Mechanical Characterisation of the Effect of Various Forming Processes Applied to Commercially Pure Titanium

This paper illustrates the effect of three forming processes viz. laser forming, mechanical forming and a combination process consisting of a laser forming step followed by a mechanical forming step, on the mechanical properties of commercially pure titanium. All three processes resulted in samples...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials characterization Ročník 96; s. 206 - 212
Hlavní autoři: Els-Botes, A., Fidder, H., Woudberg, S., McGrath, P.J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.10.2014
Elsevier
Témata:
ISSN:1044-5803, 1873-4189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper illustrates the effect of three forming processes viz. laser forming, mechanical forming and a combination process consisting of a laser forming step followed by a mechanical forming step, on the mechanical properties of commercially pure titanium. All three processes resulted in samples having a similar final radius of curvature. Evaluation of the formed samples includes residual stress measurements, fatigue testing, Charpy impact testing, microhardness measurements and microstructure evaluation. All results were compared to the various forming methods in order to determine which forming method is more suitable for which type of loading condition i.e. impact loading or cyclic loading. Fatigue testing of components produced by the various forming methods revealed that the laser forming process provided the best results when a high load was applied whereas at lower applied loads, the mechanical forming process showed the highest number of cycles to failure. Charpy impact testing done at room temperature and at a sub-zero temperature of −40°C revealed that the laser forming process negatively affected the toughness of the material. Residual stress measurements showed that the laser forming process resulte'd in the highest value of surface relieved residual stress values compared to the other two processes. •The mechanical properties of titanium decreased after various forming processes.•The microstructure of Ti changed after laser forming, but not the hardness.•Mechanical forming produced lower residual stresses than laser forming.•At low fatigue load conditions the residual stress is the dominate factor.•At high fatigue load conditions the microstructure is the dominate factor.
AbstractList This paper illustrates the effect of three forming processes viz. laser forming, mechanical forming and a combination process consisting of a laser forming step followed by a mechanical forming step, on the mechanical properties of commercially pure titanium. All three processes resulted in samples having a similar final radius of curvature. Evaluation of the formed samples includes residual stress measurements, fatigue testing, Charpy impact testing, microhardness measurements and microstructure evaluation. All results were compared to the various forming methods in order to determine which forming method is more suitable for which type of loading condition i.e. impact loading or cyclic loading. Fatigue testing of components produced by the various forming methods revealed that the laser forming process provided the best results when a high load was applied whereas at lower applied loads, the mechanical forming process showed the highest number of cycles to failure. Charpy impact testing done at room temperature and at a sub-zero temperature of −40°C revealed that the laser forming process negatively affected the toughness of the material. Residual stress measurements showed that the laser forming process resulte'd in the highest value of surface relieved residual stress values compared to the other two processes. •The mechanical properties of titanium decreased after various forming processes.•The microstructure of Ti changed after laser forming, but not the hardness.•Mechanical forming produced lower residual stresses than laser forming.•At low fatigue load conditions the residual stress is the dominate factor.•At high fatigue load conditions the microstructure is the dominate factor.
This paper illustrates the effect of three forming processes viz. laser forming, mechanical forming and a combination process consisting of a laser forming step followed by a mechanical forming step, on the mechanical properties of commercially pure titanium. All three processes resulted in samples having a similar final radius of curvature. Evaluation of the formed samples includes residual stress measurements, fatigue testing, Charpy impact testing, microhardness measurements and microstructure evaluation. All results were compared to the various forming methods in order to determine which forming method is more suitable for which type of loading condition i.e. impact loading or cyclic loading. Fatigue testing of components produced by the various forming methods revealed that the laser forming process provided the best results when a high load was applied whereas at lower applied loads, the mechanical forming process showed the highest number of cycles to failure. Charpy impact testing done at room temperature and at a sub-zero temperature of -40 degree C revealed that the laser forming process negatively affected the toughness of the material. Residual stress measurements showed that the laser forming process resulte'd in the highest value of surface relieved residual stress values compared to the other two processes.
Author Els-Botes, A.
McGrath, P.J.
Woudberg, S.
Fidder, H.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0003-0539-0426
  surname: Els-Botes
  fullname: Els-Botes, A.
  email: ABotes1@csir.co.za
  organization: CSIR — National Laser Center, Pretoria, South Africa
– sequence: 2
  givenname: H.
  surname: Fidder
  fullname: Fidder, H.
  email: FidderH@cput.ac.za
  organization: Department of Mechanical Engineering, Cape Peninsula University of Technology, Cape Town, South Africa
– sequence: 3
  givenname: S.
  surname: Woudberg
  fullname: Woudberg, S.
  email: woudberg@sun.ac.za
  organization: Applied Mathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
– sequence: 4
  givenname: P.J.
  surname: McGrath
  fullname: McGrath, P.J.
  email: Pat.McGrath@nmmu.ac.za
  organization: Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28789190$$DView record in Pascal Francis
BookMark eNqFkU9r3DAQxU1Jofn3EQq6FHqxo5FlW6aHEpakLaQkhzRXMSuPGi2ytZW0hXz7atntJZecJMF7b0bvd1adLGGhqvoIvAEO_dWmmTGbZ4yN4CAbrhoO4l11CmpoawlqPCl3LmXdKd5-qM5S2nDOewXDaeV_UnEuzqBnqxKBJlN0CbMLCwuW5WdiN9aSyfvXE0YXdondhji75Td7iMFQSpTY9XbrHU0sB7YK80zROPT-hT3sIrFHl8uI3XxRvbfoE10ez_Pq1-3N4-p7fXf_7cfq-q427SByPUnTtgOiRRLjWgnoqDeTROAGOQ3t2ipcq5EIpJSAvRk60_E1cSF6K6a2Pa8-H3K3MfzZUcp6dsmQ97hQWV9D34GEDnpRpJ-OUkylAxtxMS7pbXQzxhct1KBGGHnRfTnoTAwpRbLalE_tW8oRndfA9Z6F3ugjC71nobnShUVxd6_c_we85ft68FFp66-jqJNxtBiaXCxI9BTcGwn_AI_fqkg
CitedBy_id crossref_primary_10_3390_met10010017
crossref_primary_10_1016_j_matchar_2015_05_016
crossref_primary_10_1016_j_msea_2020_139442
crossref_primary_10_1007_s10853_018_2650_4
Cites_doi 10.1016/j.optlastec.2012.07.033
10.1088/0965-0393/3/1/009
10.1016/j.ijfatigue.2009.10.005
10.1016/S0924-0136(00)00831-1
10.1016/S1526-6125(00)70027-2
10.2351/1.521859
10.5957/jsp.1987.3.4.237
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
JG9
DOI 10.1016/j.matchar.2014.08.012
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
Physics
EISSN 1873-4189
EndPage 212
ExternalDocumentID 28789190
10_1016_j_matchar_2014_08_012
S1044580314002538
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HX~
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SSQ
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c372t-d4c337aafae29b8215e6cd4a10ca0e73bf8ab89ee14441a6c75c50be0226f2d33
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343346400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1044-5803
IngestDate Thu Oct 02 10:13:06 EDT 2025
Wed Apr 02 07:35:53 EDT 2025
Tue Nov 18 21:28:52 EST 2025
Sat Nov 29 02:52:43 EST 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Titanium
Fatigue
Forming
Microstructure
Laser
Forming processes
Mechanical properties
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-d4c337aafae29b8215e6cd4a10ca0e73bf8ab89ee14441a6c75c50be0226f2d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0539-0426
PQID 1651415162
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1651415162
pascalfrancis_primary_28789190
crossref_citationtrail_10_1016_j_matchar_2014_08_012
crossref_primary_10_1016_j_matchar_2014_08_012
elsevier_sciencedirect_doi_10_1016_j_matchar_2014_08_012
PublicationCentury 2000
PublicationDate 2014-10-01
PublicationDateYYYYMMDD 2014-10-01
PublicationDate_xml – month: 10
  year: 2014
  text: 2014-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Materials characterization
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Magee, Watkins, Steen (bb0070) 1998; 10
Vollersten (bb0105) 1994
Micro-measurements (bb0080) 1988
Walczyk, Vittal (bb0115) 2000; 2
Bartkowiak, Edwardson, Dearden, Watkins (bb0025) 2004
Chan (bb0030) 2010; 32
Donachie (bb0040) 2007
Namba (bb0085) 1987
Donachie (bb0035) 2000
ASTM Standard E23 (bb0005) 2002; 23–02
Marya, Edwards (bb0075) 2001; 108
ASTM Standard E466 (bb0015) 2002; 466(96)
Scully (bb0090) 1987; 3
Vollersten, Komel, Kals (bb0110) 1995; 3
Hughes (bb0065) 2004
Ganesh, Ramanaih (bb0055) 2011; 3
Shidid, Hoseinpour Gollo, Brandt, Mahdavian (bb0095) 2013; 47
Silve, Podschies, Steen, Watkins (bb0100) 1999
Hayashi, Ishii, Yoshimura, Harada (bb0060) 1994
ASTM Standard E384-99 (bb0010) 2002
ASTM Standard E837 (bb0020) 2002; 837(01)
Els-Botes, McGrath, Pienaar (bb0050) 2007; 23
Els-Botes (bb0045) 2005
ASTM Standard E23 (10.1016/j.matchar.2014.08.012_bb0005) 2002; 23–02
Vollersten (10.1016/j.matchar.2014.08.012_bb0110) 1995; 3
Walczyk (10.1016/j.matchar.2014.08.012_bb0115) 2000; 2
Donachie (10.1016/j.matchar.2014.08.012_bb0040) 2007
Scully (10.1016/j.matchar.2014.08.012_bb0090) 1987; 3
ASTM Standard E384-99 (10.1016/j.matchar.2014.08.012_bb0010) 2002
Silve (10.1016/j.matchar.2014.08.012_bb0100) 1999
Chan (10.1016/j.matchar.2014.08.012_bb0030) 2010; 32
Els-Botes (10.1016/j.matchar.2014.08.012_bb0050) 2007; 23
Ganesh (10.1016/j.matchar.2014.08.012_bb0055) 2011; 3
Donachie (10.1016/j.matchar.2014.08.012_bb0035) 2000
ASTM Standard E837 (10.1016/j.matchar.2014.08.012_bb0020) 2002; 837(01)
Hayashi (10.1016/j.matchar.2014.08.012_bb0060) 1994
Els-Botes (10.1016/j.matchar.2014.08.012_bb0045) 2005
Marya (10.1016/j.matchar.2014.08.012_bb0075) 2001; 108
Vollersten (10.1016/j.matchar.2014.08.012_bb0105) 1994
Hughes (10.1016/j.matchar.2014.08.012_bb0065) 2004
Shidid (10.1016/j.matchar.2014.08.012_bb0095) 2013; 47
Bartkowiak (10.1016/j.matchar.2014.08.012_bb0025) 2004
Namba (10.1016/j.matchar.2014.08.012_bb0085) 1987
Micro-measurements (10.1016/j.matchar.2014.08.012_bb0080) 1988
Magee (10.1016/j.matchar.2014.08.012_bb0070) 1998; 10
ASTM Standard E466 (10.1016/j.matchar.2014.08.012_bb0015) 2002; 466(96)
References_xml – volume: 108
  start-page: 376
  year: 2001
  end-page: 383
  ident: bb0075
  article-title: A study on the laser forming of near-alpha and metastable beta titanium alloy sheets
  publication-title: J. Mater. Process. Technol.
– year: 1988
  ident: bb0080
  article-title: Measurement of Residual Stresses by the Hole-drilling Strain Gage Method
– start-page: 345
  year: 1994
  end-page: 360
  ident: bb0105
  article-title: Mechanisms and models for laser forming
  publication-title: Laser Assisted Net Shape Engineering: Proceedings of the LANE'94 conference
– year: 2000
  ident: bb0035
  article-title: Titanium: A Technical Guide
– volume: 10
  start-page: 235
  year: 1998
  end-page: 246
  ident: bb0070
  article-title: Advances in laser forming
  publication-title: J. Laser Appl.
– volume: 837(01)
  year: 2002
  ident: bb0020
  publication-title: Standard Test Method for Determining Residual Stresses by the Hole-drilling Strain-gage Method
– year: 2004
  ident: bb0065
  article-title: Fatigue Behavoir of Laser Formed High Stength Low Alloy Sheet Material
– start-page: 601
  year: 1987
  end-page: 606
  ident: bb0085
  article-title: Laser forming of metals and alloys
  publication-title: Laser Advanced Materials Processing: Proceedings of the LAMP'87 conference
– volume: 3
  start-page: 237
  year: 1987
  end-page: 246
  ident: bb0090
  article-title: Laser line heating
  publication-title: J. Ship Prod.
– volume: 3
  start-page: 107
  year: 1995
  end-page: 119
  ident: bb0110
  article-title: The laser bending of steel foils for microparts by the buckling mechanism — a model
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 466(96)
  year: 2002
  ident: bb0015
  publication-title: Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
– volume: 47
  start-page: 242
  year: 2013
  end-page: 247
  ident: bb0095
  article-title: Study of effect of process parameters on titanium sheet metal bending using Nd:YAG laser
  publication-title: Opt. Laser Technol.
– year: 2005
  ident: bb0045
  article-title: Material Characterisation of Laser Formed Dual Phase Steel Components
– year: 2007
  ident: bb0040
  article-title: Titanium: A Technical Guide
– volume: 3
  start-page: 279
  year: 2011
  end-page: 283
  ident: bb0055
  article-title: Effect of rapid quenching and aging on tensile behavior of commercially pure (CP) titanium implant material
  publication-title: J. Eng. Technol. Res.
– volume: 2
  start-page: 258
  year: 2000
  end-page: 269
  ident: bb0115
  article-title: Bending of titanium sheet using laser forming
  publication-title: J. Manuf. Process.
– volume: 23–02
  year: 2002
  ident: bb0005
  publication-title: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
– year: 1994
  ident: bb0060
  article-title: Recrystallization behaviour of commercially pure titanium during hot rolling
  publication-title: Nippon Steel Technical Report
– year: 2002
  ident: bb0010
  article-title: Standard Test Method for Microindentation Hardness of Materials
– year: 2004
  ident: bb0025
  article-title: 2-D Laser Forming Comparative Study on Nd:YAG of Titanium Alloy Ti-6Al-4V. ICALEO 2004
– start-page: F87
  year: 1999
  end-page: F96
  ident: bb0100
  article-title: Laser forming — a new vocabulary for objects. In laser materials processing
  publication-title: Proceedings of the ICALEO'99 conference
– volume: 32
  start-page: 1428
  year: 2010
  end-page: 1446
  ident: bb0030
  article-title: Roles of microstructure in fatigue crack initiation
  publication-title: Int. J. Fatigue
– volume: 23
  start-page: 35
  year: 2007
  end-page: 38
  ident: bb0050
  article-title: Bending behaviour of high-strength low-alloy steel
  publication-title: R&D J. SAIMechE
– year: 1988
  ident: 10.1016/j.matchar.2014.08.012_bb0080
– year: 2004
  ident: 10.1016/j.matchar.2014.08.012_bb0025
– volume: 466(96)
  year: 2002
  ident: 10.1016/j.matchar.2014.08.012_bb0015
– volume: 47
  start-page: 242
  year: 2013
  ident: 10.1016/j.matchar.2014.08.012_bb0095
  article-title: Study of effect of process parameters on titanium sheet metal bending using Nd:YAG laser
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2012.07.033
– year: 1994
  ident: 10.1016/j.matchar.2014.08.012_bb0060
  article-title: Recrystallization behaviour of commercially pure titanium during hot rolling
– year: 2002
  ident: 10.1016/j.matchar.2014.08.012_bb0010
– volume: 3
  start-page: 107
  issue: 1
  year: 1995
  ident: 10.1016/j.matchar.2014.08.012_bb0110
  article-title: The laser bending of steel foils for microparts by the buckling mechanism — a model
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/3/1/009
– volume: 32
  start-page: 1428
  issue: 9
  year: 2010
  ident: 10.1016/j.matchar.2014.08.012_bb0030
  article-title: Roles of microstructure in fatigue crack initiation
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2009.10.005
– start-page: 601
  year: 1987
  ident: 10.1016/j.matchar.2014.08.012_bb0085
  article-title: Laser forming of metals and alloys
– volume: 108
  start-page: 376
  issue: 3
  year: 2001
  ident: 10.1016/j.matchar.2014.08.012_bb0075
  article-title: A study on the laser forming of near-alpha and metastable beta titanium alloy sheets
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(00)00831-1
– volume: 2
  start-page: 258
  issue: 4
  year: 2000
  ident: 10.1016/j.matchar.2014.08.012_bb0115
  article-title: Bending of titanium sheet using laser forming
  publication-title: J. Manuf. Process.
  doi: 10.1016/S1526-6125(00)70027-2
– volume: 10
  start-page: 235
  year: 1998
  ident: 10.1016/j.matchar.2014.08.012_bb0070
  article-title: Advances in laser forming
  publication-title: J. Laser Appl.
  doi: 10.2351/1.521859
– year: 2000
  ident: 10.1016/j.matchar.2014.08.012_bb0035
– volume: 3
  start-page: 279
  issue: 9
  year: 2011
  ident: 10.1016/j.matchar.2014.08.012_bb0055
  article-title: Effect of rapid quenching and aging on tensile behavior of commercially pure (CP) titanium implant material
  publication-title: J. Eng. Technol. Res.
– start-page: F87
  year: 1999
  ident: 10.1016/j.matchar.2014.08.012_bb0100
  article-title: Laser forming — a new vocabulary for objects. In laser materials processing
– volume: 23–02
  year: 2002
  ident: 10.1016/j.matchar.2014.08.012_bb0005
– year: 2007
  ident: 10.1016/j.matchar.2014.08.012_bb0040
– volume: 23
  start-page: 35
  issue: 1
  year: 2007
  ident: 10.1016/j.matchar.2014.08.012_bb0050
  article-title: Bending behaviour of high-strength low-alloy steel
  publication-title: R&D J. SAIMechE
– year: 2004
  ident: 10.1016/j.matchar.2014.08.012_bb0065
– volume: 837(01)
  year: 2002
  ident: 10.1016/j.matchar.2014.08.012_bb0020
– volume: 3
  start-page: 237
  issue: 4
  year: 1987
  ident: 10.1016/j.matchar.2014.08.012_bb0090
  article-title: Laser line heating
  publication-title: J. Ship Prod.
  doi: 10.5957/jsp.1987.3.4.237
– start-page: 345
  year: 1994
  ident: 10.1016/j.matchar.2014.08.012_bb0105
  article-title: Mechanisms and models for laser forming
– year: 2005
  ident: 10.1016/j.matchar.2014.08.012_bb0045
SSID ssj0006817
Score 2.0742838
Snippet This paper illustrates the effect of three forming processes viz. laser forming, mechanical forming and a combination process consisting of a laser forming...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 206
SubjectTerms Applied sciences
Cross-disciplinary physics: materials science; rheology
Exact sciences and technology
Fatigue
Fatigue testing
Forming
Impact tests
Laser
Lasers
Materials science
Mechanical properties
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Microstructure
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Production methods
Residual stress
Solidification
Titanium
Title Mechanical Characterisation of the Effect of Various Forming Processes Applied to Commercially Pure Titanium
URI https://dx.doi.org/10.1016/j.matchar.2014.08.012
https://www.proquest.com/docview/1651415162
Volume 96
WOSCitedRecordID wos000343346400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006817
  issn: 1044-5803
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLXKhgQIIRhDlMtkJN5QSuI4sfNYqg6Y2DRpBfoWOY6DOkVJtWbT4LfwY_lcX9oy0ACJl6ixlNrJObHP53wXhF5GheQpq8A2IUQGtCqLgMs4Dnga8SKSSoZimTL_Azs64tNpdtzrfXexMBc1axp-eZnN_yvU0AZg69DZv4Db_yk0wG8AHY4AOxz_CPhDpYN5l89-tMrG7JWhFpo2ZTGcfQJTWTvB7rfaJ-aLixtQCy9PQZvqIBJdmEnU9ddXx_qLw2QGmnJmszi4elCiM7eng4ltt982vvOP60Xwpu3MxDQceOrYLCawBvq2z-156TzPTnzroXwLhDUbQYODwfqORUS975vdRnOhNBuenmAW0iDhoZntlGnjLA5oZGoMuek625hvw3Rt6SbGI_vKqmA2KE4HYAPoJ6Ad-ugycav14N5MuH2ih6JHArYnKMKY30DbhCUZzJnbw_fj6YFf6VO-rOjsh76KEHv9y85-p33uzsUCWFGZUipXVMFS6kzuo3vWRsFDw60HqKeaHXRr5EoD7qA7a1ksH6J6xTj8M-NwW2FgHDaM02eWcdgyDnvGYcs43LV4nXFYMw47xu2ij_vjyehdYIt4BDJmpAtKCq8-E6ISimQFB4WpUllSEYVShIrFRcVFwTOlwLKnkUglS2QSFgq0ZVqRMo4foa2mbdRjhNOsyDgBAV0kgiaxFFRmSSgLUKRZSRXrI-oeby5thntdaKXOnSvjaW5RyTUquS7AGpE-GvjL5ibFy3UXcIddbnWq0Z85EO66S_c2sPYdEs54BuK8j1448HMAVX-9E40CWPIoBdsG9HlKnvx7_0_R7dUb-QxtdWfn6jm6KS-62eJsz_L7Bw120uQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Characterisation+of+the+Effect+of+Various+Forming+Processes+Applied+to+Commercially+Pure+Titanium&rft.jtitle=Materials+characterization&rft.au=Els-Botes%2C+A.&rft.au=Fidder%2C+H.&rft.au=Woudberg%2C+S.&rft.au=McGrath%2C+P.J.&rft.date=2014-10-01&rft.pub=Elsevier+Inc&rft.issn=1044-5803&rft.eissn=1873-4189&rft.volume=96&rft.spage=206&rft.epage=212&rft_id=info:doi/10.1016%2Fj.matchar.2014.08.012&rft.externalDocID=S1044580314002538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1044-5803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1044-5803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1044-5803&client=summon