Reducing distance computations for distance-based outliers

•The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 147; S. 113215
Hauptverfasser: Angiulli, Fabrizio, Basta, Stefano, Lodi, Stefano, Sartori, Claudio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Ltd 01.06.2020
Elsevier BV
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios. The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis.
AbstractList The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis.
•The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios. The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis.
ArticleNumber 113215
Author Angiulli, Fabrizio
Sartori, Claudio
Lodi, Stefano
Basta, Stefano
Author_xml – sequence: 1
  givenname: Fabrizio
  surname: Angiulli
  fullname: Angiulli, Fabrizio
  email: f.angiulli@dimes.unical.it
  organization: DIMES Department, University of Calabria, Via P. Bucci 41C, Rende (CS) 87036, Italy
– sequence: 2
  givenname: Stefano
  orcidid: 0000-0002-9852-988X
  surname: Basta
  fullname: Basta, Stefano
  email: stefano.basta@cnr.it
  organization: Institute of High Performance Computing and Networking, Italian National Research Council, Via P. Bucci 8-9 C, Rende (CS) 87036, Italy
– sequence: 3
  givenname: Stefano
  surname: Lodi
  fullname: Lodi, Stefano
  email: stefano.lodi@unibo.it
  organization: Department of Computer Science and Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
– sequence: 4
  givenname: Claudio
  surname: Sartori
  fullname: Sartori, Claudio
  email: claudio.sartori@unibo.it
  organization: Department of Computer Science and Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy
BookMark eNp9kE1Lw0AQhhepYFv9A54CnlNnk002ES9S_IKCIHpeJrsT2dJm6-5G8d-bGvHgoaeBmfeZYZ4Zm3SuI8bOOSw48PJyvaDwiYsMsqHB84wXR2zKK5mnpazzCZtCXchUcClO2CyENQCXAHLKrp7J9Np2b4mxIWKnKdFuu-sjRuu6kLTO_03SBgOZxPVxY8mHU3bc4ibQ2W-ds9e725flQ7p6un9c3qxSncsspkZwgDrThamhKjSSRqyavGlBSjDQCCpyLKu2qQ1HLOoGRVMSouacDPIyn7OLce_Ou_eeQlRr1_tuOKkyIUDUUP6ksjGlvQvBU6t23m7RfykOau9IrdXekdo7UqOjAar-QdqOn0ePdnMYvR5RGl7_GHyooC0Nloz1pKMyzh7CvwHYhITb
CitedBy_id crossref_primary_10_1007_s10489_023_04593_6
crossref_primary_10_1016_j_inffus_2023_102133
crossref_primary_10_1038_s41598_024_68323_9
crossref_primary_10_1002_spe_3020
crossref_primary_10_1109_JSEN_2023_3243230
crossref_primary_10_3390_app10051876
crossref_primary_10_1016_j_cosrev_2024_100665
crossref_primary_10_1109_ACCESS_2024_3499316
crossref_primary_10_1016_j_asoc_2024_112348
crossref_primary_10_1016_j_eswa_2023_121304
crossref_primary_10_3233_IDA_216257
crossref_primary_10_1007_s40435_025_01795_3
crossref_primary_10_1088_1742_6596_2555_1_012024
Cites_doi 10.1145/1497577.1497581
10.1109/TKDE.2005.31
10.14778/1920841.1921021
10.1109/TKDE.2007.1037
10.1109/TKDE.2012.71
10.1145/1541880.1541882
10.1109/TPDS.2016.2528984
10.1109/TKDE.2006.29
10.1007/s10618-008-0093-2
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113215
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113215
S0957417420300415
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-d410092c5d9085caecaa8b3bf0770d0b4e53a68fb9d1aa59ba4b6eaac11eda163
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521117700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 06:51:39 EST 2025
Sat Nov 29 07:04:49 EST 2025
Tue Nov 18 21:45:04 EST 2025
Fri Feb 23 02:48:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Parallel and distributed algorithms
Outlier detection
Distance-based outliers
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-d410092c5d9085caecaa8b3bf0770d0b4e53a68fb9d1aa59ba4b6eaac11eda163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9852-988X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0957417420300415
PQID 2440490616
PQPubID 2045477
ParticipantIDs proquest_journals_2440490616
crossref_primary_10_1016_j_eswa_2020_113215
crossref_citationtrail_10_1016_j_eswa_2020_113215
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113215
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Angiulli (bib0001) 2018; 18
Angiulli, Basta, Lodi, Sartori (bib0003) 2016; 27
Han, Kamber, Pei (bib0015) 2011
Tao, Xiao, Zhou (bib0019) 2006
Chandola, Banerjee, Kumar (bib0012) 2009; 41
Vu, Gopalkrishnan (bib0020) 2009
.
Bhaduri, Matthews, Giannella (bib0011) 2011
Orair, Teixeira, Meira, Wang, Parthasarathy (bib0017) 2010; 3
Angiulli, Pizzuti (bib0006) 2002
François, Wertz, Verleysen (bib0013) 2007; 19
Angiulli, Basta, Lodi, Sartori (bib0002) 2013; 25
Angiulli, Pizzuti (bib0007) 2005; 2
Ramaswamy, Rastogi, Shim (bib0018) 2000
Angiulli, Fassetti (bib0005) 2009; 3
Ghoting, Parthasarathy, Otey (bib0014) 2008; 16
Knorr, Ng (bib0016) 1998
Angiulli, Basta, Pizzuti (bib0004) 2006; 18
Asuncion, A., & Newman, D. (2007). UCI machine learning repository.
Bay, Schwabacher (bib0009) 2003
Beyer, Goldstein, Ramakrishnan, Shaft (bib0010) 1999
Angiulli (10.1016/j.eswa.2020.113215_bib0003) 2016; 27
Han (10.1016/j.eswa.2020.113215_bib0015) 2011
Orair (10.1016/j.eswa.2020.113215_bib0017) 2010; 3
Vu (10.1016/j.eswa.2020.113215_bib0020) 2009
Chandola (10.1016/j.eswa.2020.113215_bib0012) 2009; 41
Ramaswamy (10.1016/j.eswa.2020.113215_bib0018) 2000
Angiulli (10.1016/j.eswa.2020.113215_bib0005) 2009; 3
François (10.1016/j.eswa.2020.113215_bib0013) 2007; 19
Knorr (10.1016/j.eswa.2020.113215_bib0016) 1998
Angiulli (10.1016/j.eswa.2020.113215_bib0006) 2002
10.1016/j.eswa.2020.113215_bib0008
Bay (10.1016/j.eswa.2020.113215_bib0009) 2003
Angiulli (10.1016/j.eswa.2020.113215_bib0004) 2006; 18
Angiulli (10.1016/j.eswa.2020.113215_bib0001) 2018; 18
Beyer (10.1016/j.eswa.2020.113215_bib0010) 1999
Angiulli (10.1016/j.eswa.2020.113215_bib0007) 2005; 2
Bhaduri (10.1016/j.eswa.2020.113215_bib0011) 2011
Angiulli (10.1016/j.eswa.2020.113215_bib0002) 2013; 25
Tao (10.1016/j.eswa.2020.113215_bib0019) 2006
Ghoting (10.1016/j.eswa.2020.113215_bib0014) 2008; 16
References_xml – volume: 18
  start-page: 1
  year: 2018
  end-page: 60
  ident: bib0001
  article-title: On the behavior of intrinsically high-dimensional spaces: Distances, direct and reverse nearest neighbors, and hubness
  publication-title: Journal of Machine Learning Research
– start-page: 427
  year: 2000
  end-page: 438
  ident: bib0018
  article-title: Efficient algorithms for mining outliers from large data sets
  publication-title: Proceedings of the ACM SIGMOD international conference on management of data
– volume: 3
  start-page: 1469
  year: 2010
  end-page: 1480
  ident: bib0017
  article-title: Distance-based outlier detection: consolidation and renewed bearing
  publication-title: Proceedings of the VLDB Endowment
– volume: 27
  start-page: 3256
  year: 2016
  end-page: 3268
  ident: bib0003
  article-title: GPU strategies for distance-based outlier detection
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 3
  year: 2009
  ident: bib0005
  article-title: Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets
  publication-title: ACM Transactions on Knowledge Discovery from Data
– year: 2011
  ident: bib0015
  article-title: Data Mining: Concepts and Techniques
– start-page: 392
  year: 1998
  end-page: 403
  ident: bib0016
  article-title: Algorithms for mining distance-based outliers in large datasets
  publication-title: Proceedings of the 24rd international conference on very large data bases
– volume: 18
  start-page: 145
  year: 2006
  end-page: 160
  ident: bib0004
  article-title: Distance-based detection and prediction of outliers
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 16
  start-page: 349
  year: 2008
  end-page: 364
  ident: bib0014
  article-title: Fast mining of distance-based outliers in high-dimensional datasets
  publication-title: Data Mining and Knowledge Discovery
– reference: .
– start-page: 217
  year: 1999
  end-page: 235
  ident: bib0010
  article-title: When is “nearest neighbor” meaningful?
  publication-title: Proceedings of the 7th international conference on database theory
– start-page: 394
  year: 2006
  end-page: 403
  ident: bib0019
  article-title: Mining distance-based outliers from large databases in any metric space
  publication-title: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 25
  start-page: 1520
  year: 2013
  end-page: 1532
  ident: bib0002
  article-title: Distributed strategies for mining outliers in large data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– reference: Asuncion, A., & Newman, D. (2007). UCI machine learning repository.
– volume: 2
  start-page: 203
  year: 2005
  end-page: 215
  ident: bib0007
  article-title: Outlier mining in large high-dimensional data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 859
  year: 2011
  end-page: 867
  ident: bib0011
  article-title: Algorithms for speeding up distance-based outlier detection
  publication-title: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining
– start-page: 29
  year: 2003
  end-page: 38
  ident: bib0009
  article-title: Mining distance-based outliers in near linear time with randomization and a simple pruning rule
  publication-title: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining
– volume: 41
  start-page: 1
  year: 2009
  end-page: 58
  ident: bib0012
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
– start-page: 160
  year: 2009
  end-page: 175
  ident: bib0020
  article-title: Efficient Pruning Schemes for Distance-Based Outlier Detection
  publication-title: Machine Learning and Knowledge Discovery in Databases
– start-page: 15
  year: 2002
  end-page: 26
  ident: bib0006
  article-title: Fast outlier detection in large high-dimensional data sets
  publication-title: Proceedings of the 6th european conference on principles and practice of knowledge discovery in databases
– volume: 19
  start-page: 873
  year: 2007
  end-page: 886
  ident: bib0013
  article-title: The concentration of fractional distances
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113215_bib0001
  article-title: On the behavior of intrinsically high-dimensional spaces: Distances, direct and reverse nearest neighbors, and hubness
  publication-title: Journal of Machine Learning Research
– volume: 3
  year: 2009
  ident: 10.1016/j.eswa.2020.113215_bib0005
  article-title: Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets
  publication-title: ACM Transactions on Knowledge Discovery from Data
  doi: 10.1145/1497577.1497581
– start-page: 217
  year: 1999
  ident: 10.1016/j.eswa.2020.113215_bib0010
  article-title: When is “nearest neighbor” meaningful?
– year: 2011
  ident: 10.1016/j.eswa.2020.113215_bib0015
– start-page: 15
  year: 2002
  ident: 10.1016/j.eswa.2020.113215_bib0006
  article-title: Fast outlier detection in large high-dimensional data sets
– volume: 2
  start-page: 203
  year: 2005
  ident: 10.1016/j.eswa.2020.113215_bib0007
  article-title: Outlier mining in large high-dimensional data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.31
– start-page: 859
  year: 2011
  ident: 10.1016/j.eswa.2020.113215_bib0011
  article-title: Algorithms for speeding up distance-based outlier detection
– start-page: 427
  year: 2000
  ident: 10.1016/j.eswa.2020.113215_bib0018
  article-title: Efficient algorithms for mining outliers from large data sets
– start-page: 394
  year: 2006
  ident: 10.1016/j.eswa.2020.113215_bib0019
  article-title: Mining distance-based outliers from large databases in any metric space
– volume: 3
  start-page: 1469
  year: 2010
  ident: 10.1016/j.eswa.2020.113215_bib0017
  article-title: Distance-based outlier detection: consolidation and renewed bearing
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/1920841.1921021
– start-page: 160
  year: 2009
  ident: 10.1016/j.eswa.2020.113215_bib0020
  article-title: Efficient Pruning Schemes for Distance-Based Outlier Detection
– start-page: 29
  year: 2003
  ident: 10.1016/j.eswa.2020.113215_bib0009
  article-title: Mining distance-based outliers in near linear time with randomization and a simple pruning rule
– volume: 19
  start-page: 873
  year: 2007
  ident: 10.1016/j.eswa.2020.113215_bib0013
  article-title: The concentration of fractional distances
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2007.1037
– start-page: 392
  year: 1998
  ident: 10.1016/j.eswa.2020.113215_bib0016
  article-title: Algorithms for mining distance-based outliers in large datasets
– volume: 25
  start-page: 1520
  year: 2013
  ident: 10.1016/j.eswa.2020.113215_bib0002
  article-title: Distributed strategies for mining outliers in large data sets
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2012.71
– volume: 41
  start-page: 1
  year: 2009
  ident: 10.1016/j.eswa.2020.113215_bib0012
  article-title: Anomaly detection: A survey
  publication-title: ACM Computing Surveys
  doi: 10.1145/1541880.1541882
– volume: 27
  start-page: 3256
  year: 2016
  ident: 10.1016/j.eswa.2020.113215_bib0003
  article-title: GPU strategies for distance-based outlier detection
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2016.2528984
– volume: 18
  start-page: 145
  year: 2006
  ident: 10.1016/j.eswa.2020.113215_bib0004
  article-title: Distance-based detection and prediction of outliers
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2006.29
– ident: 10.1016/j.eswa.2020.113215_bib0008
– volume: 16
  start-page: 349
  year: 2008
  ident: 10.1016/j.eswa.2020.113215_bib0014
  article-title: Fast mining of distance-based outliers in high-dimensional datasets
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-008-0093-2
SSID ssj0017007
Score 2.4354203
Snippet •The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The...
The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113215
SubjectTerms Algorithms
Data analysis
Distance-based outliers
Fraud
Intrusion
Molecular biology
Optimization
Outlier detection
Outliers (statistics)
Parallel and distributed algorithms
Title Reducing distance computations for distance-based outliers
URI https://dx.doi.org/10.1016/j.eswa.2020.113215
https://www.proquest.com/docview/2440490616
Volume 147
WOSCitedRecordID wos000521117700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXapYdeSgut-Kxy6A0ZJXESO9wQAtGqQlUBaW-WP6sglEW7oSB-PZ7YzsK2oHLoJYqcxPJmXuy345k3CH2pjM4VUzkmkhhcVKzGgliDmaJMplYBqe-LTdCTEzYe1z-CK3vWlxOgbctub-ur_2pq1-aMDamzLzD30KlrcOfO6O7ozO6O_2T4nyDGCg4ADdQQvlvVV24IMW8QVhivYFjD9A4EBTUhEn7w0oMEcheEnmMK3IPN7rn74FcD-0k9CRZy2tz5wC7vHQ3c9LQzVrRD-_eJbv7SfOp-zMQnvh9cimsdOgouiTydh04NvkWKi8yX3xmmWa-sGSZKKHDv8zj_mMO9O-Fi18xuQBgq7-vOhJsfC2YvLGRDeGGMXLvg0AeHPrjv4zVaymlZsxFa2v96OP42bDjR1GfWx5GH_CofCrg4kqc4zMJq3lOUs_foXfhvkex7THxAr0y7gpZj3Y4kTOOraC9CJIlASB5CJHEQSR5DJIkQ-YjOjw7PDo5xqKGBFaF5h3WRgayWKnXtyLUSRgnBJJE2pTTVqSxMSUTFrKx1JkRZS1HIygihssxo4cj6JzRqJ61ZQwkToNREKusorON1TEhLiSK51cqWVJF1lMW3wlUQmIc6J5f8aXuso53hmSsvr_Ls3WV82TwQRE_8uMPOs89tRcvw8KXOeA7KmLWjs9XGiwaxid7OMb-FRt302myjN-p318ymnwOu7gF9AZMK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+distance+computations+for+distance-based+outliers&rft.jtitle=Expert+systems+with+applications&rft.au=Angiulli%2C+Fabrizio&rft.au=Basta%2C+Stefano&rft.au=Lodi%2C+Stefano&rft.au=Sartori%2C+Claudio&rft.date=2020-06-01&rft.issn=0957-4174&rft.volume=147&rft.spage=113215&rft_id=info:doi/10.1016%2Fj.eswa.2020.113215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113215
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon