Electricity theft detection based on stacked sparse denoising autoencoder
Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the...
Uložené v:
| Vydané v: | International journal of electrical power & energy systems Ročník 125; s. 106448 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.02.2021
|
| Predmet: | |
| ISSN: | 0142-0615, 1879-3517 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the autoencoder can learn the effective features from the data and then reconstruct the inputs as much as possible. For the anomalous behavior, since it contributes little to the autoencoder, the detector returns to a comparatively higher reconstruction error; hence the theft users can be recognized by setting an appropriate error threshold. To improve the feature extraction ability and the robustness, the sparsity and noise are introduced into the autoencoder, and the particle swarm optimization algorithm is applied to optimize these hyper-parameters. Moreover, the receiver operating characteristic curve is put forward to estimate the optimal error threshold. Finally, the proposed approach is evaluated and verified using the electricity dataset in Fujian, China. |
|---|---|
| AbstractList | Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the autoencoder can learn the effective features from the data and then reconstruct the inputs as much as possible. For the anomalous behavior, since it contributes little to the autoencoder, the detector returns to a comparatively higher reconstruction error; hence the theft users can be recognized by setting an appropriate error threshold. To improve the feature extraction ability and the robustness, the sparsity and noise are introduced into the autoencoder, and the particle swarm optimization algorithm is applied to optimize these hyper-parameters. Moreover, the receiver operating characteristic curve is put forward to estimate the optimal error threshold. Finally, the proposed approach is evaluated and verified using the electricity dataset in Fujian, China. |
| ArticleNumber | 106448 |
| Author | Xu, Qifeng Huang, Yifan |
| Author_xml | – sequence: 1 givenname: Yifan surname: Huang fullname: Huang, Yifan – sequence: 2 givenname: Qifeng surname: Xu fullname: Xu, Qifeng email: ranger123098@163.com |
| BookMark | eNqFkMFOwzAQRC1UJNrCH3DID6TYiWM7HJBQVUqlSlzgbDmbNTiUpLINUv8eR-HEAU67Gu2sZt6CzPqhR0KuGV0xysRNt3IdHjGsClqMkuBcnZE5U7LOy4rJGZlTxoucClZdkEUIHaVU1ryYk93mgBC9AxdPWXxDG7MWY5Lc0GeNCdhmaQnRwHtaw9H4gOmiH1xw_WtmPuOAPQwt-ktybs0h4NXPXJKXh83z-jHfP2136_t9DqUsYg5QMqEYWsUNV5xKZbmsW1WLAsq6NA0AN1YVvAXkjQLBGqEUyNrWFaWVKZfkdvoLfgjBo9UpuxnzRm_cQTOqRyi60xMUPULRE5Rk5r_MR-8-jD_9Z7ubbJiKfTn0OoBLvbF1PrHS7eD-fvANSraA7A |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3222883 crossref_primary_10_1016_j_energy_2024_132477 crossref_primary_10_1007_s13369_021_06313_z crossref_primary_10_1007_s10489_022_04069_z crossref_primary_10_1109_ACCESS_2023_3274543 crossref_primary_10_1016_j_ijepes_2023_109283 crossref_primary_10_1016_j_jup_2021_101304 crossref_primary_10_3390_s22207818 crossref_primary_10_1016_j_ijepes_2024_109960 crossref_primary_10_32604_cmc_2022_028856 crossref_primary_10_3390_su142215001 crossref_primary_10_1049_esi2_12094 crossref_primary_10_1007_s10489_025_06663_3 crossref_primary_10_1109_ACCESS_2021_3113592 crossref_primary_10_3389_fenrg_2023_1232930 crossref_primary_10_1016_j_ijepes_2022_108642 crossref_primary_10_1109_TIM_2023_3324674 crossref_primary_10_3390_en16217460 crossref_primary_10_1109_ACCESS_2024_3429304 crossref_primary_10_1002_ese3_1541 crossref_primary_10_1109_TIM_2025_3552857 crossref_primary_10_1016_j_apenergy_2023_122157 crossref_primary_10_1016_j_engappai_2025_110795 crossref_primary_10_1177_09544062241296596 crossref_primary_10_1109_ACCESS_2022_3150047 crossref_primary_10_1016_j_epsr_2022_107975 crossref_primary_10_1016_j_ijepes_2023_109075 crossref_primary_10_1016_j_egyr_2024_06_015 crossref_primary_10_1049_gtd2_13056 crossref_primary_10_1111_exsy_12701 crossref_primary_10_1016_j_ijepes_2022_108257 crossref_primary_10_1016_j_ijepes_2021_107004 crossref_primary_10_3390_electricity5020017 crossref_primary_10_1109_ACCESS_2024_3366493 crossref_primary_10_1109_ACCESS_2022_3215532 crossref_primary_10_32604_cmc_2021_018000 crossref_primary_10_1007_s00521_023_08222_8 crossref_primary_10_1016_j_segan_2024_101415 crossref_primary_10_1109_ACCESS_2022_3150016 crossref_primary_10_1007_s42979_023_01911_0 crossref_primary_10_1109_TIM_2021_3127649 crossref_primary_10_3390_s22145348 crossref_primary_10_3390_app13063506 crossref_primary_10_1007_s11831_024_10137_z crossref_primary_10_3390_en17071580 crossref_primary_10_1016_j_egyr_2021_10_024 crossref_primary_10_1109_TIM_2025_3602529 crossref_primary_10_1109_JIOT_2024_3481213 crossref_primary_10_1007_s00477_023_02617_8 crossref_primary_10_3389_fenrg_2022_984473 crossref_primary_10_3390_en15082778 crossref_primary_10_1109_TII_2024_3495734 crossref_primary_10_1016_j_ecmx_2025_100965 crossref_primary_10_1016_j_ijepes_2024_110130 crossref_primary_10_1109_TSG_2023_3349280 crossref_primary_10_1016_j_eswa_2022_116733 crossref_primary_10_1186_s13638_023_02258_z crossref_primary_10_1007_s00170_023_11997_8 crossref_primary_10_1016_j_renene_2021_04_102 crossref_primary_10_1109_ACCESS_2022_3171229 crossref_primary_10_1016_j_geoen_2023_211446 crossref_primary_10_1016_j_ijepes_2023_109570 crossref_primary_10_1016_j_ress_2022_108680 crossref_primary_10_3390_app15042193 |
| Cites_doi | 10.1016/j.apenergy.2019.01.076 10.1016/j.enpol.2010.11.037 10.1109/TSG.2015.2425222 10.1109/ACCESS.2019.2891315 10.1007/978-3-319-22264-6_5 10.1016/j.apenergy.2017.10.014 10.1007/978-3-642-33338-5_11 10.1109/JSTSP.2018.2833749 10.1109/TAFFC.2016.2531682 10.1214/aos/996986505 10.1016/j.ijepes.2017.04.005 10.1109/TSG.2016.2560801 10.1109/TSG.2017.2703842 10.1016/j.asoc.2019.106060 10.1016/j.jpdc.2017.06.007 10.1109/TII.2019.2898171 10.1109/DSN.2016.44 10.1016/j.epsr.2018.01.005 10.1109/TPWRD.2009.2030890 10.1016/j.patrec.2005.10.010 10.1109/TII.2017.2785963 10.1016/j.epsr.2019.105876 10.1007/978-3-319-33331-1_16 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2020.106448 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| ExternalDocumentID | 10_1016_j_ijepes_2020_106448 S014206151933666X |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD |
| ID | FETCH-LOGICAL-c372t-cc31681ef84a484078f479d8962c393abcc4af824dce4b8c61b688c79f95005a3 |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594696900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Sat Nov 29 07:27:37 EST 2025 Tue Nov 18 21:06:28 EST 2025 Fri Feb 23 02:45:13 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature extraction Data reconstruction Receiver operating characteristic curve Electricity theft detection Stack autoencoder |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-cc31681ef84a484078f479d8962c393abcc4af824dce4b8c61b688c79f95005a3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijepes_2020_106448 crossref_primary_10_1016_j_ijepes_2020_106448 elsevier_sciencedirect_doi_10_1016_j_ijepes_2020_106448 |
| PublicationCentury | 2000 |
| PublicationDate | February 2021 2021-02-00 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zheng, Yang, Niu (b0040) Apr. 2018; 14 Badrinath Krishna V, Weaver GA, Sanders WH. PCA-based method for detecting integrity attacks on advanced metering infrastructure. In: Proceedings of quantitative evaluation of systems (QEST). Springer Verlag; 2015. p. 70–85. Larochelle, Bengio, Louradour (b0105) 2009; 1 Depuru, Wang, Devabhaktuni (b0010) Feb. 2011; 39 Zhao, Mao (b0095) 2017; 8 Yildiz, Bilbao, Dore (b0030) Dec. 2017; 208 Vincent, Larochelle, Bengio (b0115) 2008 Ramos, Rodrigues, de Souza (b0045) Apr. 2016; 9 Bengio, Lamblin, Popovici (b0120) 2007; 19 Nagi, Yap, Tiong (b0005) Apr. 2010; 25 Gao, Foggo, Yu (b0050) Sep. 2019; 15 Fenza, Gallo, Loia (b0065) Jan. 2019; 7 Chen, Zheng, Kang (b0020) Sep. 2018; 42 Pulling the plug on energy theft, electric light and power. Badrinath Krishna V, Lee K, Weaver GA et al. F-DETA: A framework for detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE/IFIP international conference on dependable systems and networks (DSN); June 2016. p. 407–18. Zhu, Chen, Zhang (b0100) Jan. 2020; 88 He, Mendis, Wei (b0075) Sep. 2017; 8 Tong, Li, Lang (b0085) Jun. 2018; 117 Mashima D, Cardenas AA. Evaluating electricity theft detectors in smart grid networks. In: Proceedings of RAID’12, vol. 7462. Springer; 2012. p. 210–29. Razavi, Gharipour, Fleury (b0060) Jan. 2019; 238 Badrinath Krishna V, Iyer RK, Sanders WH. ARIMA-based modeling and validation of consumption readings in power grids. In: Proceedings of critical information infrastructure security (CRITIS). Springer Verlag; 2015. Yip, Wong, Hew (b0055) 2017; 91 . Qiu, Tang, Liu (b0090) Sep. 2019; 174 Fan, Zhang, Zhang (b0135) 2001; 29 Jokar, Arianpoo, Leung (b0035) Jan. 2016; 7 Krishna, Gunter, Sanders (b0070) Aug. 2018; 12 Goodfellow, Bengio, Aaron (b0080) 2016 Messinis, Hatziargyriou (b0025) 2018; 158 Vincent, Larochelle, Lajoie (b0110) 2010; 11 Fawcett (b0125) 2006; 27 10.1016/j.ijepes.2020.106448_b0130 Depuru (10.1016/j.ijepes.2020.106448_b0010) 2011; 39 Nagi (10.1016/j.ijepes.2020.106448_b0005) 2010; 25 10.1016/j.ijepes.2020.106448_b0015 Ramos (10.1016/j.ijepes.2020.106448_b0045) 2016; 9 Messinis (10.1016/j.ijepes.2020.106448_b0025) 2018; 158 Yip (10.1016/j.ijepes.2020.106448_b0055) 2017; 91 Yildiz (10.1016/j.ijepes.2020.106448_b0030) 2017; 208 Vincent (10.1016/j.ijepes.2020.106448_b0115) 2008 Fenza (10.1016/j.ijepes.2020.106448_b0065) 2019; 7 Vincent (10.1016/j.ijepes.2020.106448_b0110) 2010; 11 Qiu (10.1016/j.ijepes.2020.106448_b0090) 2019; 174 Zhu (10.1016/j.ijepes.2020.106448_b0100) 2020; 88 Chen (10.1016/j.ijepes.2020.106448_b0020) 2018; 42 Zheng (10.1016/j.ijepes.2020.106448_b0040) 2018; 14 Krishna (10.1016/j.ijepes.2020.106448_b0070) 2018; 12 He (10.1016/j.ijepes.2020.106448_b0075) 2017; 8 10.1016/j.ijepes.2020.106448_b0140 10.1016/j.ijepes.2020.106448_b0145 Razavi (10.1016/j.ijepes.2020.106448_b0060) 2019; 238 Fan (10.1016/j.ijepes.2020.106448_b0135) 2001; 29 Bengio (10.1016/j.ijepes.2020.106448_b0120) 2007; 19 Jokar (10.1016/j.ijepes.2020.106448_b0035) 2016; 7 Tong (10.1016/j.ijepes.2020.106448_b0085) 2018; 117 Zhao (10.1016/j.ijepes.2020.106448_b0095) 2017; 8 Gao (10.1016/j.ijepes.2020.106448_b0050) 2019; 15 Larochelle (10.1016/j.ijepes.2020.106448_b0105) 2009; 1 Goodfellow (10.1016/j.ijepes.2020.106448_b0080) 2016 Fawcett (10.1016/j.ijepes.2020.106448_b0125) 2006; 27 10.1016/j.ijepes.2020.106448_b0150 |
| References_xml | – reference: Mashima D, Cardenas AA. Evaluating electricity theft detectors in smart grid networks. In: Proceedings of RAID’12, vol. 7462. Springer; 2012. p. 210–29. – volume: 15 start-page: 5076 year: Sep. 2019 end-page: 5088 ident: b0050 article-title: A physically inspired data-driven model for electricity theft detection with smart meter data publication-title: IEEE Trans Ind Inf – volume: 238 start-page: 481 year: Jan. 2019 end-page: 494 ident: b0060 article-title: A practical feature-engineering framework for electricity theft detection in smart grids publication-title: Appl Energy – volume: 12 start-page: 790 year: Aug. 2018 end-page: 805 ident: b0070 article-title: Evaluating detectors on optimal attack vectors that enable electricity theft and DER fraud publication-title: IEEE J Sel Top Signal Process – volume: 9 start-page: 676 year: Apr. 2016 end-page: 683 ident: b0045 article-title: On the study of commercial losses in brazil: a binary black hole algorithm for theft characterization publication-title: IEEE Trans Smart Grid – volume: 39 start-page: 1007 year: Feb. 2011 end-page: 1015 ident: b0010 article-title: Electricity theft: overview, issues, prevention and a smart meter based approach to control theft publication-title: Energy Policy – volume: 14 start-page: 1606 year: Apr. 2018 end-page: 1615 ident: b0040 article-title: Wide & deep convolutional neural networks for electricity-theft detection to secure smart grids publication-title: IEEE Trans Ind Inf – volume: 208 start-page: 402 year: Dec. 2017 end-page: 427 ident: b0030 article-title: Recent advances in the analysis of residential electricity consumption and applications of smart meter data publication-title: Appl Energy – volume: 29 start-page: 153 year: 2001 end-page: 193 ident: b0135 article-title: Generalized likelihood ratio statistics and Wilks phenomenon publication-title: Ann Stat – volume: 1 start-page: 1 year: 2009 end-page: 40 ident: b0105 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b0110 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 42 start-page: 189 year: Sep. 2018 end-page: 199 ident: b0020 article-title: Detection methods of abnormal electricity consumption behaviors: review and prospect publication-title: Autom Electric Power Syst – volume: 91 start-page: 230 year: 2017 end-page: 240 ident: b0055 article-title: Detection of energy theft and defective smart meters in smart grids using linear regression publication-title: Electr Power Energy Syst – reference: Badrinath Krishna V, Weaver GA, Sanders WH. PCA-based method for detecting integrity attacks on advanced metering infrastructure. In: Proceedings of quantitative evaluation of systems (QEST). Springer Verlag; 2015. p. 70–85. – volume: 174 start-page: 10586 year: Sep. 2019 ident: b0090 article-title: Power quality disturbances recognition using modified S transform and parallel stack sparse auto-encoder publication-title: Electr Power Syst Res – volume: 8 start-page: 328 year: 2017 end-page: 339 ident: b0095 article-title: Cyberbullying detection based on semantic-enhanced marginalized denoising auto-encoder publication-title: IEEE Trans Affect Comput – volume: 7 start-page: 216 year: Jan. 2016 end-page: 226 ident: b0035 article-title: Electricity theft detection in AMI using customers’ consumption patterns publication-title: IEEE Trans Smart Grid – volume: 117 start-page: 267 year: Jun. 2018 end-page: 273 ident: b0085 article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders publication-title: J Parallel Distrib Comput – volume: 158 start-page: 250 year: 2018 end-page: 266 ident: b0025 article-title: Review of non-technical loss detection methods publication-title: Electr Power Syst Res – reference: >. – volume: 88 year: Jan. 2020 ident: b0100 article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings publication-title: Appl Soft Comput J – reference: Badrinath Krishna V, Iyer RK, Sanders WH. ARIMA-based modeling and validation of consumption readings in power grids. In: Proceedings of critical information infrastructure security (CRITIS). Springer Verlag; 2015. – volume: 25 start-page: 1162 year: Apr. 2010 end-page: 1171 ident: b0005 article-title: Nontechnical loss detection for metered customers in power utility using support vector machines publication-title: IEEE Trans Power Del – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: b0125 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett – reference: Pulling the plug on energy theft, electric light and power. < – volume: 7 start-page: 9645 year: Jan. 2019 end-page: 9657 ident: b0065 article-title: Drift-aware methodology for anomaly detection in smart grid publication-title: IEEE Access – volume: 8 start-page: 2505 year: Sep. 2017 end-page: 2516 ident: b0075 article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism publication-title: IEEE Trans Smart Grid – year: 2016 ident: b0080 article-title: Deep learning – reference: Badrinath Krishna V, Lee K, Weaver GA et al. F-DETA: A framework for detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE/IFIP international conference on dependable systems and networks (DSN); June 2016. p. 407–18. – year: 2008 ident: b0115 article-title: Extracting and composing robust features with denoising autoencoders publication-title: 25th International Conference on Machine Learning, ICML – volume: 19 start-page: 153 year: 2007 end-page: 160 ident: b0120 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inform Process Syst – volume: 238 start-page: 481 year: 2019 ident: 10.1016/j.ijepes.2020.106448_b0060 article-title: A practical feature-engineering framework for electricity theft detection in smart grids publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.076 – volume: 39 start-page: 1007 issue: 2 year: 2011 ident: 10.1016/j.ijepes.2020.106448_b0010 article-title: Electricity theft: overview, issues, prevention and a smart meter based approach to control theft publication-title: Energy Policy doi: 10.1016/j.enpol.2010.11.037 – volume: 7 start-page: 216 issue: 1 year: 2016 ident: 10.1016/j.ijepes.2020.106448_b0035 article-title: Electricity theft detection in AMI using customers’ consumption patterns publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2425222 – volume: 7 start-page: 9645 year: 2019 ident: 10.1016/j.ijepes.2020.106448_b0065 article-title: Drift-aware methodology for anomaly detection in smart grid publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891315 – ident: 10.1016/j.ijepes.2020.106448_b0140 doi: 10.1007/978-3-319-22264-6_5 – ident: 10.1016/j.ijepes.2020.106448_b0015 – volume: 208 start-page: 402 year: 2017 ident: 10.1016/j.ijepes.2020.106448_b0030 article-title: Recent advances in the analysis of residential electricity consumption and applications of smart meter data publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.014 – ident: 10.1016/j.ijepes.2020.106448_b0130 doi: 10.1007/978-3-642-33338-5_11 – volume: 12 start-page: 790 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2020.106448_b0070 article-title: Evaluating detectors on optimal attack vectors that enable electricity theft and DER fraud publication-title: IEEE J Sel Top Signal Process doi: 10.1109/JSTSP.2018.2833749 – volume: 8 start-page: 328 issue: 3 year: 2017 ident: 10.1016/j.ijepes.2020.106448_b0095 article-title: Cyberbullying detection based on semantic-enhanced marginalized denoising auto-encoder publication-title: IEEE Trans Affect Comput doi: 10.1109/TAFFC.2016.2531682 – volume: 29 start-page: 153 issue: 1 year: 2001 ident: 10.1016/j.ijepes.2020.106448_b0135 article-title: Generalized likelihood ratio statistics and Wilks phenomenon publication-title: Ann Stat doi: 10.1214/aos/996986505 – volume: 91 start-page: 230 year: 2017 ident: 10.1016/j.ijepes.2020.106448_b0055 article-title: Detection of energy theft and defective smart meters in smart grids using linear regression publication-title: Electr Power Energy Syst doi: 10.1016/j.ijepes.2017.04.005 – volume: 9 start-page: 676 issue: 2 year: 2016 ident: 10.1016/j.ijepes.2020.106448_b0045 article-title: On the study of commercial losses in brazil: a binary black hole algorithm for theft characterization publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2560801 – volume: 8 start-page: 2505 issue: 5 year: 2017 ident: 10.1016/j.ijepes.2020.106448_b0075 article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2703842 – volume: 88 year: 2020 ident: 10.1016/j.ijepes.2020.106448_b0100 article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2019.106060 – volume: 117 start-page: 267 year: 2018 ident: 10.1016/j.ijepes.2020.106448_b0085 article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders publication-title: J Parallel Distrib Comput doi: 10.1016/j.jpdc.2017.06.007 – volume: 15 start-page: 5076 issue: 9 year: 2019 ident: 10.1016/j.ijepes.2020.106448_b0050 article-title: A physically inspired data-driven model for electricity theft detection with smart meter data publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2898171 – ident: 10.1016/j.ijepes.2020.106448_b0150 doi: 10.1109/DSN.2016.44 – year: 2008 ident: 10.1016/j.ijepes.2020.106448_b0115 article-title: Extracting and composing robust features with denoising autoencoders – volume: 158 start-page: 250 year: 2018 ident: 10.1016/j.ijepes.2020.106448_b0025 article-title: Review of non-technical loss detection methods publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2018.01.005 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.ijepes.2020.106448_b0110 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – volume: 42 start-page: 189 issue: 17 year: 2018 ident: 10.1016/j.ijepes.2020.106448_b0020 article-title: Detection methods of abnormal electricity consumption behaviors: review and prospect publication-title: Autom Electric Power Syst – year: 2016 ident: 10.1016/j.ijepes.2020.106448_b0080 – volume: 25 start-page: 1162 issue: 2 year: 2010 ident: 10.1016/j.ijepes.2020.106448_b0005 article-title: Nontechnical loss detection for metered customers in power utility using support vector machines publication-title: IEEE Trans Power Del doi: 10.1109/TPWRD.2009.2030890 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: 10.1016/j.ijepes.2020.106448_b0125 article-title: An introduction to ROC analysis publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 19 start-page: 153 year: 2007 ident: 10.1016/j.ijepes.2020.106448_b0120 article-title: Greedy layer-wise training of deep networks publication-title: Adv Neural Inform Process Syst – volume: 1 start-page: 1 issue: 10 year: 2009 ident: 10.1016/j.ijepes.2020.106448_b0105 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res – volume: 14 start-page: 1606 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2020.106448_b0040 article-title: Wide & deep convolutional neural networks for electricity-theft detection to secure smart grids publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2785963 – volume: 174 start-page: 10586 year: 2019 ident: 10.1016/j.ijepes.2020.106448_b0090 article-title: Power quality disturbances recognition using modified S transform and parallel stack sparse auto-encoder publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.105876 – ident: 10.1016/j.ijepes.2020.106448_b0145 doi: 10.1007/978-3-319-33331-1_16 |
| SSID | ssj0007942 |
| Score | 2.5549738 |
| Snippet | Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106448 |
| SubjectTerms | Data reconstruction Electricity theft detection Feature extraction Receiver operating characteristic curve Stack autoencoder |
| Title | Electricity theft detection based on stacked sparse denoising autoencoder |
| URI | https://dx.doi.org/10.1016/j.ijepes.2020.106448 |
| Volume | 125 |
| WOSCitedRecordID | wos000594696900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KOmLpE2KDr0Fl13LXknHUDY0PYQWUnBPRpZH4KV4l11vyc_vjCQ_Skpf0IsfwrLNfKPRaDQPxt6ANflczVySg6mSDG8TXVmXOJjNKpuZGQ52X2xCXl-rotAfY0KFnS8nINtW3d7qzX-FGtsQbAqd_Qu4h5diA14j6HhE2PH4R8AvfWGbxpJ6jdqd685r6CBUBKc5q6b9AdQJcfjW5yhPtjsKnWrXjbcamH23ptyWdfTaXY2e7qPhcJJuAuLXKKCLCq55VoIQULibZEP3nBNt018aN_JksaemT42DOIdGE0Q6772We7tYHxszOiIFU2VKdSPCnjUE8aqkptgB-YP8DZHPd2R5MCus3jYr2ABlVk-pkdaT49w1eBSSk1rq1TMtBC7JivvsMJW5RkF3eHG1LD4M0zMKoDT4tYbf6-MpvdPf3W_9XF-Z6CA3R-xxXDzwiwD6E3YP2qfs0SSl5DN2NYGfe_j5AD_38HO8iPDzAD8f4OcT-J-zz5fLm3fvk1guI7FCpl1iLRUhm4NTmckU7c-6TOpa6UVqhRamsjj2nEqz2kJWKbuYVwulrNRO5yiLjXjBDtp1C8eM15Q2HwlE5yy3xgiq0aSgEqCtquQJEz1RShtzyVNJk69l7zS4KgMpSyJlGUh5wpKh1ybkUvnN87Kndxn1waDnlcgiv-z58p97vmIPRw4_ZQfddg9n7IH91jW77evIS98Bw5CKBg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+theft+detection+based+on+stacked+sparse+denoising+autoencoder&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Huang%2C+Yifan&rft.au=Xu%2C+Qifeng&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=125&rft_id=info:doi/10.1016%2Fj.ijepes.2020.106448&rft.externalDocID=S014206151933666X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |