envres.2021.112009_bib35
  article-title: Source apportionment of PM2.5 across China using LOTOS-EUROS
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2017.06.003
– volume: 264
  start-page: 114690
  year: 2020
  ident: 10.1016/j.envres.2021.112009_bib60
  article-title: The heterogeneous effect of socioeconomic driving factors on PM2.5 in China's 30 province-level administrative regions: evidence from Bayesian hierarchical spatial quantile regression
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114690
– volume: 136
  start-page: 196
  year: 2015
  ident: 10.1016/j.envres.2021.112009_bib22
  article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.06.029
– volume: 179
  start-page: 103
  year: 2018
  ident: 10.1016/j.envres.2021.112009_bib57
  article-title: Correlating PM2.5 concentrations with air pollutant emissions: a longitudinal study of the Beijing-Tianjin-Hebei region
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.072
– volume: 95
  start-page: 598
  year: 2014
  ident: 10.1016/j.envres.2021.112009_bib16
  article-title: Spatial and temporal variability of PM2.5 and PM10 over the north China plain and the Yangtze River Delta, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2014.07.019
– volume: 56
  start-page: 69
  year: 2012
  ident: 10.1016/j.envres.2021.112009_bib42
  article-title: Understanding haze pollution over the southern Hebei area of China using the CMAQ model
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.04.013
SSID ssj0011530
Score 2.4115405
Snippet In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112009
SubjectTerms air
air pollution
air quality
algorithms
China
Cluster analysis
cost effectiveness
PM2.5
Pollution control
Urban air pollution
Title Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach
URI https://dx.doi.org/10.1016/j.envres.2021.112009
https://www.proquest.com/docview/2574399844
https://www.proquest.com/docview/2636431578
Volume 204
WOSCitedRecordID wos000704923300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-0953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011530
  issn: 0013-9351
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdrusNgjK1bWfdRNNgtOFiSHUvHUjq20ZUecgjsYCRZHumKUxK79M_f05fjtKxdD7sYR8iKyO-Xp_ee3wdCnymRVHHBkzqviySreZZwSe1HXimWE6NrVzL_tDg74_O5OA_trdaunUDRNPzmRlz9V6hhDMC2qbOPgLtfFAbgHkCHK8AO138C_viys8UPxnJQbuT8B53ktiGD_2KX6mcbZ4-7dUyXqlcuqLodu95sph1rv45LYgyFx7fc-JsMOdcbYOAVG_qhT4F-v7tFL1zCMDCz-VWbxdDpAPZqH3UVBSlhiWChVmwQpDTNBqIQFLnUVT64K6W9w-BiYppr2B4Y6ZRMNtO3i2LfOqz6EMIYnXZR-lVKu0rpV9lBu7TIBR-h3aNvJ_Pv_WslEO9pbGlhdx9zKV3A393d_E1XuXVqO1Vk9hK9CDYEPvLYv0JPTLOH9rcAwUFmr_fQc--ZxT7h7DX6GQiCI0HwssaOILgnCF402BEEO4JgIAiOBMGBIHhDEBwJ8gbNvpzMjr8mocVGollB26TKU6p5ZWpTTaUAdVyKXOW1yaeCVFYZF6qAG6KpAcsyVVqzKlOESiWEIpLto1GzbMxbhHVFqrSQBBR6nWUmU1JWZsrAAGGMKM0OEIu_ZalD-XnbBeWyvA_JA5T0T1358isPzC8iTGVQIb1qWAL3HnjyU0S1BAlrX5vJxiw7mJQ7o51n2T1zpgxUewLH37tH7vg9erb5g31Ao3bVmY_oqb5uF-vVIdop5vww0PgPZFmvJA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+analysis+of+PM2.5+pollution+in+China+using+the+frequent+itemset+clustering+approach&rft.jtitle=Environmental+research&rft.au=Zhang%2C+Liankui&rft.au=Yang%2C+Guangfei&rft.date=2022-03-01&rft.issn=0013-9351&rft.volume=204&rft.spage=112009&rft_id=info:doi/10.1016%2Fj.envres.2021.112009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envres_2021_112009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon