Reducing distance computations for distance-based outliers
•The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios....
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 147; S. 113215 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Ltd
01.06.2020
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios.
The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis. |
|---|---|
| AbstractList | The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis. •The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The experiments outline that a large amount of distance computations is saved.•FastSolvingSet is suitable to be used in parallel/distributed scenarios. The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to molecular biology. In some of such applications the ability to process large amounts of data in a very short time can be critical, for instance in intrusion and fraud detection. This paper explores a solution for the optimisation of an exact, unsupervised outlier detection method by avoiding unnecessary computations, and therefore reducing the running time and making the method usable also in settings where response times are crucial. In particular, we enhance the SolvingSet-based approach by using a mechanism that exploits the knowledge learned during the algorithm execution and avoids a large amount of distance computations. We demonstrate the strength of the proposed solution, named FastSolvingSet, through both theoretical and experimental analysis. |
| ArticleNumber | 113215 |
| Author | Angiulli, Fabrizio Sartori, Claudio Lodi, Stefano Basta, Stefano |
| Author_xml | – sequence: 1 givenname: Fabrizio surname: Angiulli fullname: Angiulli, Fabrizio email: f.angiulli@dimes.unical.it organization: DIMES Department, University of Calabria, Via P. Bucci 41C, Rende (CS) 87036, Italy – sequence: 2 givenname: Stefano orcidid: 0000-0002-9852-988X surname: Basta fullname: Basta, Stefano email: stefano.basta@cnr.it organization: Institute of High Performance Computing and Networking, Italian National Research Council, Via P. Bucci 8-9 C, Rende (CS) 87036, Italy – sequence: 3 givenname: Stefano surname: Lodi fullname: Lodi, Stefano email: stefano.lodi@unibo.it organization: Department of Computer Science and Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy – sequence: 4 givenname: Claudio surname: Sartori fullname: Sartori, Claudio email: claudio.sartori@unibo.it organization: Department of Computer Science and Engineering, University of Bologna, Viale Risorgimento 2, Bologna 40136, Italy |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54CnlNnk002ES9S_IKCIHpeJrsT2dJm6-5G8d-bGvHgoaeBmfeZYZ4Zm3SuI8bOOSw48PJyvaDwiYsMsqHB84wXR2zKK5mnpazzCZtCXchUcClO2CyENQCXAHLKrp7J9Np2b4mxIWKnKdFuu-sjRuu6kLTO_03SBgOZxPVxY8mHU3bc4ibQ2W-ds9e725flQ7p6un9c3qxSncsspkZwgDrThamhKjSSRqyavGlBSjDQCCpyLKu2qQ1HLOoGRVMSouacDPIyn7OLce_Ou_eeQlRr1_tuOKkyIUDUUP6ksjGlvQvBU6t23m7RfykOau9IrdXekdo7UqOjAar-QdqOn0ePdnMYvR5RGl7_GHyooC0Nloz1pKMyzh7CvwHYhITb |
| CitedBy_id | crossref_primary_10_1007_s10489_023_04593_6 crossref_primary_10_1016_j_inffus_2023_102133 crossref_primary_10_1038_s41598_024_68323_9 crossref_primary_10_1002_spe_3020 crossref_primary_10_1109_JSEN_2023_3243230 crossref_primary_10_3390_app10051876 crossref_primary_10_1016_j_cosrev_2024_100665 crossref_primary_10_1109_ACCESS_2024_3499316 crossref_primary_10_1016_j_asoc_2024_112348 crossref_primary_10_1016_j_eswa_2023_121304 crossref_primary_10_3233_IDA_216257 crossref_primary_10_1007_s40435_025_01795_3 crossref_primary_10_1088_1742_6596_2555_1_012024 |
| Cites_doi | 10.1145/1497577.1497581 10.1109/TKDE.2005.31 10.14778/1920841.1921021 10.1109/TKDE.2007.1037 10.1109/TKDE.2012.71 10.1145/1541880.1541882 10.1109/TPDS.2016.2528984 10.1109/TKDE.2006.29 10.1007/s10618-008-0093-2 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jun 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113215 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113215 S0957417420300415 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c372t-d410092c5d9085caecaa8b3bf0770d0b4e53a68fb9d1aa59ba4b6eaac11eda163 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521117700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 06:51:39 EST 2025 Sat Nov 29 07:04:49 EST 2025 Tue Nov 18 21:45:04 EST 2025 Fri Feb 23 02:48:48 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Parallel and distributed algorithms Outlier detection Distance-based outliers |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-d410092c5d9085caecaa8b3bf0770d0b4e53a68fb9d1aa59ba4b6eaac11eda163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9852-988X |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0957417420300415 |
| PQID | 2440490616 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2440490616 crossref_primary_10_1016_j_eswa_2020_113215 crossref_citationtrail_10_1016_j_eswa_2020_113215 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113215 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 2020-06-00 20200601 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Angiulli (bib0001) 2018; 18 Angiulli, Basta, Lodi, Sartori (bib0003) 2016; 27 Han, Kamber, Pei (bib0015) 2011 Tao, Xiao, Zhou (bib0019) 2006 Chandola, Banerjee, Kumar (bib0012) 2009; 41 Vu, Gopalkrishnan (bib0020) 2009 . Bhaduri, Matthews, Giannella (bib0011) 2011 Orair, Teixeira, Meira, Wang, Parthasarathy (bib0017) 2010; 3 Angiulli, Pizzuti (bib0006) 2002 François, Wertz, Verleysen (bib0013) 2007; 19 Angiulli, Basta, Lodi, Sartori (bib0002) 2013; 25 Angiulli, Pizzuti (bib0007) 2005; 2 Ramaswamy, Rastogi, Shim (bib0018) 2000 Angiulli, Fassetti (bib0005) 2009; 3 Ghoting, Parthasarathy, Otey (bib0014) 2008; 16 Knorr, Ng (bib0016) 1998 Angiulli, Basta, Pizzuti (bib0004) 2006; 18 Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Bay, Schwabacher (bib0009) 2003 Beyer, Goldstein, Ramakrishnan, Shaft (bib0010) 1999 Angiulli (10.1016/j.eswa.2020.113215_bib0003) 2016; 27 Han (10.1016/j.eswa.2020.113215_bib0015) 2011 Orair (10.1016/j.eswa.2020.113215_bib0017) 2010; 3 Vu (10.1016/j.eswa.2020.113215_bib0020) 2009 Chandola (10.1016/j.eswa.2020.113215_bib0012) 2009; 41 Ramaswamy (10.1016/j.eswa.2020.113215_bib0018) 2000 Angiulli (10.1016/j.eswa.2020.113215_bib0005) 2009; 3 François (10.1016/j.eswa.2020.113215_bib0013) 2007; 19 Knorr (10.1016/j.eswa.2020.113215_bib0016) 1998 Angiulli (10.1016/j.eswa.2020.113215_bib0006) 2002 10.1016/j.eswa.2020.113215_bib0008 Bay (10.1016/j.eswa.2020.113215_bib0009) 2003 Angiulli (10.1016/j.eswa.2020.113215_bib0004) 2006; 18 Angiulli (10.1016/j.eswa.2020.113215_bib0001) 2018; 18 Beyer (10.1016/j.eswa.2020.113215_bib0010) 1999 Angiulli (10.1016/j.eswa.2020.113215_bib0007) 2005; 2 Bhaduri (10.1016/j.eswa.2020.113215_bib0011) 2011 Angiulli (10.1016/j.eswa.2020.113215_bib0002) 2013; 25 Tao (10.1016/j.eswa.2020.113215_bib0019) 2006 Ghoting (10.1016/j.eswa.2020.113215_bib0014) 2008; 16 |
| References_xml | – volume: 18 start-page: 1 year: 2018 end-page: 60 ident: bib0001 article-title: On the behavior of intrinsically high-dimensional spaces: Distances, direct and reverse nearest neighbors, and hubness publication-title: Journal of Machine Learning Research – start-page: 427 year: 2000 end-page: 438 ident: bib0018 article-title: Efficient algorithms for mining outliers from large data sets publication-title: Proceedings of the ACM SIGMOD international conference on management of data – volume: 3 start-page: 1469 year: 2010 end-page: 1480 ident: bib0017 article-title: Distance-based outlier detection: consolidation and renewed bearing publication-title: Proceedings of the VLDB Endowment – volume: 27 start-page: 3256 year: 2016 end-page: 3268 ident: bib0003 article-title: GPU strategies for distance-based outlier detection publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 3 year: 2009 ident: bib0005 article-title: Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets publication-title: ACM Transactions on Knowledge Discovery from Data – year: 2011 ident: bib0015 article-title: Data Mining: Concepts and Techniques – start-page: 392 year: 1998 end-page: 403 ident: bib0016 article-title: Algorithms for mining distance-based outliers in large datasets publication-title: Proceedings of the 24rd international conference on very large data bases – volume: 18 start-page: 145 year: 2006 end-page: 160 ident: bib0004 article-title: Distance-based detection and prediction of outliers publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 16 start-page: 349 year: 2008 end-page: 364 ident: bib0014 article-title: Fast mining of distance-based outliers in high-dimensional datasets publication-title: Data Mining and Knowledge Discovery – reference: . – start-page: 217 year: 1999 end-page: 235 ident: bib0010 article-title: When is “nearest neighbor” meaningful? publication-title: Proceedings of the 7th international conference on database theory – start-page: 394 year: 2006 end-page: 403 ident: bib0019 article-title: Mining distance-based outliers from large databases in any metric space publication-title: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining – volume: 25 start-page: 1520 year: 2013 end-page: 1532 ident: bib0002 article-title: Distributed strategies for mining outliers in large data sets publication-title: IEEE Transactions on Knowledge and Data Engineering – reference: Asuncion, A., & Newman, D. (2007). UCI machine learning repository. – volume: 2 start-page: 203 year: 2005 end-page: 215 ident: bib0007 article-title: Outlier mining in large high-dimensional data sets publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 859 year: 2011 end-page: 867 ident: bib0011 article-title: Algorithms for speeding up distance-based outlier detection publication-title: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining – start-page: 29 year: 2003 end-page: 38 ident: bib0009 article-title: Mining distance-based outliers in near linear time with randomization and a simple pruning rule publication-title: Proceedings of the 9th ACM SIGKDD international conference on knowledge discovery and data mining – volume: 41 start-page: 1 year: 2009 end-page: 58 ident: bib0012 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys – start-page: 160 year: 2009 end-page: 175 ident: bib0020 article-title: Efficient Pruning Schemes for Distance-Based Outlier Detection publication-title: Machine Learning and Knowledge Discovery in Databases – start-page: 15 year: 2002 end-page: 26 ident: bib0006 article-title: Fast outlier detection in large high-dimensional data sets publication-title: Proceedings of the 6th european conference on principles and practice of knowledge discovery in databases – volume: 19 start-page: 873 year: 2007 end-page: 886 ident: bib0013 article-title: The concentration of fractional distances publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2020.113215_bib0001 article-title: On the behavior of intrinsically high-dimensional spaces: Distances, direct and reverse nearest neighbors, and hubness publication-title: Journal of Machine Learning Research – volume: 3 year: 2009 ident: 10.1016/j.eswa.2020.113215_bib0005 article-title: Dolphin: An efficient algorithm for mining distance-based outliers in very large datasets publication-title: ACM Transactions on Knowledge Discovery from Data doi: 10.1145/1497577.1497581 – start-page: 217 year: 1999 ident: 10.1016/j.eswa.2020.113215_bib0010 article-title: When is “nearest neighbor” meaningful? – year: 2011 ident: 10.1016/j.eswa.2020.113215_bib0015 – start-page: 15 year: 2002 ident: 10.1016/j.eswa.2020.113215_bib0006 article-title: Fast outlier detection in large high-dimensional data sets – volume: 2 start-page: 203 year: 2005 ident: 10.1016/j.eswa.2020.113215_bib0007 article-title: Outlier mining in large high-dimensional data sets publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.31 – start-page: 859 year: 2011 ident: 10.1016/j.eswa.2020.113215_bib0011 article-title: Algorithms for speeding up distance-based outlier detection – start-page: 427 year: 2000 ident: 10.1016/j.eswa.2020.113215_bib0018 article-title: Efficient algorithms for mining outliers from large data sets – start-page: 394 year: 2006 ident: 10.1016/j.eswa.2020.113215_bib0019 article-title: Mining distance-based outliers from large databases in any metric space – volume: 3 start-page: 1469 year: 2010 ident: 10.1016/j.eswa.2020.113215_bib0017 article-title: Distance-based outlier detection: consolidation and renewed bearing publication-title: Proceedings of the VLDB Endowment doi: 10.14778/1920841.1921021 – start-page: 160 year: 2009 ident: 10.1016/j.eswa.2020.113215_bib0020 article-title: Efficient Pruning Schemes for Distance-Based Outlier Detection – start-page: 29 year: 2003 ident: 10.1016/j.eswa.2020.113215_bib0009 article-title: Mining distance-based outliers in near linear time with randomization and a simple pruning rule – volume: 19 start-page: 873 year: 2007 ident: 10.1016/j.eswa.2020.113215_bib0013 article-title: The concentration of fractional distances publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2007.1037 – start-page: 392 year: 1998 ident: 10.1016/j.eswa.2020.113215_bib0016 article-title: Algorithms for mining distance-based outliers in large datasets – volume: 25 start-page: 1520 year: 2013 ident: 10.1016/j.eswa.2020.113215_bib0002 article-title: Distributed strategies for mining outliers in large data sets publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2012.71 – volume: 41 start-page: 1 year: 2009 ident: 10.1016/j.eswa.2020.113215_bib0012 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys doi: 10.1145/1541880.1541882 – volume: 27 start-page: 3256 year: 2016 ident: 10.1016/j.eswa.2020.113215_bib0003 article-title: GPU strategies for distance-based outlier detection publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2016.2528984 – volume: 18 start-page: 145 year: 2006 ident: 10.1016/j.eswa.2020.113215_bib0004 article-title: Distance-based detection and prediction of outliers publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2006.29 – ident: 10.1016/j.eswa.2020.113215_bib0008 – volume: 16 start-page: 349 year: 2008 ident: 10.1016/j.eswa.2020.113215_bib0014 article-title: Fast mining of distance-based outliers in high-dimensional datasets publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-008-0093-2 |
| SSID | ssj0017007 |
| Score | 2.4354203 |
| Snippet | •The paper introduces the FastSolvingSet algorithm to discover outliers.•This algorithm computes the distance based outliers with no approximation.•The... The mining task of outlier detection is essential in many expert and intelligent systems exploited in a wide range of applications, from intrusion detection to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113215 |
| SubjectTerms | Algorithms Data analysis Distance-based outliers Fraud Intrusion Molecular biology Optimization Outlier detection Outliers (statistics) Parallel and distributed algorithms |
| Title | Reducing distance computations for distance-based outliers |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113215 https://www.proquest.com/docview/2440490616 |
| Volume | 147 |
| WOSCitedRecordID | wos000521117700017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELXapYdeSgut-Kxy6A0ZJXESO9wQAtGqQlUBaW-WP6sglEW7oSB-PZ7YzsK2oHLoJYqcxPJmXuy345k3CH2pjM4VUzkmkhhcVKzGgliDmaJMplYBqe-LTdCTEzYe1z-CK3vWlxOgbctub-ur_2pq1-aMDamzLzD30KlrcOfO6O7ozO6O_2T4nyDGCg4ADdQQvlvVV24IMW8QVhivYFjD9A4EBTUhEn7w0oMEcheEnmMK3IPN7rn74FcD-0k9CRZy2tz5wC7vHQ3c9LQzVrRD-_eJbv7SfOp-zMQnvh9cimsdOgouiTydh04NvkWKi8yX3xmmWa-sGSZKKHDv8zj_mMO9O-Fi18xuQBgq7-vOhJsfC2YvLGRDeGGMXLvg0AeHPrjv4zVaymlZsxFa2v96OP42bDjR1GfWx5GH_CofCrg4kqc4zMJq3lOUs_foXfhvkex7THxAr0y7gpZj3Y4kTOOraC9CJIlASB5CJHEQSR5DJIkQ-YjOjw7PDo5xqKGBFaF5h3WRgayWKnXtyLUSRgnBJJE2pTTVqSxMSUTFrKx1JkRZS1HIygihssxo4cj6JzRqJ61ZQwkToNREKusorON1TEhLiSK51cqWVJF1lMW3wlUQmIc6J5f8aXuso53hmSsvr_Ls3WV82TwQRE_8uMPOs89tRcvw8KXOeA7KmLWjs9XGiwaxid7OMb-FRt302myjN-p318ymnwOu7gF9AZMK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reducing+distance+computations+for+distance-based+outliers&rft.jtitle=Expert+systems+with+applications&rft.au=Angiulli%2C+Fabrizio&rft.au=Basta%2C+Stefano&rft.au=Lodi%2C+Stefano&rft.au=Sartori%2C+Claudio&rft.date=2020-06-01&rft.issn=0957-4174&rft.volume=147&rft.spage=113215&rft_id=info:doi/10.1016%2Fj.eswa.2020.113215&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113215 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |