Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach
In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control area...
Saved in:
| Published in: | Environmental research Vol. 204; no. Pt B; p. 112009 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.03.2022
|
| Subjects: | |
| ISSN: | 0013-9351, 1096-0953, 1096-0953 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China. |
|---|---|
| AbstractList | In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China.In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China. In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM2.5 pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM2.5 pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM2.5 spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China. In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an effective approach to address severe regional air pollution. However, current cluster analysis research on the determination of joint control areas relies on the Pearson correlation coefficient as a similarity measure. Due to nonlinearity and outliers in air pollution data, the correlation coefficient cannot accurately reveal the similarity in air quality between different cities. To bridge this gap, we proposed a method to delineate spatial patterns of PM₂.₅ pollution and regional boundaries of polluted areas using the frequent itemset clustering approach. The frequent itemsets between cities were first mined, and the support values were employed as interestingness metrics to describe the significance of similar variation patterns between cities. Then, the hierarchical clustering method was applied to identify appropriate areas for joint pollution control. The proposed clustering algorithm exhibits the advantages of not requiring model assumptions and a robustness to the outliers, which is a cost-effective approach to define joint control regions. By analysing urban PM₂.₅ pollution in China from 2015 to 2018, we obtained results demonstrating that the frequent itemset clustering approach can efficiently determine pollution patterns and can effectively identify regional divisions. The clustering approach could facilitate a greater understanding of PM₂.₅ spatiotemporal aggregation to design joint control measures among areas. The findings and methodology of this research have important implications for the formulation of clean air policies in China. |
| ArticleNumber | 112009 |
| Author | Yang, Guangfei Zhang, Liankui |
| Author_xml | – sequence: 1 givenname: Liankui surname: Zhang fullname: Zhang, Liankui – sequence: 2 givenname: Guangfei surname: Yang fullname: Yang, Guangfei email: gfyang@dlut.edu.cn |
| BookMark | eNqFkLtOxDAQRS0EEsvjDyhc0iR47DiJKZDQipcEgoKOwnKcCetV1llsB4m_J6tQUUA1M5p774zOEdn3g0dCzoDlwKC8WOfoPwPGnDMOOQBnTO2RBTBVZkxJsU8WjIHIlJBwSI5iXE8jSMEW5G3ZjzFhoMab_iu6SIeOvjzxXNLt0PdjcoOnztPlynlDx-j8O00rpF3AjxF9oi7hJmKids7Z7c12GwZjVyfkoDN9xNOfekxeb29el_fZ4_Pdw_L6MbOi4ilrJeO2brHDtjSK1cIo2cgOZamgrSWAaqqpAcuxrCRrrBVt0QA3jVINGHFMzufY6er0U0x646LFvjcehzFqXoqyECCr-n-prAqhVF0Uk7SYpTYMMQbs9Da4jQlfGpjeUddrPVPXO-p6pj7ZLn_ZrEtmRzEF4_r_zFezGSdanw6Djtaht9i6gDbpdnB_B3wDz7WioQ |
| CitedBy_id | crossref_primary_10_3389_fenvs_2022_979133 crossref_primary_10_1371_journal_pone_0310190 crossref_primary_10_1016_j_jenvman_2025_124655 crossref_primary_10_2166_wst_2024_087 crossref_primary_10_3390_s23136160 crossref_primary_10_1038_s41598_024_75678_6 crossref_primary_10_1061_NHREFO_NHENG_1980 crossref_primary_10_1007_s10661_024_13477_2 |
| Cites_doi | 10.1016/j.atmosenv.2011.09.058 10.1016/j.atmosres.2017.12.013 10.1016/j.envpol.2020.115086 10.1016/j.atmosres.2020.105159 10.1145/568574.568575 10.1016/j.jenvman.2019.109377 10.2307/143141 10.1016/j.ecolind.2016.02.052 10.1145/3321386 10.1080/01431161.2016.1220031 10.1016/j.scitotenv.2018.03.057 10.1016/j.atmosres.2014.07.022 10.1023/B:DAMI.0000005258.31418.83 10.1016/j.atmosenv.2018.03.041 10.1016/j.scitotenv.2018.08.181 10.1016/j.jes.2019.02.031 10.1016/j.jclepro.2018.10.080 10.1016/j.atmosenv.2015.12.011 10.3390/ijerph13121219 10.1038/484161a 10.1038/s41561-021-00792-3 10.1016/j.oneear.2020.11.012 10.1002/joc.3905 10.1016/j.rse.2015.05.016 10.1002/widm.53 10.1016/j.jclepro.2015.05.006 10.1016/j.envpol.2017.01.013 10.1016/j.jeem.2013.10.001 10.1007/s11356-018-2082-3 10.1016/j.atmosenv.2017.11.027 10.1016/j.jenvman.2017.03.074 10.1016/j.chemosphere.2018.07.142 10.1093/bib/bbt074 10.1016/j.scitotenv.2016.02.122 10.3390/ijerph16214276 10.1016/j.jenvman.2020.110341 10.1016/j.asoc.2010.11.028 10.1016/j.envres.2019.108730 10.1016/j.jclepro.2017.09.162 10.1016/j.envpol.2017.07.093 10.1073/pnas.1300018110 10.5194/acp-13-5685-2013 10.1016/j.jenvman.2014.09.032 10.1016/j.apr.2018.05.008 10.1016/j.atmosenv.2017.06.003 10.1016/j.envpol.2020.114690 10.1016/j.envres.2014.06.029 10.1016/j.jclepro.2018.01.072 10.1016/j.atmosenv.2014.07.019 10.1016/j.atmosenv.2012.04.013 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.envres.2021.112009 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Environmental Sciences |
| EISSN | 1096-0953 |
| ExternalDocumentID | 10_1016_j_envres_2021_112009 S0013935121013049 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADXHL AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT VOH WH7 WUQ XOL XPP ZCA ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM 9DU AAYXX ACLOT CITATION EFLBG ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-d502c8defed6a9083a95b5fe5691d85119b71d81c2e6750bcc3d4b12ab99b1a3 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704923300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-9351 1096-0953 |
| IngestDate | Fri Nov 14 18:39:25 EST 2025 Sun Nov 09 09:22:26 EST 2025 Tue Nov 18 21:48:15 EST 2025 Sat Nov 29 07:39:15 EST 2025 Sat Aug 30 17:17:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt B |
| Keywords | Cluster analysis Urban air pollution Pollution control PM2.5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-d502c8defed6a9083a95b5fe5691d85119b71d81c2e6750bcc3d4b12ab99b1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2574399844 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2636431578 proquest_miscellaneous_2574399844 crossref_primary_10_1016_j_envres_2021_112009 crossref_citationtrail_10_1016_j_envres_2021_112009 elsevier_sciencedirect_doi_10_1016_j_envres_2021_112009 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Environmental research |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhao, Zhao, Xu (bib58) 2013; 13 Zong, Wang, Tian (bib59) 2018; 203 Teng, Yang, Shi (bib34) 2018 Ma, Duan, He (bib24) 2019; 83 Wu, Ding, Zhou (bib48) 2018; 9 Fournier-Viger, Lin, Vo (bib12) 2017; 7 Geng, Zheng, Zhang (bib14) 2021 Stranlund, Moffitt (bib32) 2014; 67 Chen, Xu, Cai (bib6) 2016; 127 Ministry (bib26) 2012 Timmermans, Kranenburg, Manders (bib35) 2017; 164 Hu, Wang, Ying (bib16) 2014; 95 Lu, Xu, Cheng (bib22) 2015; 136 Han, Pei, Yin (bib15) 2004; 8 Tan, Shi, Wang (bib33) 2012; 46 Zhang, Ma, Qin (bib55) 2018; 210 Chen, Chen, Xie (bib5) 2019; 207 Wang, Feng, Zeng (bib43) 2009; 43 Chen, Ebenstein, Greenstone (bib4) 2013; 110 Zou, Shi (bib60) 2020; 264 Lu, Wang, Wang (bib23) 2019; 249 Turap, Talifu, Wang (bib37) 2018; 25 Zhang, Yang, Li (bib54) 2020; 262 Wu (bib47) 2014; 34 Estivill-Castro (bib9) 2002; 4 Geng, Zhang, Martin (bib13) 2015; 166 Wang, Zhao, Xie (bib39) 2016; 553 Al-Hemoud, Gasana, Al-Dabbous (bib2) 2019; 179 Tobler (bib36) 1970; 46 Duan, Fu, Luo (bib8) 2015 Wu, Xu, Zhang (bib46) 2015; 149 Song, Wang, Maher (bib31) 2016; 112 Wang, Zhang, Fu (bib40) 2016; 67 Cao, Zheng, Singh (bib3) 2014; 150 Yang, Huang, Li (bib50) 2018; 170 Peng, Wang, Kou (bib30) 2011; 11 Naulaerts, Meysman, Bittremieux (bib29) 2015; 16 Khuzestani, Schauer, Wei (bib19) 2017; 229 Zhang, He, Huo (bib56) 2012; 484 Wang, Jiang, Zhang (bib44) 2016; 37 Yan, Lei, Shi (bib49) 2018; 183 Murtagh, Contreras (bib28) 2012; 2 Wang, Zhao (bib38) 2018; 174 Wang, Xiong, Wu (bib41) 2019; 16 Li, Wang, Cui (bib21) 2019; 648 Fernando, Fromont, Tuytelaars (bib10) 2012 Ming, Jin, Li (bib25) 2017; 223 Witten, Frank, Hall (bib45) 2016 Yao, Ge, Yang (bib51) 2020; 265 Agrawal, Imieliński, Swami (bib1) 1993 Zhang, Shi, Li (bib57) 2018; 179 Fontes, Li, Barros (bib11) 2017; 196 Mukaka (bib27) 2012; 24 Ye, Ma, Ha (bib52) 2018; 631–632 Li, Zhou, Wei (bib20) 2020; 3 Yu, Xu, Jiang (bib53) 2021; 248 Cohen-addad, Kanade, Mallmann-Trenn (bib7) 2019; 66 Wang, Xu, Yang (bib42) 2012; 56 Jin, Andersson, Zhang (bib18) 2016; 13 Yao (10.1016/j.envres.2021.112009_bib51) 2020; 265 Wang (10.1016/j.envres.2021.112009_bib38) 2018; 174 Yu (10.1016/j.envres.2021.112009_bib53) 2021; 248 Witten (10.1016/j.envres.2021.112009_bib45) 2016 Zhao (10.1016/j.envres.2021.112009_bib58) 2013; 13 Cao (10.1016/j.envres.2021.112009_bib3) 2014; 150 Fournier-Viger (10.1016/j.envres.2021.112009_bib12) 2017; 7 Lu (10.1016/j.envres.2021.112009_bib23) 2019; 249 Hu (10.1016/j.envres.2021.112009_bib16) 2014; 95 Yang (10.1016/j.envres.2021.112009_bib50) 2018; 170 Stranlund (10.1016/j.envres.2021.112009_bib32) 2014; 67 Wang (10.1016/j.envres.2021.112009_bib40) 2016; 67 Wang (10.1016/j.envres.2021.112009_bib43) 2009; 43 Wang (10.1016/j.envres.2021.112009_bib39) 2016; 553 Khuzestani (10.1016/j.envres.2021.112009_bib19) 2017; 229 Li (10.1016/j.envres.2021.112009_bib21) 2019; 648 Wu (10.1016/j.envres.2021.112009_bib48) 2018; 9 Tan (10.1016/j.envres.2021.112009_bib33) 2012; 46 Chen (10.1016/j.envres.2021.112009_bib4) 2013; 110 Fontes (10.1016/j.envres.2021.112009_bib11) 2017; 196 Agrawal (10.1016/j.envres.2021.112009_bib1) 1993 Cohen-addad (10.1016/j.envres.2021.112009_bib7) 2019; 66 Murtagh (10.1016/j.envres.2021.112009_bib28) 2012; 2 Zhang (10.1016/j.envres.2021.112009_bib54) 2020; 262 Song (10.1016/j.envres.2021.112009_bib31) 2016; 112 Al-Hemoud (10.1016/j.envres.2021.112009_bib2) 2019; 179 Duan (10.1016/j.envres.2021.112009_bib8) 2015 Geng (10.1016/j.envres.2021.112009_bib13) 2015; 166 Wang (10.1016/j.envres.2021.112009_bib41) 2019; 16 Zou (10.1016/j.envres.2021.112009_bib60) 2020; 264 Estivill-Castro (10.1016/j.envres.2021.112009_bib9) 2002; 4 Geng (10.1016/j.envres.2021.112009_bib14) 2021 Naulaerts (10.1016/j.envres.2021.112009_bib29) 2015; 16 Yan (10.1016/j.envres.2021.112009_bib49) 2018; 183 Li (10.1016/j.envres.2021.112009_bib20) 2020; 3 Ming (10.1016/j.envres.2021.112009_bib25) 2017; 223 Peng (10.1016/j.envres.2021.112009_bib30) 2011; 11 Mukaka (10.1016/j.envres.2021.112009_bib27) 2012; 24 Teng (10.1016/j.envres.2021.112009_bib34) 2018 Timmermans (10.1016/j.envres.2021.112009_bib35) 2017; 164 Wang (10.1016/j.envres.2021.112009_bib44) 2016; 37 Jin (10.1016/j.envres.2021.112009_bib18) 2016; 13 Lu (10.1016/j.envres.2021.112009_bib22) 2015; 136 Tobler (10.1016/j.envres.2021.112009_bib36) 1970; 46 Turap (10.1016/j.envres.2021.112009_bib37) 2018; 25 Zhang (10.1016/j.envres.2021.112009_bib57) 2018; 179 Ministry (10.1016/j.envres.2021.112009_bib26) 2012 Fernando (10.1016/j.envres.2021.112009_bib10) 2012 Ma (10.1016/j.envres.2021.112009_bib24) 2019; 83 Wu (10.1016/j.envres.2021.112009_bib46) 2015; 149 Zong (10.1016/j.envres.2021.112009_bib59) 2018; 203 Zhang (10.1016/j.envres.2021.112009_bib56) 2012; 484 Chen (10.1016/j.envres.2021.112009_bib6) 2016; 127 Ye (10.1016/j.envres.2021.112009_bib52) 2018; 631–632 Wang (10.1016/j.envres.2021.112009_bib42) 2012; 56 Wu (10.1016/j.envres.2021.112009_bib47) 2014; 34 Zhang (10.1016/j.envres.2021.112009_bib55) 2018; 210 Chen (10.1016/j.envres.2021.112009_bib5) 2019; 207 Han (10.1016/j.envres.2021.112009_bib15) 2004; 8 |
| References_xml | – volume: 37 start-page: 4799 year: 2016 end-page: 4817 ident: bib44 article-title: Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories publication-title: Int. J. Rem. Sens. – volume: 179 start-page: 108730 year: 2019 ident: bib2 article-title: Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait publication-title: Environ. Res. – volume: 207 start-page: 875 year: 2019 end-page: 881 ident: bib5 article-title: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering publication-title: J. Clean. Prod. – volume: 631–632 start-page: 524 year: 2018 end-page: 533 ident: bib52 article-title: Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities publication-title: Sci. Total Environ. – volume: 67 start-page: 20 year: 2014 end-page: 38 ident: bib32 article-title: Enforcement and price controls in emissions trading publication-title: J. Environ. Econ. Manag. – year: 2012 ident: bib26 article-title: The Twelfth Five-Year Plan for Prevention and Control of Atmospheric Pollution in Key Regions – start-page: 1 year: 2018 end-page: 7 ident: bib34 article-title: Study on the temporal and spatial variation of PM2.5 in eight main cities of Yunnan province publication-title: 26th International Conference on Geoinformatics – volume: 203 start-page: 207 year: 2018 end-page: 215 ident: bib59 article-title: PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China publication-title: Atmos. Res. – volume: 9 start-page: 1221 year: 2018 end-page: 1230 ident: bib48 article-title: Temporal characteristic and source analysis of PM2.5 in the most polluted city agglomeration of China publication-title: Atmos. Pollut. Res. – volume: 196 start-page: 719 year: 2017 end-page: 732 ident: bib11 article-title: Trends of PM2.5 concentrations in China: a long term approach publication-title: J. Environ. Manag. – volume: 13 start-page: 5685 year: 2013 end-page: 5696 ident: bib58 article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain publication-title: Atmos. Chem. Phys. – volume: 56 start-page: 69 year: 2012 end-page: 79 ident: bib42 article-title: Understanding haze pollution over the southern Hebei area of China using the CMAQ model publication-title: Atmos. Environ. – volume: 166 start-page: 262 year: 2015 end-page: 270 ident: bib13 article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model publication-title: Remote Sens. Environ. – volume: 136 start-page: 196 year: 2015 end-page: 204 ident: bib22 article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population publication-title: Environ. Res. – volume: 170 start-page: 388 year: 2018 end-page: 398 ident: bib50 article-title: Mining sequential patterns of PM2.5 pollution in three zones in China publication-title: J. Clean. Prod. – volume: 127 start-page: 303 year: 2016 end-page: 315 ident: bib6 article-title: Understanding temporal patterns and characteristics of air quality in Beijing: a local and regional perspective publication-title: Atmos. Environ. – start-page: 214 year: 2012 end-page: 227 ident: bib10 article-title: Effective Use of Frequent Itemset Mining for Image Classification, Computer Vision – ECCV 2012 – volume: 2 start-page: 86 year: 2012 end-page: 97 ident: bib28 article-title: Algorithms for hierarchical clustering: an overview publication-title: WIREs Data Min. Knowledge. Dis. – volume: 11 start-page: 2906 year: 2011 end-page: 2915 ident: bib30 article-title: An empirical study of classification algorithm evaluation for financial risk prediction publication-title: Appl. Soft Comput. – volume: 24 start-page: 69 year: 2012 end-page: 71 ident: bib27 article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 67 start-page: 250 year: 2016 end-page: 256 ident: bib40 article-title: A measure of spatial stratified heterogeneity publication-title: Ecol. Indicat. – volume: 4 start-page: 65 year: 2002 end-page: 75 ident: bib9 article-title: Why so many clustering algorithms: a position paper publication-title: SIGKDD Explor. Newslett. – volume: 265 start-page: 115086 year: 2020 ident: bib51 article-title: Affinity zone identification approach for joint control of PM2.5 pollution over China publication-title: Environ. Pollut. – volume: 229 start-page: 1019 year: 2017 end-page: 1031 ident: bib19 article-title: Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China publication-title: Environ. Pollut. – volume: 83 start-page: 8 year: 2019 end-page: 20 ident: bib24 article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016 publication-title: J. Environ. Sci. – volume: 249 start-page: 109377 year: 2019 ident: bib23 article-title: Provincial analysis and zoning of atmospheric pollution in China from the atmospheric transmission and the trade transfer perspective publication-title: J. Environ. Manag. – volume: 110 start-page: 12936 year: 2013 end-page: 12941 ident: bib4 article-title: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 year: 2017 ident: bib12 article-title: A survey of itemset mining publication-title: WIREs Data Min. Knowledge. Dis. – volume: 174 start-page: 25 year: 2018 end-page: 42 ident: bib38 article-title: A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration publication-title: Atmos. Environ. – volume: 648 start-page: 902 year: 2019 end-page: 915 ident: bib21 article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors publication-title: Sci. Total Environ. – start-page: 207 year: 1993 end-page: 216 ident: bib1 article-title: Mining association rules between sets of items in large databases publication-title: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data – volume: 484 start-page: 161 year: 2012 end-page: 162 ident: bib56 article-title: Cleaning China's air publication-title: Nature – volume: 3 start-page: 777 year: 2020 end-page: 787 ident: bib20 article-title: China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits publication-title: One Earth – volume: 16 start-page: 216 year: 2015 end-page: 231 ident: bib29 article-title: A primer to frequent itemset mining for bioinformatics publication-title: Briefings Bioinf. – volume: 150 start-page: 129 year: 2014 end-page: 142 ident: bib3 article-title: Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China publication-title: Atmos. Res. – volume: 264 start-page: 114690 year: 2020 ident: bib60 article-title: The heterogeneous effect of socioeconomic driving factors on PM2.5 in China's 30 province-level administrative regions: evidence from Bayesian hierarchical spatial quantile regression publication-title: Environ. Pollut. – volume: 8 start-page: 53 year: 2004 end-page: 87 ident: bib15 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Data Min. Knowl. Discov. – volume: 210 start-page: 1176 year: 2018 end-page: 1184 ident: bib55 article-title: Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China publication-title: Chemosphere – volume: 149 start-page: 27 year: 2015 end-page: 36 ident: bib46 article-title: Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing–Tianjin–Hebei region publication-title: J. Environ. Manag. – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: bib36 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. – volume: 164 start-page: 370 year: 2017 end-page: 386 ident: bib35 article-title: Source apportionment of PM2.5 across China using LOTOS-EUROS publication-title: Atmos. Environ. – volume: 34 start-page: 3204 year: 2014 end-page: 3220 ident: bib47 article-title: Seasonal dependence of factors of year-to-year variations in South China AOD and Hong Kong air quality publication-title: Int. J. Climatol. – volume: 183 start-page: 225 year: 2018 end-page: 233 ident: bib49 article-title: Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a case study from the Beijing-Tianjin-Hebei region publication-title: Atmos. Environ. – volume: 179 start-page: 103 year: 2018 end-page: 113 ident: bib57 article-title: Correlating PM2.5 concentrations with air pollutant emissions: a longitudinal study of the Beijing-Tianjin-Hebei region publication-title: J. Clean. Prod. – year: 2021 ident: bib14 article-title: Drivers of PM2.5 air pollution deaths in China 2002–2017 publication-title: Nat. Geosci. – volume: 553 start-page: 429 year: 2016 end-page: 438 ident: bib39 article-title: “APEC blue”—the effects and implications of joint pollution prevention and control program publication-title: Sci. Total Environ. – volume: 112 start-page: 1312 year: 2016 end-page: 1318 ident: bib31 article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China publication-title: J. Clean. Prod. – volume: 25 start-page: 22629 year: 2018 end-page: 22640 ident: bib37 article-title: Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China publication-title: Environ. Sci. Pollut. Res. – volume: 66 start-page: 1 year: 2019 end-page: 42 ident: bib7 article-title: Hierarchical clustering: objective functions and algorithms publication-title: J. ACM – volume: 223 start-page: 200 year: 2017 end-page: 212 ident: bib25 article-title: PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events publication-title: Environ. Pollut. – year: 2016 ident: bib45 article-title: Data Mining: Practical Machine Learning Tools and Techniques – start-page: 5691 year: 2015 end-page: 5696 ident: bib8 article-title: Detective: automatically identify and analyze malware processes in forensic scenarios via DLLs, 2015 publication-title: IEEE Int. Conf. Commun. – volume: 16 start-page: 4276 year: 2019 ident: bib41 article-title: Spatio-temporal variation characteristics of PM2.5 in the Beijing–Tianjin–Hebei region, China, from 2013 to 2018 publication-title: Int. J. Environ. Res. Publ. Health – volume: 13 start-page: 1219 year: 2016 ident: bib18 article-title: Air pollution control policies in China: a retrospective and prospects publication-title: Int. J. Environ. Res. Publ. Health – volume: 262 start-page: 110341 year: 2020 ident: bib54 article-title: Mining sequential patterns of PM2.5 pollution between 338 cities in China publication-title: J. Environ. Manag. – volume: 46 start-page: 299 year: 2012 end-page: 308 ident: bib33 article-title: Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas publication-title: Atmos. Environ. – volume: 43 start-page: 2823 year: 2009 end-page: 2828 ident: bib43 article-title: A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos publication-title: Environ. Times – volume: 95 start-page: 598 year: 2014 end-page: 609 ident: bib16 article-title: Spatial and temporal variability of PM2.5 and PM10 over the north China plain and the Yangtze River Delta, China publication-title: Atmos. Environ. – volume: 248 start-page: 105159 year: 2021 ident: bib53 article-title: A modeling study of PM2.5 transboundary transport during a winter severe haze episode in southern Yangtze River Delta, China publication-title: Atmos. Res. – year: 2016 ident: 10.1016/j.envres.2021.112009_bib45 – volume: 46 start-page: 299 year: 2012 ident: 10.1016/j.envres.2021.112009_bib33 article-title: Long-range transport of spring dust storms in Inner Mongolia and impact on the China seas publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.09.058 – volume: 203 start-page: 207 year: 2018 ident: 10.1016/j.envres.2021.112009_bib59 article-title: PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2017.12.013 – volume: 265 start-page: 115086 year: 2020 ident: 10.1016/j.envres.2021.112009_bib51 article-title: Affinity zone identification approach for joint control of PM2.5 pollution over China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115086 – volume: 248 start-page: 105159 year: 2021 ident: 10.1016/j.envres.2021.112009_bib53 article-title: A modeling study of PM2.5 transboundary transport during a winter severe haze episode in southern Yangtze River Delta, China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.105159 – volume: 4 start-page: 65 year: 2002 ident: 10.1016/j.envres.2021.112009_bib9 article-title: Why so many clustering algorithms: a position paper publication-title: SIGKDD Explor. Newslett. doi: 10.1145/568574.568575 – start-page: 207 year: 1993 ident: 10.1016/j.envres.2021.112009_bib1 article-title: Mining association rules between sets of items in large databases – volume: 249 start-page: 109377 year: 2019 ident: 10.1016/j.envres.2021.112009_bib23 article-title: Provincial analysis and zoning of atmospheric pollution in China from the atmospheric transmission and the trade transfer perspective publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.109377 – volume: 46 start-page: 234 year: 1970 ident: 10.1016/j.envres.2021.112009_bib36 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 67 start-page: 250 year: 2016 ident: 10.1016/j.envres.2021.112009_bib40 article-title: A measure of spatial stratified heterogeneity publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2016.02.052 – volume: 66 start-page: 1 year: 2019 ident: 10.1016/j.envres.2021.112009_bib7 article-title: Hierarchical clustering: objective functions and algorithms publication-title: J. ACM doi: 10.1145/3321386 – volume: 37 start-page: 4799 year: 2016 ident: 10.1016/j.envres.2021.112009_bib44 article-title: Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories publication-title: Int. J. Rem. Sens. doi: 10.1080/01431161.2016.1220031 – start-page: 1 year: 2018 ident: 10.1016/j.envres.2021.112009_bib34 article-title: Study on the temporal and spatial variation of PM2.5 in eight main cities of Yunnan province – volume: 631–632 start-page: 524 year: 2018 ident: 10.1016/j.envres.2021.112009_bib52 article-title: Spatial-temporal patterns of PM2.5 concentrations for 338 Chinese cities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.057 – volume: 150 start-page: 129 year: 2014 ident: 10.1016/j.envres.2021.112009_bib3 article-title: Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005–2010) over Beijing, China publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2014.07.022 – start-page: 214 year: 2012 ident: 10.1016/j.envres.2021.112009_bib10 – volume: 8 start-page: 53 year: 2004 ident: 10.1016/j.envres.2021.112009_bib15 article-title: Mining frequent patterns without candidate generation: a frequent-pattern tree approach publication-title: Data Min. Knowl. Discov. doi: 10.1023/B:DAMI.0000005258.31418.83 – volume: 183 start-page: 225 year: 2018 ident: 10.1016/j.envres.2021.112009_bib49 article-title: Evolution of the spatiotemporal pattern of PM2.5 concentrations in China – a case study from the Beijing-Tianjin-Hebei region publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2018.03.041 – volume: 648 start-page: 902 year: 2019 ident: 10.1016/j.envres.2021.112009_bib21 article-title: Air pollution characteristics in China during 2015–2016: spatiotemporal variations and key meteorological factors publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.181 – volume: 83 start-page: 8 year: 2019 ident: 10.1016/j.envres.2021.112009_bib24 article-title: Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016 publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2019.02.031 – volume: 207 start-page: 875 year: 2019 ident: 10.1016/j.envres.2021.112009_bib5 article-title: Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.10.080 – volume: 127 start-page: 303 year: 2016 ident: 10.1016/j.envres.2021.112009_bib6 article-title: Understanding temporal patterns and characteristics of air quality in Beijing: a local and regional perspective publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.12.011 – start-page: 5691 year: 2015 ident: 10.1016/j.envres.2021.112009_bib8 article-title: Detective: automatically identify and analyze malware processes in forensic scenarios via DLLs, 2015 publication-title: IEEE Int. Conf. Commun. – volume: 13 start-page: 1219 year: 2016 ident: 10.1016/j.envres.2021.112009_bib18 article-title: Air pollution control policies in China: a retrospective and prospects publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph13121219 – volume: 484 start-page: 161 year: 2012 ident: 10.1016/j.envres.2021.112009_bib56 article-title: Cleaning China's air publication-title: Nature doi: 10.1038/484161a – year: 2021 ident: 10.1016/j.envres.2021.112009_bib14 article-title: Drivers of PM2.5 air pollution deaths in China 2002–2017 publication-title: Nat. Geosci. doi: 10.1038/s41561-021-00792-3 – volume: 3 start-page: 777 year: 2020 ident: 10.1016/j.envres.2021.112009_bib20 article-title: China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits publication-title: One Earth doi: 10.1016/j.oneear.2020.11.012 – volume: 7 year: 2017 ident: 10.1016/j.envres.2021.112009_bib12 article-title: A survey of itemset mining publication-title: WIREs Data Min. Knowledge. Dis. – volume: 24 start-page: 69 year: 2012 ident: 10.1016/j.envres.2021.112009_bib27 article-title: Statistics corner: a guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 34 start-page: 3204 year: 2014 ident: 10.1016/j.envres.2021.112009_bib47 article-title: Seasonal dependence of factors of year-to-year variations in South China AOD and Hong Kong air quality publication-title: Int. J. Climatol. doi: 10.1002/joc.3905 – volume: 166 start-page: 262 year: 2015 ident: 10.1016/j.envres.2021.112009_bib13 article-title: Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.05.016 – volume: 2 start-page: 86 year: 2012 ident: 10.1016/j.envres.2021.112009_bib28 article-title: Algorithms for hierarchical clustering: an overview publication-title: WIREs Data Min. Knowledge. Dis. doi: 10.1002/widm.53 – volume: 112 start-page: 1312 year: 2016 ident: 10.1016/j.envres.2021.112009_bib31 article-title: The spatial-temporal characteristics and health impacts of ambient fine particulate matter in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.006 – volume: 223 start-page: 200 year: 2017 ident: 10.1016/j.envres.2021.112009_bib25 article-title: PM2.5 in the Yangtze River Delta, China: chemical compositions, seasonal variations, and regional pollution events publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.013 – volume: 67 start-page: 20 year: 2014 ident: 10.1016/j.envres.2021.112009_bib32 article-title: Enforcement and price controls in emissions trading publication-title: J. Environ. Econ. Manag. doi: 10.1016/j.jeem.2013.10.001 – volume: 25 start-page: 22629 year: 2018 ident: 10.1016/j.envres.2021.112009_bib37 article-title: Concentration characteristics, source apportionment, and oxidative damage of PM2.5-bound PAHs in petrochemical region in Xinjiang, NW China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-2082-3 – volume: 174 start-page: 25 year: 2018 ident: 10.1016/j.envres.2021.112009_bib38 article-title: A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in China based on long-term and massive data mining of pollutant concentration publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.11.027 – volume: 43 start-page: 2823 year: 2009 ident: 10.1016/j.envres.2021.112009_bib43 article-title: A study on variations of concentrations of particulate matter with different sizes in Lanzhou, China. Atmos publication-title: Environ. Times – volume: 196 start-page: 719 year: 2017 ident: 10.1016/j.envres.2021.112009_bib11 article-title: Trends of PM2.5 concentrations in China: a long term approach publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2017.03.074 – volume: 210 start-page: 1176 year: 2018 ident: 10.1016/j.envres.2021.112009_bib55 article-title: Spatiotemporal trends in PM2.5 levels from 2013 to 2017 and regional demarcations for joint prevention and control of atmospheric pollution in China publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.142 – volume: 16 start-page: 216 year: 2015 ident: 10.1016/j.envres.2021.112009_bib29 article-title: A primer to frequent itemset mining for bioinformatics publication-title: Briefings Bioinf. doi: 10.1093/bib/bbt074 – volume: 553 start-page: 429 year: 2016 ident: 10.1016/j.envres.2021.112009_bib39 article-title: “APEC blue”—the effects and implications of joint pollution prevention and control program publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.02.122 – volume: 16 start-page: 4276 year: 2019 ident: 10.1016/j.envres.2021.112009_bib41 article-title: Spatio-temporal variation characteristics of PM2.5 in the Beijing–Tianjin–Hebei region, China, from 2013 to 2018 publication-title: Int. J. Environ. Res. Publ. Health doi: 10.3390/ijerph16214276 – volume: 262 start-page: 110341 year: 2020 ident: 10.1016/j.envres.2021.112009_bib54 article-title: Mining sequential patterns of PM2.5 pollution between 338 cities in China publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110341 – volume: 11 start-page: 2906 year: 2011 ident: 10.1016/j.envres.2021.112009_bib30 article-title: An empirical study of classification algorithm evaluation for financial risk prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.11.028 – volume: 179 start-page: 108730 year: 2019 ident: 10.1016/j.envres.2021.112009_bib2 article-title: Exposure levels of air pollution (PM2.5) and associated health risk in Kuwait publication-title: Environ. Res. doi: 10.1016/j.envres.2019.108730 – volume: 170 start-page: 388 year: 2018 ident: 10.1016/j.envres.2021.112009_bib50 article-title: Mining sequential patterns of PM2.5 pollution in three zones in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.162 – volume: 229 start-page: 1019 year: 2017 ident: 10.1016/j.envres.2021.112009_bib19 article-title: Quantification of the sources of long-range transport of PM2.5 pollution in the Ordos region, Inner Mongolia, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.093 – volume: 110 start-page: 12936 year: 2013 ident: 10.1016/j.envres.2021.112009_bib4 article-title: Evidence on the impact of sustained exposure to air pollution on life expectancy from China's Huai River policy publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1300018110 – year: 2012 ident: 10.1016/j.envres.2021.112009_bib26 – volume: 13 start-page: 5685 year: 2013 ident: 10.1016/j.envres.2021.112009_bib58 article-title: Analysis of a winter regional haze event and its formation mechanism in the North China Plain publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-13-5685-2013 – volume: 149 start-page: 27 year: 2015 ident: 10.1016/j.envres.2021.112009_bib46 article-title: Will joint regional air pollution control be more cost-effective? An empirical study of China's Beijing–Tianjin–Hebei region publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.09.032 – volume: 9 start-page: 1221 year: 2018 ident: 10.1016/j.envres.2021.112009_bib48 article-title: Temporal characteristic and source analysis of PM2.5 in the most polluted city agglomeration of China publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2018.05.008 – volume: 164 start-page: 370 year: 2017 ident: 10.1016/j.envres.2021.112009_bib35 article-title: Source apportionment of PM2.5 across China using LOTOS-EUROS publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2017.06.003 – volume: 264 start-page: 114690 year: 2020 ident: 10.1016/j.envres.2021.112009_bib60 article-title: The heterogeneous effect of socioeconomic driving factors on PM2.5 in China's 30 province-level administrative regions: evidence from Bayesian hierarchical spatial quantile regression publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114690 – volume: 136 start-page: 196 year: 2015 ident: 10.1016/j.envres.2021.112009_bib22 article-title: Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population publication-title: Environ. Res. doi: 10.1016/j.envres.2014.06.029 – volume: 179 start-page: 103 year: 2018 ident: 10.1016/j.envres.2021.112009_bib57 article-title: Correlating PM2.5 concentrations with air pollutant emissions: a longitudinal study of the Beijing-Tianjin-Hebei region publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.072 – volume: 95 start-page: 598 year: 2014 ident: 10.1016/j.envres.2021.112009_bib16 article-title: Spatial and temporal variability of PM2.5 and PM10 over the north China plain and the Yangtze River Delta, China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2014.07.019 – volume: 56 start-page: 69 year: 2012 ident: 10.1016/j.envres.2021.112009_bib42 article-title: Understanding haze pollution over the southern Hebei area of China using the CMAQ model publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2012.04.013 |
| SSID | ssj0011530 |
| Score | 2.4115405 |
| Snippet | In recent years, severe air pollution has frequently occurred in China at the regional scale. The clustering method to define joint control regions is an... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112009 |
| SubjectTerms | air air pollution air quality algorithms China Cluster analysis cost effectiveness PM2.5 Pollution control Urban air pollution |
| Title | Cluster analysis of PM2.5 pollution in China using the frequent itemset clustering approach |
| URI | https://dx.doi.org/10.1016/j.envres.2021.112009 https://www.proquest.com/docview/2574399844 https://www.proquest.com/docview/2636431578 |
| Volume | 204 |
| WOSCitedRecordID | wos000704923300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-0953 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011530 issn: 0013-9351 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdrusNgjK1bWfdRNNgtOFiSHUvHUjq20ZUecgjsYCRZHumKUxK79M_f05fjtKxdD7sYR8iKyO-Xp_ee3wdCnymRVHHBkzqviySreZZwSe1HXimWE6NrVzL_tDg74_O5OA_trdaunUDRNPzmRlz9V6hhDMC2qbOPgLtfFAbgHkCHK8AO138C_viys8UPxnJQbuT8B53ktiGD_2KX6mcbZ4-7dUyXqlcuqLodu95sph1rv45LYgyFx7fc-JsMOdcbYOAVG_qhT4F-v7tFL1zCMDCz-VWbxdDpAPZqH3UVBSlhiWChVmwQpDTNBqIQFLnUVT64K6W9w-BiYppr2B4Y6ZRMNtO3i2LfOqz6EMIYnXZR-lVKu0rpV9lBu7TIBR-h3aNvJ_Pv_WslEO9pbGlhdx9zKV3A393d_E1XuXVqO1Vk9hK9CDYEPvLYv0JPTLOH9rcAwUFmr_fQc--ZxT7h7DX6GQiCI0HwssaOILgnCF402BEEO4JgIAiOBMGBIHhDEBwJ8gbNvpzMjr8mocVGollB26TKU6p5ZWpTTaUAdVyKXOW1yaeCVFYZF6qAG6KpAcsyVVqzKlOESiWEIpLto1GzbMxbhHVFqrSQBBR6nWUmU1JWZsrAAGGMKM0OEIu_ZalD-XnbBeWyvA_JA5T0T1358isPzC8iTGVQIb1qWAL3HnjyU0S1BAlrX5vJxiw7mJQ7o51n2T1zpgxUewLH37tH7vg9erb5g31Ao3bVmY_oqb5uF-vVIdop5vww0PgPZFmvJA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cluster+analysis+of+PM2.5+pollution+in+China+using+the+frequent+itemset+clustering+approach&rft.jtitle=Environmental+research&rft.au=Zhang%2C+Liankui&rft.au=Yang%2C+Guangfei&rft.date=2022-03-01&rft.issn=0013-9351&rft.volume=204&rft.spage=112009&rft_id=info:doi/10.1016%2Fj.envres.2021.112009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envres_2021_112009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |