Electricity theft detection based on stacked sparse denoising autoencoder

Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of electrical power & energy systems Ročník 125; s. 106448
Hlavní autori: Huang, Yifan, Xu, Qifeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2021
Predmet:
ISSN:0142-0615, 1879-3517
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the autoencoder can learn the effective features from the data and then reconstruct the inputs as much as possible. For the anomalous behavior, since it contributes little to the autoencoder, the detector returns to a comparatively higher reconstruction error; hence the theft users can be recognized by setting an appropriate error threshold. To improve the feature extraction ability and the robustness, the sparsity and noise are introduced into the autoencoder, and the particle swarm optimization algorithm is applied to optimize these hyper-parameters. Moreover, the receiver operating characteristic curve is put forward to estimate the optimal error threshold. Finally, the proposed approach is evaluated and verified using the electricity dataset in Fujian, China.
AbstractList Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for electricity theft detection in this paper. The technical route is to employ the electricity data from honest users as the training samples, and the autoencoder can learn the effective features from the data and then reconstruct the inputs as much as possible. For the anomalous behavior, since it contributes little to the autoencoder, the detector returns to a comparatively higher reconstruction error; hence the theft users can be recognized by setting an appropriate error threshold. To improve the feature extraction ability and the robustness, the sparsity and noise are introduced into the autoencoder, and the particle swarm optimization algorithm is applied to optimize these hyper-parameters. Moreover, the receiver operating characteristic curve is put forward to estimate the optimal error threshold. Finally, the proposed approach is evaluated and verified using the electricity dataset in Fujian, China.
ArticleNumber 106448
Author Xu, Qifeng
Huang, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  surname: Huang
  fullname: Huang, Yifan
– sequence: 2
  givenname: Qifeng
  surname: Xu
  fullname: Xu, Qifeng
  email: ranger123098@163.com
BookMark eNqFkMFOwzAQRC1UJNrCH3DID6TYiWM7HJBQVUqlSlzgbDmbNTiUpLINUv8eR-HEAU67Gu2sZt6CzPqhR0KuGV0xysRNt3IdHjGsClqMkuBcnZE5U7LOy4rJGZlTxoucClZdkEUIHaVU1ryYk93mgBC9AxdPWXxDG7MWY5Lc0GeNCdhmaQnRwHtaw9H4gOmiH1xw_WtmPuOAPQwt-ktybs0h4NXPXJKXh83z-jHfP2136_t9DqUsYg5QMqEYWsUNV5xKZbmsW1WLAsq6NA0AN1YVvAXkjQLBGqEUyNrWFaWVKZfkdvoLfgjBo9UpuxnzRm_cQTOqRyi60xMUPULRE5Rk5r_MR-8-jD_9Z7ubbJiKfTn0OoBLvbF1PrHS7eD-fvANSraA7A
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3222883
crossref_primary_10_1016_j_energy_2024_132477
crossref_primary_10_1007_s13369_021_06313_z
crossref_primary_10_1007_s10489_022_04069_z
crossref_primary_10_1109_ACCESS_2023_3274543
crossref_primary_10_1016_j_ijepes_2023_109283
crossref_primary_10_1016_j_jup_2021_101304
crossref_primary_10_3390_s22207818
crossref_primary_10_1016_j_ijepes_2024_109960
crossref_primary_10_32604_cmc_2022_028856
crossref_primary_10_3390_su142215001
crossref_primary_10_1049_esi2_12094
crossref_primary_10_1007_s10489_025_06663_3
crossref_primary_10_1109_ACCESS_2021_3113592
crossref_primary_10_3389_fenrg_2023_1232930
crossref_primary_10_1016_j_ijepes_2022_108642
crossref_primary_10_1109_TIM_2023_3324674
crossref_primary_10_3390_en16217460
crossref_primary_10_1109_ACCESS_2024_3429304
crossref_primary_10_1002_ese3_1541
crossref_primary_10_1109_TIM_2025_3552857
crossref_primary_10_1016_j_apenergy_2023_122157
crossref_primary_10_1016_j_engappai_2025_110795
crossref_primary_10_1177_09544062241296596
crossref_primary_10_1109_ACCESS_2022_3150047
crossref_primary_10_1016_j_epsr_2022_107975
crossref_primary_10_1016_j_ijepes_2023_109075
crossref_primary_10_1016_j_egyr_2024_06_015
crossref_primary_10_1049_gtd2_13056
crossref_primary_10_1111_exsy_12701
crossref_primary_10_1016_j_ijepes_2022_108257
crossref_primary_10_1016_j_ijepes_2021_107004
crossref_primary_10_3390_electricity5020017
crossref_primary_10_1109_ACCESS_2024_3366493
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_32604_cmc_2021_018000
crossref_primary_10_1007_s00521_023_08222_8
crossref_primary_10_1016_j_segan_2024_101415
crossref_primary_10_1109_ACCESS_2022_3150016
crossref_primary_10_1007_s42979_023_01911_0
crossref_primary_10_1109_TIM_2021_3127649
crossref_primary_10_3390_s22145348
crossref_primary_10_3390_app13063506
crossref_primary_10_1007_s11831_024_10137_z
crossref_primary_10_3390_en17071580
crossref_primary_10_1016_j_egyr_2021_10_024
crossref_primary_10_1109_TIM_2025_3602529
crossref_primary_10_1109_JIOT_2024_3481213
crossref_primary_10_1007_s00477_023_02617_8
crossref_primary_10_3389_fenrg_2022_984473
crossref_primary_10_3390_en15082778
crossref_primary_10_1109_TII_2024_3495734
crossref_primary_10_1016_j_ecmx_2025_100965
crossref_primary_10_1016_j_ijepes_2024_110130
crossref_primary_10_1109_TSG_2023_3349280
crossref_primary_10_1016_j_eswa_2022_116733
crossref_primary_10_1186_s13638_023_02258_z
crossref_primary_10_1007_s00170_023_11997_8
crossref_primary_10_1016_j_renene_2021_04_102
crossref_primary_10_1109_ACCESS_2022_3171229
crossref_primary_10_1016_j_geoen_2023_211446
crossref_primary_10_1016_j_ijepes_2023_109570
crossref_primary_10_1016_j_ress_2022_108680
crossref_primary_10_3390_app15042193
Cites_doi 10.1016/j.apenergy.2019.01.076
10.1016/j.enpol.2010.11.037
10.1109/TSG.2015.2425222
10.1109/ACCESS.2019.2891315
10.1007/978-3-319-22264-6_5
10.1016/j.apenergy.2017.10.014
10.1007/978-3-642-33338-5_11
10.1109/JSTSP.2018.2833749
10.1109/TAFFC.2016.2531682
10.1214/aos/996986505
10.1016/j.ijepes.2017.04.005
10.1109/TSG.2016.2560801
10.1109/TSG.2017.2703842
10.1016/j.asoc.2019.106060
10.1016/j.jpdc.2017.06.007
10.1109/TII.2019.2898171
10.1109/DSN.2016.44
10.1016/j.epsr.2018.01.005
10.1109/TPWRD.2009.2030890
10.1016/j.patrec.2005.10.010
10.1109/TII.2017.2785963
10.1016/j.epsr.2019.105876
10.1007/978-3-319-33331-1_16
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2020.106448
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2020_106448
S014206151933666X
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c372t-cc31681ef84a484078f479d8962c393abcc4af824dce4b8c61b688c79f95005a3
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594696900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Sat Nov 29 07:27:37 EST 2025
Tue Nov 18 21:06:28 EST 2025
Fri Feb 23 02:45:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Data reconstruction
Receiver operating characteristic curve
Electricity theft detection
Stack autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-cc31681ef84a484078f479d8962c393abcc4af824dce4b8c61b688c79f95005a3
ParticipantIDs crossref_citationtrail_10_1016_j_ijepes_2020_106448
crossref_primary_10_1016_j_ijepes_2020_106448
elsevier_sciencedirect_doi_10_1016_j_ijepes_2020_106448
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zheng, Yang, Niu (b0040) Apr. 2018; 14
Badrinath Krishna V, Weaver GA, Sanders WH. PCA-based method for detecting integrity attacks on advanced metering infrastructure. In: Proceedings of quantitative evaluation of systems (QEST). Springer Verlag; 2015. p. 70–85.
Larochelle, Bengio, Louradour (b0105) 2009; 1
Depuru, Wang, Devabhaktuni (b0010) Feb. 2011; 39
Zhao, Mao (b0095) 2017; 8
Yildiz, Bilbao, Dore (b0030) Dec. 2017; 208
Vincent, Larochelle, Bengio (b0115) 2008
Ramos, Rodrigues, de Souza (b0045) Apr. 2016; 9
Bengio, Lamblin, Popovici (b0120) 2007; 19
Nagi, Yap, Tiong (b0005) Apr. 2010; 25
Gao, Foggo, Yu (b0050) Sep. 2019; 15
Fenza, Gallo, Loia (b0065) Jan. 2019; 7
Chen, Zheng, Kang (b0020) Sep. 2018; 42
Pulling the plug on energy theft, electric light and power.
Badrinath Krishna V, Lee K, Weaver GA et al. F-DETA: A framework for detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE/IFIP international conference on dependable systems and networks (DSN); June 2016. p. 407–18.
Zhu, Chen, Zhang (b0100) Jan. 2020; 88
He, Mendis, Wei (b0075) Sep. 2017; 8
Tong, Li, Lang (b0085) Jun. 2018; 117
Mashima D, Cardenas AA. Evaluating electricity theft detectors in smart grid networks. In: Proceedings of RAID’12, vol. 7462. Springer; 2012. p. 210–29.
Razavi, Gharipour, Fleury (b0060) Jan. 2019; 238
Badrinath Krishna V, Iyer RK, Sanders WH. ARIMA-based modeling and validation of consumption readings in power grids. In: Proceedings of critical information infrastructure security (CRITIS). Springer Verlag; 2015.
Yip, Wong, Hew (b0055) 2017; 91
.
Qiu, Tang, Liu (b0090) Sep. 2019; 174
Fan, Zhang, Zhang (b0135) 2001; 29
Jokar, Arianpoo, Leung (b0035) Jan. 2016; 7
Krishna, Gunter, Sanders (b0070) Aug. 2018; 12
Goodfellow, Bengio, Aaron (b0080) 2016
Messinis, Hatziargyriou (b0025) 2018; 158
Vincent, Larochelle, Lajoie (b0110) 2010; 11
Fawcett (b0125) 2006; 27
10.1016/j.ijepes.2020.106448_b0130
Depuru (10.1016/j.ijepes.2020.106448_b0010) 2011; 39
Nagi (10.1016/j.ijepes.2020.106448_b0005) 2010; 25
10.1016/j.ijepes.2020.106448_b0015
Ramos (10.1016/j.ijepes.2020.106448_b0045) 2016; 9
Messinis (10.1016/j.ijepes.2020.106448_b0025) 2018; 158
Yip (10.1016/j.ijepes.2020.106448_b0055) 2017; 91
Yildiz (10.1016/j.ijepes.2020.106448_b0030) 2017; 208
Vincent (10.1016/j.ijepes.2020.106448_b0115) 2008
Fenza (10.1016/j.ijepes.2020.106448_b0065) 2019; 7
Vincent (10.1016/j.ijepes.2020.106448_b0110) 2010; 11
Qiu (10.1016/j.ijepes.2020.106448_b0090) 2019; 174
Zhu (10.1016/j.ijepes.2020.106448_b0100) 2020; 88
Chen (10.1016/j.ijepes.2020.106448_b0020) 2018; 42
Zheng (10.1016/j.ijepes.2020.106448_b0040) 2018; 14
Krishna (10.1016/j.ijepes.2020.106448_b0070) 2018; 12
He (10.1016/j.ijepes.2020.106448_b0075) 2017; 8
10.1016/j.ijepes.2020.106448_b0140
10.1016/j.ijepes.2020.106448_b0145
Razavi (10.1016/j.ijepes.2020.106448_b0060) 2019; 238
Fan (10.1016/j.ijepes.2020.106448_b0135) 2001; 29
Bengio (10.1016/j.ijepes.2020.106448_b0120) 2007; 19
Jokar (10.1016/j.ijepes.2020.106448_b0035) 2016; 7
Tong (10.1016/j.ijepes.2020.106448_b0085) 2018; 117
Zhao (10.1016/j.ijepes.2020.106448_b0095) 2017; 8
Gao (10.1016/j.ijepes.2020.106448_b0050) 2019; 15
Larochelle (10.1016/j.ijepes.2020.106448_b0105) 2009; 1
Goodfellow (10.1016/j.ijepes.2020.106448_b0080) 2016
Fawcett (10.1016/j.ijepes.2020.106448_b0125) 2006; 27
10.1016/j.ijepes.2020.106448_b0150
References_xml – reference: Mashima D, Cardenas AA. Evaluating electricity theft detectors in smart grid networks. In: Proceedings of RAID’12, vol. 7462. Springer; 2012. p. 210–29.
– volume: 15
  start-page: 5076
  year: Sep. 2019
  end-page: 5088
  ident: b0050
  article-title: A physically inspired data-driven model for electricity theft detection with smart meter data
  publication-title: IEEE Trans Ind Inf
– volume: 238
  start-page: 481
  year: Jan. 2019
  end-page: 494
  ident: b0060
  article-title: A practical feature-engineering framework for electricity theft detection in smart grids
  publication-title: Appl Energy
– volume: 12
  start-page: 790
  year: Aug. 2018
  end-page: 805
  ident: b0070
  article-title: Evaluating detectors on optimal attack vectors that enable electricity theft and DER fraud
  publication-title: IEEE J Sel Top Signal Process
– volume: 9
  start-page: 676
  year: Apr. 2016
  end-page: 683
  ident: b0045
  article-title: On the study of commercial losses in brazil: a binary black hole algorithm for theft characterization
  publication-title: IEEE Trans Smart Grid
– volume: 39
  start-page: 1007
  year: Feb. 2011
  end-page: 1015
  ident: b0010
  article-title: Electricity theft: overview, issues, prevention and a smart meter based approach to control theft
  publication-title: Energy Policy
– volume: 14
  start-page: 1606
  year: Apr. 2018
  end-page: 1615
  ident: b0040
  article-title: Wide & deep convolutional neural networks for electricity-theft detection to secure smart grids
  publication-title: IEEE Trans Ind Inf
– volume: 208
  start-page: 402
  year: Dec. 2017
  end-page: 427
  ident: b0030
  article-title: Recent advances in the analysis of residential electricity consumption and applications of smart meter data
  publication-title: Appl Energy
– volume: 29
  start-page: 153
  year: 2001
  end-page: 193
  ident: b0135
  article-title: Generalized likelihood ratio statistics and Wilks phenomenon
  publication-title: Ann Stat
– volume: 1
  start-page: 1
  year: 2009
  end-page: 40
  ident: b0105
  article-title: Exploring strategies for training deep neural networks
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b0110
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 189
  year: Sep. 2018
  end-page: 199
  ident: b0020
  article-title: Detection methods of abnormal electricity consumption behaviors: review and prospect
  publication-title: Autom Electric Power Syst
– volume: 91
  start-page: 230
  year: 2017
  end-page: 240
  ident: b0055
  article-title: Detection of energy theft and defective smart meters in smart grids using linear regression
  publication-title: Electr Power Energy Syst
– reference: Badrinath Krishna V, Weaver GA, Sanders WH. PCA-based method for detecting integrity attacks on advanced metering infrastructure. In: Proceedings of quantitative evaluation of systems (QEST). Springer Verlag; 2015. p. 70–85.
– volume: 174
  start-page: 10586
  year: Sep. 2019
  ident: b0090
  article-title: Power quality disturbances recognition using modified S transform and parallel stack sparse auto-encoder
  publication-title: Electr Power Syst Res
– volume: 8
  start-page: 328
  year: 2017
  end-page: 339
  ident: b0095
  article-title: Cyberbullying detection based on semantic-enhanced marginalized denoising auto-encoder
  publication-title: IEEE Trans Affect Comput
– volume: 7
  start-page: 216
  year: Jan. 2016
  end-page: 226
  ident: b0035
  article-title: Electricity theft detection in AMI using customers’ consumption patterns
  publication-title: IEEE Trans Smart Grid
– volume: 117
  start-page: 267
  year: Jun. 2018
  end-page: 273
  ident: b0085
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders
  publication-title: J Parallel Distrib Comput
– volume: 158
  start-page: 250
  year: 2018
  end-page: 266
  ident: b0025
  article-title: Review of non-technical loss detection methods
  publication-title: Electr Power Syst Res
– reference: >.
– volume: 88
  year: Jan. 2020
  ident: b0100
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl Soft Comput J
– reference: Badrinath Krishna V, Iyer RK, Sanders WH. ARIMA-based modeling and validation of consumption readings in power grids. In: Proceedings of critical information infrastructure security (CRITIS). Springer Verlag; 2015.
– volume: 25
  start-page: 1162
  year: Apr. 2010
  end-page: 1171
  ident: b0005
  article-title: Nontechnical loss detection for metered customers in power utility using support vector machines
  publication-title: IEEE Trans Power Del
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: b0125
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
– reference: Pulling the plug on energy theft, electric light and power. <
– volume: 7
  start-page: 9645
  year: Jan. 2019
  end-page: 9657
  ident: b0065
  article-title: Drift-aware methodology for anomaly detection in smart grid
  publication-title: IEEE Access
– volume: 8
  start-page: 2505
  year: Sep. 2017
  end-page: 2516
  ident: b0075
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans Smart Grid
– year: 2016
  ident: b0080
  article-title: Deep learning
– reference: Badrinath Krishna V, Lee K, Weaver GA et al. F-DETA: A framework for detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE/IFIP international conference on dependable systems and networks (DSN); June 2016. p. 407–18.
– year: 2008
  ident: b0115
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: 25th International Conference on Machine Learning, ICML
– volume: 19
  start-page: 153
  year: 2007
  end-page: 160
  ident: b0120
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inform Process Syst
– volume: 238
  start-page: 481
  year: 2019
  ident: 10.1016/j.ijepes.2020.106448_b0060
  article-title: A practical feature-engineering framework for electricity theft detection in smart grids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.076
– volume: 39
  start-page: 1007
  issue: 2
  year: 2011
  ident: 10.1016/j.ijepes.2020.106448_b0010
  article-title: Electricity theft: overview, issues, prevention and a smart meter based approach to control theft
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.11.037
– volume: 7
  start-page: 216
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2020.106448_b0035
  article-title: Electricity theft detection in AMI using customers’ consumption patterns
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2425222
– volume: 7
  start-page: 9645
  year: 2019
  ident: 10.1016/j.ijepes.2020.106448_b0065
  article-title: Drift-aware methodology for anomaly detection in smart grid
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891315
– ident: 10.1016/j.ijepes.2020.106448_b0140
  doi: 10.1007/978-3-319-22264-6_5
– ident: 10.1016/j.ijepes.2020.106448_b0015
– volume: 208
  start-page: 402
  year: 2017
  ident: 10.1016/j.ijepes.2020.106448_b0030
  article-title: Recent advances in the analysis of residential electricity consumption and applications of smart meter data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.014
– ident: 10.1016/j.ijepes.2020.106448_b0130
  doi: 10.1007/978-3-642-33338-5_11
– volume: 12
  start-page: 790
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2020.106448_b0070
  article-title: Evaluating detectors on optimal attack vectors that enable electricity theft and DER fraud
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2018.2833749
– volume: 8
  start-page: 328
  issue: 3
  year: 2017
  ident: 10.1016/j.ijepes.2020.106448_b0095
  article-title: Cyberbullying detection based on semantic-enhanced marginalized denoising auto-encoder
  publication-title: IEEE Trans Affect Comput
  doi: 10.1109/TAFFC.2016.2531682
– volume: 29
  start-page: 153
  issue: 1
  year: 2001
  ident: 10.1016/j.ijepes.2020.106448_b0135
  article-title: Generalized likelihood ratio statistics and Wilks phenomenon
  publication-title: Ann Stat
  doi: 10.1214/aos/996986505
– volume: 91
  start-page: 230
  year: 2017
  ident: 10.1016/j.ijepes.2020.106448_b0055
  article-title: Detection of energy theft and defective smart meters in smart grids using linear regression
  publication-title: Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2017.04.005
– volume: 9
  start-page: 676
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2020.106448_b0045
  article-title: On the study of commercial losses in brazil: a binary black hole algorithm for theft characterization
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2560801
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  ident: 10.1016/j.ijepes.2020.106448_b0075
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2703842
– volume: 88
  year: 2020
  ident: 10.1016/j.ijepes.2020.106448_b0100
  article-title: Stacked pruning sparse denoising autoencoder based intelligent fault diagnosis of rolling bearings
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2019.106060
– volume: 117
  start-page: 267
  year: 2018
  ident: 10.1016/j.ijepes.2020.106448_b0085
  article-title: An efficient deep model for day-ahead electricity load forecasting with stacked denoising auto-encoders
  publication-title: J Parallel Distrib Comput
  doi: 10.1016/j.jpdc.2017.06.007
– volume: 15
  start-page: 5076
  issue: 9
  year: 2019
  ident: 10.1016/j.ijepes.2020.106448_b0050
  article-title: A physically inspired data-driven model for electricity theft detection with smart meter data
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2898171
– ident: 10.1016/j.ijepes.2020.106448_b0150
  doi: 10.1109/DSN.2016.44
– year: 2008
  ident: 10.1016/j.ijepes.2020.106448_b0115
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 158
  start-page: 250
  year: 2018
  ident: 10.1016/j.ijepes.2020.106448_b0025
  article-title: Review of non-technical loss detection methods
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.01.005
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.ijepes.2020.106448_b0110
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 189
  issue: 17
  year: 2018
  ident: 10.1016/j.ijepes.2020.106448_b0020
  article-title: Detection methods of abnormal electricity consumption behaviors: review and prospect
  publication-title: Autom Electric Power Syst
– year: 2016
  ident: 10.1016/j.ijepes.2020.106448_b0080
– volume: 25
  start-page: 1162
  issue: 2
  year: 2010
  ident: 10.1016/j.ijepes.2020.106448_b0005
  article-title: Nontechnical loss detection for metered customers in power utility using support vector machines
  publication-title: IEEE Trans Power Del
  doi: 10.1109/TPWRD.2009.2030890
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.ijepes.2020.106448_b0125
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.ijepes.2020.106448_b0120
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv Neural Inform Process Syst
– volume: 1
  start-page: 1
  issue: 10
  year: 2009
  ident: 10.1016/j.ijepes.2020.106448_b0105
  article-title: Exploring strategies for training deep neural networks
  publication-title: J Mach Learn Res
– volume: 14
  start-page: 1606
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2020.106448_b0040
  article-title: Wide & deep convolutional neural networks for electricity-theft detection to secure smart grids
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2785963
– volume: 174
  start-page: 10586
  year: 2019
  ident: 10.1016/j.ijepes.2020.106448_b0090
  article-title: Power quality disturbances recognition using modified S transform and parallel stack sparse auto-encoder
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.105876
– ident: 10.1016/j.ijepes.2020.106448_b0145
  doi: 10.1007/978-3-319-33331-1_16
SSID ssj0007942
Score 2.5549738
Snippet Inspired by the powerful feature extraction and the data reconstruction ability of autoencoder, a stacked sparse denoising autoencoder is developed for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106448
SubjectTerms Data reconstruction
Electricity theft detection
Feature extraction
Receiver operating characteristic curve
Stack autoencoder
Title Electricity theft detection based on stacked sparse denoising autoencoder
URI https://dx.doi.org/10.1016/j.ijepes.2020.106448
Volume 125
WOSCitedRecordID wos000594696900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kN7KOmLpE2KDr0Fl13LXknHUDY0PYQWUnBPRpZH4KV4l11vyc_vjCQ_Skpf0IsfwrLNfKPRaDQPxt6ANflczVySg6mSDG8TXVmXOJjNKpuZGQ52X2xCXl-rotAfY0KFnS8nINtW3d7qzX-FGtsQbAqd_Qu4h5diA14j6HhE2PH4R8AvfWGbxpJ6jdqd685r6CBUBKc5q6b9AdQJcfjW5yhPtjsKnWrXjbcamH23ptyWdfTaXY2e7qPhcJJuAuLXKKCLCq55VoIQULibZEP3nBNt018aN_JksaemT42DOIdGE0Q6772We7tYHxszOiIFU2VKdSPCnjUE8aqkptgB-YP8DZHPd2R5MCus3jYr2ABlVk-pkdaT49w1eBSSk1rq1TMtBC7JivvsMJW5RkF3eHG1LD4M0zMKoDT4tYbf6-MpvdPf3W_9XF-Z6CA3R-xxXDzwiwD6E3YP2qfs0SSl5DN2NYGfe_j5AD_38HO8iPDzAD8f4OcT-J-zz5fLm3fvk1guI7FCpl1iLRUhm4NTmckU7c-6TOpa6UVqhRamsjj2nEqz2kJWKbuYVwulrNRO5yiLjXjBDtp1C8eM15Q2HwlE5yy3xgiq0aSgEqCtquQJEz1RShtzyVNJk69l7zS4KgMpSyJlGUh5wpKh1ybkUvnN87Kndxn1waDnlcgiv-z58p97vmIPRw4_ZQfddg9n7IH91jW77evIS98Bw5CKBg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+theft+detection+based+on+stacked+sparse+denoising+autoencoder&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Huang%2C+Yifan&rft.au=Xu%2C+Qifeng&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=125&rft_id=info:doi/10.1016%2Fj.ijepes.2020.106448&rft.externalDocID=S014206151933666X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon