Stacked Fisher autoencoder for SAR change detection

•The original SAE is expanded to suit with the multiplicative noise in SAR change detection.•The features extracted by SFAE are more discriminative than the original stacked autoencoder due to that Fisher discriminant criterion is incorporated into SFAE.•Experiments on the simulated and real SAR dat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 96; s. 106971
Hlavní autori: Liu, Ganchao, Li, Lingling, Jiao, Licheng, Dong, Yongsheng, Li, Xuelong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2019
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The original SAE is expanded to suit with the multiplicative noise in SAR change detection.•The features extracted by SFAE are more discriminative than the original stacked autoencoder due to that Fisher discriminant criterion is incorporated into SFAE.•Experiments on the simulated and real SAR datasets reveal that the proposed SFAE algorithm is effective on multitemporal single/multi-polarization SAR change detection. Specifically, the proposed SFAE method is obviously superior to the real-time methods on detection accuracy and the non-realtime methods on computational complexity. Stacked autoencoder is effective in image denoising and classification when it is used for synthetic aperture radar (SAR) change detection. However, the resulting features may not be discriminative enough for in some sense. To alleviate this problem, in this paper we propose a stacked Fisher autoencoder (SFAE) for SAR change detection. Specifically, in the framework of SFAE, unsupervised layer-wise feature learning and supervised fine-tuning are jointly performed when training the network. The trained network can be used to detect the changes in both of the single and multi-polarization SAR datasets in real-time. The proposed SFAE has two advantages. The first one is to expand the stacked autoencoder to suit the environment with the multiplicative noise in SAR change detection. The second is that the features extracted by SFAE are more discriminative than the original stacked autoencoder due to that Fisher discriminant criterion is incorporated into SFAE. The results on the simulated and real SAR datasets indicate that the proposed SFAE algorithm has a significant advantage on multitemporal single/multi-polarization SAR (SAR/PolSAR) change detection.
AbstractList •The original SAE is expanded to suit with the multiplicative noise in SAR change detection.•The features extracted by SFAE are more discriminative than the original stacked autoencoder due to that Fisher discriminant criterion is incorporated into SFAE.•Experiments on the simulated and real SAR datasets reveal that the proposed SFAE algorithm is effective on multitemporal single/multi-polarization SAR change detection. Specifically, the proposed SFAE method is obviously superior to the real-time methods on detection accuracy and the non-realtime methods on computational complexity. Stacked autoencoder is effective in image denoising and classification when it is used for synthetic aperture radar (SAR) change detection. However, the resulting features may not be discriminative enough for in some sense. To alleviate this problem, in this paper we propose a stacked Fisher autoencoder (SFAE) for SAR change detection. Specifically, in the framework of SFAE, unsupervised layer-wise feature learning and supervised fine-tuning are jointly performed when training the network. The trained network can be used to detect the changes in both of the single and multi-polarization SAR datasets in real-time. The proposed SFAE has two advantages. The first one is to expand the stacked autoencoder to suit the environment with the multiplicative noise in SAR change detection. The second is that the features extracted by SFAE are more discriminative than the original stacked autoencoder due to that Fisher discriminant criterion is incorporated into SFAE. The results on the simulated and real SAR datasets indicate that the proposed SFAE algorithm has a significant advantage on multitemporal single/multi-polarization SAR (SAR/PolSAR) change detection.
ArticleNumber 106971
Author Li, Xuelong
Dong, Yongsheng
Liu, Ganchao
Jiao, Licheng
Li, Lingling
Author_xml – sequence: 1
  givenname: Ganchao
  surname: Liu
  fullname: Liu, Ganchao
  email: ganchliu@gmail.com
  organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, China
– sequence: 2
  givenname: Lingling
  orcidid: 0000-0002-6130-2518
  surname: Li
  fullname: Li, Lingling
  email: linglingxidian@gmail.com
  organization: School of Artificial Intelligence, Xidian University, Xi’an, China
– sequence: 3
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  email: lchjiao@mail.xidian.edu.cn
  organization: School of Artificial Intelligence, Xidian University, Xi’an, China
– sequence: 4
  givenname: Yongsheng
  orcidid: 0000-0002-6281-9658
  surname: Dong
  fullname: Dong, Yongsheng
  email: dongyongsheng98@163.com
  organization: School of Information Engineering, Henan University of Science and Technology, Luoyang, China
– sequence: 5
  givenname: Xuelong
  surname: Li
  fullname: Li, Xuelong
  email: xuelong_li@nwpu.edu.cn
  organization: Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, China
BookMark eNqFkMFKw0AQhhepYFt9Aw95gdSd3SSbeBBKsVUoCFbPy2Z20m6t2bJZBd_elHjyoKcZZvh-5psJG7W-Jcaugc-AQ3Gznx1NRL-dCQ5VPyoqBWdsDKWSaQ6ZGLEx5xJSKbi8YJOu23MOql-MmdxEg29kk6XrdhQS8xE9teht3zc-JJv5c4I7024psRQJo_PtJTtvzKGjq586Za_L-5fFQ7p-Wj0u5usUpRIxxQpVA1BXRZkXYGxe20YJwU2GUpgc65IrgqwpFWFBGWXCFihyWRe5yEsDcsqyIReD77pAjT4G927ClwauT-J6rwdxfRLXg3iP3f7C0EVzOjwG4w7_wXcDTL3Yp6OgO3T9Q8i60Ntr693fAd9f43e1
CitedBy_id crossref_primary_10_3390_rs14071552
crossref_primary_10_3390_rs14020368
crossref_primary_10_1016_j_patcog_2024_111266
crossref_primary_10_1080_01431161_2024_2302351
crossref_primary_10_1080_01431161_2020_1826066
crossref_primary_10_3390_ijerph20043059
crossref_primary_10_1016_j_neucom_2020_03_107
crossref_primary_10_1016_j_ecoinf_2021_101310
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1109_TGRS_2024_3453501
crossref_primary_10_1109_TIP_2022_3154922
crossref_primary_10_1109_TGRS_2023_3241366
crossref_primary_10_1109_JSTARS_2024_3513694
crossref_primary_10_1109_TGRS_2020_3039847
crossref_primary_10_1016_j_jag_2023_103511
crossref_primary_10_1109_TGRS_2024_3407088
crossref_primary_10_1109_TGRS_2024_3379567
crossref_primary_10_3390_rs14030438
crossref_primary_10_1080_01431161_2023_2173033
crossref_primary_10_1016_j_knosys_2021_106921
crossref_primary_10_3390_rs15010123
crossref_primary_10_3390_rs14041018
crossref_primary_10_1080_01431161_2022_2115863
crossref_primary_10_3390_rs11161854
crossref_primary_10_3390_rs14246361
crossref_primary_10_3390_rs16111974
crossref_primary_10_1109_LGRS_2023_3262586
crossref_primary_10_1016_j_patcog_2022_108549
crossref_primary_10_1016_j_jag_2021_102615
crossref_primary_10_1117_1_JRS_18_016503
crossref_primary_10_1109_TGRS_2020_3026099
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_JSTARS_2024_3409775
crossref_primary_10_1109_TGRS_2021_3071799
crossref_primary_10_1109_TGRS_2023_3245674
crossref_primary_10_1109_ACCESS_2022_3192967
crossref_primary_10_1109_JSTARS_2024_3350044
crossref_primary_10_3390_rs15020395
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2020_3001584
crossref_primary_10_1016_j_patcog_2019_107166
crossref_primary_10_1016_j_patcog_2022_108717
crossref_primary_10_7717_peerj_cs_2786
crossref_primary_10_1109_TGRS_2022_3168331
crossref_primary_10_1109_TGRS_2022_3144165
crossref_primary_10_1109_JSEN_2020_3030910
crossref_primary_10_1109_TGRS_2022_3201206
crossref_primary_10_3390_su14169847
crossref_primary_10_1007_s11760_025_04147_y
crossref_primary_10_3390_s20051533
crossref_primary_10_3390_rs12101688
crossref_primary_10_1080_01431161_2025_2467303
crossref_primary_10_1109_ACCESS_2019_2957148
crossref_primary_10_1109_ACCESS_2024_3415054
crossref_primary_10_1016_j_neucom_2023_126611
crossref_primary_10_3390_electronics14071335
crossref_primary_10_1007_s11045_020_00758_5
crossref_primary_10_3390_app12020818
Cites_doi 10.1080/01431161.2014.882030
10.1109/MGRS.2013.2248301
10.1109/TGRS.2010.2087763
10.1109/TGRS.2005.857987
10.1109/LGRS.2009.2025059
10.1109/TGRS.2014.2363548
10.1109/JSTARS.2014.2328344
10.1109/TGRS.2016.2590145
10.1109/TGRS.2004.842441
10.1109/TIP.2007.896651
10.1080/01431169108929656
10.1109/LGRS.2007.900751
10.1109/TGRS.2012.2223219
10.1109/TGRS.2018.2856926
10.1109/JSTARS.2012.2201135
10.1109/TPAMI.1980.4766994
10.1109/TNNLS.2018.2847309
10.1109/5.726791
10.1007/s11263-014-0722-8
10.1109/TIP.2009.2029593
10.1109/TFUZZ.2013.2249072
10.1016/j.patcog.2014.09.027
10.1016/j.patcog.2017.01.002
10.1016/j.isprsjprs.2015.02.008
10.1109/TGRS.2018.2819367
10.1016/j.patcog.2016.07.040
10.1109/TGRS.2018.2805471
10.1109/36.789635
10.1109/TNNLS.2015.2435783
10.1109/TGRS.2002.808066
10.1109/TPAMI.2008.137
10.1109/TPAMI.2007.1096
10.1109/TGRS.2007.893568
10.1109/36.7708
10.1016/j.patcog.2012.02.004
10.1109/TGRS.2018.2863224
10.1162/neco.2006.18.7.1527
10.1109/TGRS.2008.918647
10.1109/TGRS.2002.1000322
10.1109/LGRS.2017.2762694
10.1109/TSP.2017.2712124
10.1109/TGRS.2016.2532320
10.1109/TGRS.2013.2284510
10.1109/TGRS.2012.2211883
10.1109/TGRS.2015.2407953
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.106971
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2019_106971
S0031320319302742
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c372t-c9c7f11b968561ad5bdf7220a4c32a5cb807e14f87ec6e4e42d6c253b65258a13
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000487569700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 21:44:55 EST 2025
Sat Nov 29 07:28:46 EST 2025
Fri Feb 23 02:25:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stacked fisher autoencoder (SFAE)
Stacked autoencoder (SAE)
Synthetic aperture radar (SAR)
Change detection
Fisher criterion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-c9c7f11b968561ad5bdf7220a4c32a5cb807e14f87ec6e4e42d6c253b65258a13
ORCID 0000-0002-6281-9658
0000-0002-6130-2518
ParticipantIDs crossref_primary_10_1016_j_patcog_2019_106971
crossref_citationtrail_10_1016_j_patcog_2019_106971
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_106971
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bovolo, Marin, Bruzzone (bib0005) 2013; 51
Lv, Zhong, Zhao, Zhang (bib0048) 2018; 56
Lee (bib0001) 1980
Lê, Atto, Trouvé, Solikhin, Pinel (bib0024) 2015; 107
Ban, Yousif (bib0007) 2012; 5
Mou, Bruzzone, Zhu (bib0034) 2019; 57
Tao, Li, Wu, Maybank (bib0049) 2007; 29
Gong, Niu, Zhang, Li (bib0033) 2017; 14
Hachicha, Chaabane (bib0046) 2014; 35
Bovolo, Bruzzone (bib0004) 2005; 43
Graves, Liwicki, Fernández, Bertolami, Bunke, Schmidhuber (bib0030) 2009; 31
Conradsen, Nielsen, Schou, Skriver (bib0011) 2003; 41
Duda, Hart, Stork (bib0053) 2012
Hou, Wei, Zheng, Wang (bib0044) 2014; 7
Lee, Pottier (bib0041) 2009
Moreira, Prats-Iraola, Younis, Krieger, Hajnsek, Papathanassiou (bib0042) 2013; 1
Liu, Jiao, Liu, Zhong, Wang (bib0023) 2015; 48
Su, Gong, Zhang, Zhang, Liu, Yang (bib0037) 2017; 66
Marino, Cloude, Lopez-Sanchez (bib0012) 2013; 51
Socher, Pennington, Huang, Ng, Manning (bib0039) 2011
Ciuonzo, Vincenzo, Antonio (bib0013) 2017; 65
Xie, Xu, Chen (bib0032) 2012
Deledalle, Denis, Tupin (bib0002) 2009; 18
Chen, Chen, An, Cui, Yang (bib0003) 2011; 49
Marin, Bovolo, Bruzzone (bib0006) 2015; 53
White (bib0045) 1991; 12
Zhang, Jiao, Liu, Bo, Gong (bib0021) 2008; 46
Du (bib0050) 2007; 4
Hinton, Osindero, Teh (bib0026) 2006; 18
Inglada, Mercier (bib0010) 2007; 45
Liu, Jiao, Tang, Yang, Ma, Hou (bib0036) 2019; 30
Gong, Su, Jia, Chen (bib0019) 2014; 22
Domínguez, Meier, Small, Schaepman, Bruzzone, Henke (bib0020) 2018; 56
Li, Gong, Jiao, Li, Stolkin (bib0047) 2015; 53
Celik (bib0017) 2009; 6
Yang, Zhang, Feng, Zhang (bib0055) 2014; 109
Zanotta, Haertel (bib0008) 2012; 45
Yang, Yang, Yan, Song, Xia (bib0016) 2016; 54
Vu, Gomes, Pettersson, Dammert, Hellsten (bib0015) 2019; 57
Lee, Grunes, De Grandi (bib0040) 1999; 37
Marino, Hajnsek (bib0025) 2014; 52
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0029) 2010; 11
Dierking, Skriver (bib0043) 2002; 40
LeCun, Bottou, Bengio, Haffner (bib0028) 1998; 86
Salakhutdinov, Mnih, Hinton (bib0027) 2007
Ng (bib0051) 2011; vol. 72
Marc’Aurelio Ranzato, Chopra, LeCun (bib0038) 2007
Touzi, Lopes, Bousquet (bib0052) 1988; 26
Zheng, Jiao, Liu, Zhang, Hou, Wang (bib0018) 2017; 61
Gong, Zhao, Liu, Miao, Jiao (bib0035) 2016; 27
Chatelain, Tourneret, Inglada, Ferrari (bib0009) 2007; 16
Wang, Yan, Xu, Tang, Huang (bib0054) 2007
Akbari, Anfinsen, Doulgeris, Eltoft, Moser, Serpico (bib0014) 2016; 54
Bazi, Bruzzone, Melgani (bib0022) 2005; 43
Ciresan, Meier, Schmidhuber (bib0031) 2012
Marin (10.1016/j.patcog.2019.106971_bib0006) 2015; 53
Lee (10.1016/j.patcog.2019.106971_bib0041) 2009
Moreira (10.1016/j.patcog.2019.106971_bib0042) 2013; 1
Zheng (10.1016/j.patcog.2019.106971_bib0018) 2017; 61
Wang (10.1016/j.patcog.2019.106971_bib0054) 2007
Gong (10.1016/j.patcog.2019.106971_bib0033) 2017; 14
Deledalle (10.1016/j.patcog.2019.106971_bib0002) 2009; 18
Gong (10.1016/j.patcog.2019.106971_bib0019) 2014; 22
Du (10.1016/j.patcog.2019.106971_bib0050) 2007; 4
Su (10.1016/j.patcog.2019.106971_bib0037) 2017; 66
Touzi (10.1016/j.patcog.2019.106971_bib0052) 1988; 26
Hachicha (10.1016/j.patcog.2019.106971_bib0046) 2014; 35
Dierking (10.1016/j.patcog.2019.106971_bib0043) 2002; 40
Marc’Aurelio Ranzato (10.1016/j.patcog.2019.106971_bib0038) 2007
Vincent (10.1016/j.patcog.2019.106971_bib0029) 2010; 11
Zhang (10.1016/j.patcog.2019.106971_bib0021) 2008; 46
Gong (10.1016/j.patcog.2019.106971_bib0035) 2016; 27
Lee (10.1016/j.patcog.2019.106971_bib0040) 1999; 37
Lê (10.1016/j.patcog.2019.106971_bib0024) 2015; 107
Bovolo (10.1016/j.patcog.2019.106971_bib0004) 2005; 43
Lee (10.1016/j.patcog.2019.106971_bib0001) 1980
Yang (10.1016/j.patcog.2019.106971_bib0016) 2016; 54
Ng (10.1016/j.patcog.2019.106971_bib0051) 2011; vol. 72
Ciuonzo (10.1016/j.patcog.2019.106971_bib0013) 2017; 65
LeCun (10.1016/j.patcog.2019.106971_bib0028) 1998; 86
Bovolo (10.1016/j.patcog.2019.106971_bib0005) 2013; 51
Liu (10.1016/j.patcog.2019.106971_bib0036) 2019; 30
Salakhutdinov (10.1016/j.patcog.2019.106971_bib0027) 2007
Chen (10.1016/j.patcog.2019.106971_bib0003) 2011; 49
Domínguez (10.1016/j.patcog.2019.106971_bib0020) 2018; 56
Yang (10.1016/j.patcog.2019.106971_bib0055) 2014; 109
Socher (10.1016/j.patcog.2019.106971_bib0039) 2011
Lv (10.1016/j.patcog.2019.106971_bib0048) 2018; 56
Bazi (10.1016/j.patcog.2019.106971_bib0022) 2005; 43
Akbari (10.1016/j.patcog.2019.106971_bib0014) 2016; 54
Chatelain (10.1016/j.patcog.2019.106971_bib0009) 2007; 16
Conradsen (10.1016/j.patcog.2019.106971_bib0011) 2003; 41
Inglada (10.1016/j.patcog.2019.106971_bib0010) 2007; 45
Hinton (10.1016/j.patcog.2019.106971_bib0026) 2006; 18
Li (10.1016/j.patcog.2019.106971_bib0047) 2015; 53
Tao (10.1016/j.patcog.2019.106971_bib0049) 2007; 29
Liu (10.1016/j.patcog.2019.106971_bib0023) 2015; 48
Ciresan (10.1016/j.patcog.2019.106971_bib0031) 2012
Marino (10.1016/j.patcog.2019.106971_bib0025) 2014; 52
Vu (10.1016/j.patcog.2019.106971_bib0015) 2019; 57
Hou (10.1016/j.patcog.2019.106971_bib0044) 2014; 7
Duda (10.1016/j.patcog.2019.106971_bib0053) 2012
Ban (10.1016/j.patcog.2019.106971_bib0007) 2012; 5
Mou (10.1016/j.patcog.2019.106971_bib0034) 2019; 57
Xie (10.1016/j.patcog.2019.106971_bib0032) 2012
White (10.1016/j.patcog.2019.106971_bib0045) 1991; 12
Celik (10.1016/j.patcog.2019.106971_bib0017) 2009; 6
Marino (10.1016/j.patcog.2019.106971_bib0012) 2013; 51
Zanotta (10.1016/j.patcog.2019.106971_bib0008) 2012; 45
Graves (10.1016/j.patcog.2019.106971_bib0030) 2009; 31
References_xml – volume: 43
  start-page: 2963
  year: 2005
  end-page: 2972
  ident: bib0004
  article-title: A detail-preserving scale-driven approach to change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 107
  start-page: 64
  year: 2015
  end-page: 76
  ident: bib0024
  article-title: Change detection matrix for multitemporal filtering and change analysis of SAR and PolSAR image time series
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 30
  start-page: 818
  year: 2019
  end-page: 833
  ident: bib0036
  article-title: Local restricted convolutional neural network for change detection in polarimetric SAR images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 6
  start-page: 772
  year: 2009
  end-page: 776
  ident: bib0017
  article-title: Unsupervised change detection in satellite images using principal component analysis and
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 165
  year: 1980
  end-page: 168
  ident: bib0001
  article-title: Digital image enhancement and noise filtering by use of local statistics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2012
  ident: bib0053
  article-title: Pattern Classification
– volume: 49
  start-page: 1744
  year: 2011
  end-page: 1754
  ident: bib0003
  article-title: Nonlocal filtering for polarimetric SAR data: a pretest approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 5
  start-page: 1087
  year: 2012
  end-page: 1094
  ident: bib0007
  article-title: Multitemporal spaceborne SAR data for urban change detection in china
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 51
  start-page: 2042
  year: 2013
  end-page: 2054
  ident: bib0005
  article-title: A hierarchical approach to change detection in very high resolution SAR images for surveillance applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 22
  start-page: 98
  year: 2014
  end-page: 109
  ident: bib0019
  article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 35
  start-page: 1693
  year: 2014
  end-page: 1714
  ident: bib0046
  article-title: On the SAR change detection review and optimal decision
  publication-title: Int. J. Remote Sens.
– volume: 27
  start-page: 125
  year: 2016
  end-page: 1382
  ident: bib0035
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 109
  start-page: 209
  year: 2014
  end-page: 232
  ident: bib0055
  article-title: Sparse representation based fisher discrimination dictionary learning for image classification
  publication-title: Int. J. Comput. Vis.
– start-page: 3642
  year: 2012
  end-page: 3649
  ident: bib0031
  article-title: Multi-column deep neural networks for image classification
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 40
  start-page: 618
  year: 2002
  end-page: 636
  ident: bib0043
  article-title: Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bib0026
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 45
  start-page: 2927
  year: 2012
  end-page: 2937
  ident: bib0008
  article-title: Gradual land cover change detection based on multitemporal fraction images
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 2363
  year: 1999
  end-page: 2373
  ident: bib0040
  article-title: Polarimetric SAR speckle filtering and its implication for classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1
  year: 2007
  end-page: 8
  ident: bib0054
  article-title: Trace ratio vs. ratio trace for dimensionality reduction
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 43
  start-page: 874
  year: 2005
  end-page: 887
  ident: bib0022
  article-title: An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 52
  start-page: 4781
  year: 2014
  end-page: 4798
  ident: bib0025
  article-title: A change detector based on an optimization with polarimetric SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0028
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 18
  start-page: 2661
  year: 2009
  end-page: 2672
  ident: bib0002
  article-title: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights
  publication-title: IEEE Trans. Image Process.
– start-page: 341
  year: 2012
  end-page: 349
  ident: bib0032
  article-title: Image denoising and inpainting with deep neural networks
  publication-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
– volume: 4
  start-page: 503
  year: 2007
  ident: bib0050
  article-title: Modified fisher’s linear discriminant analysis for hyperspectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 54
  start-page: 6746
  year: 2016
  end-page: 6756
  ident: bib0016
  article-title: Region-based change detection for polarimetric SAR images using wishart mixture models
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 29
  start-page: 1700
  year: 2007
  end-page: 1715
  ident: bib0049
  article-title: General tensor discriminant analysis and gabor features for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 65
  start-page: 5078
  year: 2017
  end-page: 5091
  ident: bib0013
  article-title: On multiple covariance equality testing with application to SAR change detection
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0029
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 791
  year: 2007
  end-page: 798
  ident: bib0027
  article-title: Restricted Boltzmann machines for collaborative filtering
  publication-title: Proc. of the 24th Int. Conf. on Machine Learning
– volume: 54
  start-page: 3953
  year: 2016
  end-page: 3966
  ident: bib0014
  article-title: Polarimetric SAR change detection with the complex Hotelling-Lawley trace statistic
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 4002
  year: 2018
  end-page: 4015
  ident: bib0048
  article-title: Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 45
  start-page: 1432
  year: 2007
  end-page: 1445
  ident: bib0010
  article-title: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1
  start-page: 6
  year: 2013
  end-page: 43
  ident: bib0042
  article-title: A tutorial on synthetic aperture radar
  publication-title: IEEE Geosci. Remote Sens. Mag.
– start-page: 151
  year: 2011
  end-page: 161
  ident: bib0039
  article-title: Semi-supervised recursive autoencoders for predicting sentiment distributions
  publication-title: Proc. of the Conf. on Empirical Methods in Natural Language Proc.
– volume: 41
  start-page: 4
  year: 2003
  end-page: 19
  ident: bib0011
  article-title: A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: vol. 72
  year: 2011
  ident: bib0051
  article-title: Sparse Autoencoder
– volume: 57
  start-page: 473
  year: 2019
  end-page: 481
  ident: bib0015
  article-title: Bivariate gamma distribution for wavelength-resolution SAR change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 57
  start-page: 924
  year: 2019
  end-page: 935
  ident: bib0034
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 16
  start-page: 1796
  year: 2007
  end-page: 1806
  ident: bib0009
  article-title: Bivariate gamma distributions for image registration and change detection
  publication-title: IEEE Trans. Image Process.
– volume: 51
  start-page: 2986
  year: 2013
  end-page: 3000
  ident: bib0012
  article-title: A new polarimetric change detector in radar imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 31
  start-page: 855
  year: 2009
  end-page: 868
  ident: bib0030
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 66
  start-page: 213
  year: 2017
  end-page: 228
  ident: bib0037
  article-title: Deep learning and mapping based ternary change detection for information unbalanced images
  publication-title: Pattern Recognit.
– volume: 46
  start-page: 2126
  year: 2008
  end-page: 2136
  ident: bib0021
  article-title: Spectral clustering ensemble applied to SAR image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 48
  start-page: 685
  year: 2015
  end-page: 695
  ident: bib0023
  article-title: A new patch based change detector for polarimetric SAR data
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 764
  year: 1988
  end-page: 773
  ident: bib0052
  article-title: A statistical and geometrical edge detector for sar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 3297
  year: 2014
  end-page: 3317
  ident: bib0044
  article-title: Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
– year: 2009
  ident: bib0041
  article-title: Polarimetric Radar Imaging: From Basics to Applications
– volume: 61
  start-page: 309
  year: 2017
  end-page: 326
  ident: bib0018
  article-title: Unsupervised saliency-guided SAR image change detection
  publication-title: Pattern Recognit.
– year: 2007
  ident: bib0038
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
– volume: 14
  start-page: 2310
  year: 2017
  end-page: 2314
  ident: bib0033
  article-title: Generative adversarial networks for change detection in multispectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 53
  start-page: 2664
  year: 2015
  end-page: 2682
  ident: bib0006
  article-title: Building change detection in multitemporal very high resolution SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 56
  start-page: 3611
  year: 2018
  end-page: 3623
  ident: bib0020
  article-title: A multisquint framework for change detection in high-resolution multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 12
  start-page: 339
  year: 1991
  end-page: 360
  ident: bib0045
  article-title: Change detection in SAR imagery
  publication-title: Int. J. Remote Sens.
– volume: 53
  start-page: 4712
  year: 2015
  end-page: 4723
  ident: bib0047
  article-title: Change-detection map learning using matching pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 1693
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2019.106971_bib0046
  article-title: On the SAR change detection review and optimal decision
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.882030
– volume: 1
  start-page: 6
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2019.106971_bib0042
  article-title: A tutorial on synthetic aperture radar
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2013.2248301
– year: 2012
  ident: 10.1016/j.patcog.2019.106971_bib0053
– volume: 49
  start-page: 1744
  issue: 5
  year: 2011
  ident: 10.1016/j.patcog.2019.106971_bib0003
  article-title: Nonlocal filtering for polarimetric SAR data: a pretest approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2087763
– volume: 43
  start-page: 2963
  issue: 12
  year: 2005
  ident: 10.1016/j.patcog.2019.106971_bib0004
  article-title: A detail-preserving scale-driven approach to change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.857987
– volume: 6
  start-page: 772
  issue: 4
  year: 2009
  ident: 10.1016/j.patcog.2019.106971_bib0017
  article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 53
  start-page: 2664
  issue: 5
  year: 2015
  ident: 10.1016/j.patcog.2019.106971_bib0006
  article-title: Building change detection in multitemporal very high resolution SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2363548
– volume: 7
  start-page: 3297
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2019.106971_bib0044
  article-title: Unsupervised change detection in SAR image based on gauss-log ratio image fusion and compressed projection
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2014.2328344
– volume: 54
  start-page: 6746
  issue: 11
  year: 2016
  ident: 10.1016/j.patcog.2019.106971_bib0016
  article-title: Region-based change detection for polarimetric SAR images using wishart mixture models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2590145
– volume: 43
  start-page: 874
  issue: 4
  year: 2005
  ident: 10.1016/j.patcog.2019.106971_bib0022
  article-title: An unsupervised approach based on the generalized gaussian model to automatic change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2004.842441
– volume: vol. 72
  year: 2011
  ident: 10.1016/j.patcog.2019.106971_bib0051
– volume: 16
  start-page: 1796
  issue: 7
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0009
  article-title: Bivariate gamma distributions for image registration and change detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.896651
– start-page: 3642
  year: 2012
  ident: 10.1016/j.patcog.2019.106971_bib0031
  article-title: Multi-column deep neural networks for image classification
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.patcog.2019.106971_bib0029
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: 10.1016/j.patcog.2019.106971_bib0041
– volume: 12
  start-page: 339
  issue: 2
  year: 1991
  ident: 10.1016/j.patcog.2019.106971_bib0045
  article-title: Change detection in SAR imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169108929656
– volume: 4
  start-page: 503
  issue: 4
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0050
  article-title: Modified fisher’s linear discriminant analysis for hyperspectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2007.900751
– volume: 51
  start-page: 2042
  issue: 4
  year: 2013
  ident: 10.1016/j.patcog.2019.106971_bib0005
  article-title: A hierarchical approach to change detection in very high resolution SAR images for surveillance applications
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2223219
– start-page: 341
  year: 2012
  ident: 10.1016/j.patcog.2019.106971_bib0032
  article-title: Image denoising and inpainting with deep neural networks
– volume: 57
  start-page: 473
  issue: 1
  year: 2019
  ident: 10.1016/j.patcog.2019.106971_bib0015
  article-title: Bivariate gamma distribution for wavelength-resolution SAR change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2856926
– volume: 5
  start-page: 1087
  issue: 4
  year: 2012
  ident: 10.1016/j.patcog.2019.106971_bib0007
  article-title: Multitemporal spaceborne SAR data for urban change detection in china
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2012.2201135
– year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0038
  article-title: Efficient learning of sparse representations with an energy-based model
– start-page: 165
  issue: 2
  year: 1980
  ident: 10.1016/j.patcog.2019.106971_bib0001
  article-title: Digital image enhancement and noise filtering by use of local statistics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1980.4766994
– volume: 30
  start-page: 818
  issue: 3
  year: 2019
  ident: 10.1016/j.patcog.2019.106971_bib0036
  article-title: Local restricted convolutional neural network for change detection in polarimetric SAR images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2847309
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2019.106971_bib0028
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 109
  start-page: 209
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2019.106971_bib0055
  article-title: Sparse representation based fisher discrimination dictionary learning for image classification
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-014-0722-8
– volume: 18
  start-page: 2661
  issue: 12
  year: 2009
  ident: 10.1016/j.patcog.2019.106971_bib0002
  article-title: Iterative weighted maximum likelihood denoising with probabilistic patch-based weights
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2029593
– volume: 22
  start-page: 98
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2019.106971_bib0019
  article-title: Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2249072
– volume: 48
  start-page: 685
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2019.106971_bib0023
  article-title: A new patch based change detector for polarimetric SAR data
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.09.027
– volume: 66
  start-page: 213
  issue: C
  year: 2017
  ident: 10.1016/j.patcog.2019.106971_bib0037
  article-title: Deep learning and mapping based ternary change detection for information unbalanced images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.01.002
– volume: 107
  start-page: 64
  year: 2015
  ident: 10.1016/j.patcog.2019.106971_bib0024
  article-title: Change detection matrix for multitemporal filtering and change analysis of SAR and PolSAR image time series
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.02.008
– start-page: 151
  year: 2011
  ident: 10.1016/j.patcog.2019.106971_bib0039
  article-title: Semi-supervised recursive autoencoders for predicting sentiment distributions
– volume: 56
  start-page: 4002
  issue: 7
  year: 2018
  ident: 10.1016/j.patcog.2019.106971_bib0048
  article-title: Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2819367
– volume: 61
  start-page: 309
  year: 2017
  ident: 10.1016/j.patcog.2019.106971_bib0018
  article-title: Unsupervised saliency-guided SAR image change detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.07.040
– volume: 56
  start-page: 3611
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2019.106971_bib0020
  article-title: A multisquint framework for change detection in high-resolution multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2805471
– volume: 37
  start-page: 2363
  issue: 5
  year: 1999
  ident: 10.1016/j.patcog.2019.106971_bib0040
  article-title: Polarimetric SAR speckle filtering and its implication for classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.789635
– volume: 27
  start-page: 125
  issue: 1
  year: 2016
  ident: 10.1016/j.patcog.2019.106971_bib0035
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– volume: 41
  start-page: 4
  issue: 1
  year: 2003
  ident: 10.1016/j.patcog.2019.106971_bib0011
  article-title: A test statistic in the complex wishart distribution and its application to change detection in polarimetric SAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.808066
– volume: 31
  start-page: 855
  issue: 5
  year: 2009
  ident: 10.1016/j.patcog.2019.106971_bib0030
  article-title: A novel connectionist system for unconstrained handwriting recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.137
– volume: 29
  start-page: 1700
  issue: 10
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0049
  article-title: General tensor discriminant analysis and gabor features for gait recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1096
– volume: 45
  start-page: 1432
  issue: 5
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0010
  article-title: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.893568
– volume: 26
  start-page: 764
  issue: 6
  year: 1988
  ident: 10.1016/j.patcog.2019.106971_bib0052
  article-title: A statistical and geometrical edge detector for sar images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.7708
– volume: 45
  start-page: 2927
  issue: 8
  year: 2012
  ident: 10.1016/j.patcog.2019.106971_bib0008
  article-title: Gradual land cover change detection based on multitemporal fraction images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.02.004
– volume: 57
  start-page: 924
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2019.106971_bib0034
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2863224
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.patcog.2019.106971_bib0026
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– start-page: 1
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0054
  article-title: Trace ratio vs. ratio trace for dimensionality reduction
– volume: 46
  start-page: 2126
  issue: 7
  year: 2008
  ident: 10.1016/j.patcog.2019.106971_bib0021
  article-title: Spectral clustering ensemble applied to SAR image segmentation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.918647
– volume: 40
  start-page: 618
  issue: 3
  year: 2002
  ident: 10.1016/j.patcog.2019.106971_bib0043
  article-title: Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.1000322
– volume: 14
  start-page: 2310
  issue: 2
  year: 2017
  ident: 10.1016/j.patcog.2019.106971_bib0033
  article-title: Generative adversarial networks for change detection in multispectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2762694
– volume: 65
  start-page: 5078
  issue: 19
  year: 2017
  ident: 10.1016/j.patcog.2019.106971_bib0013
  article-title: On multiple covariance equality testing with application to SAR change detection
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2712124
– volume: 54
  start-page: 3953
  issue: 7
  year: 2016
  ident: 10.1016/j.patcog.2019.106971_bib0014
  article-title: Polarimetric SAR change detection with the complex Hotelling-Lawley trace statistic
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2532320
– volume: 52
  start-page: 4781
  issue: 8
  year: 2014
  ident: 10.1016/j.patcog.2019.106971_bib0025
  article-title: A change detector based on an optimization with polarimetric SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284510
– volume: 51
  start-page: 2986
  issue: 5
  year: 2013
  ident: 10.1016/j.patcog.2019.106971_bib0012
  article-title: A new polarimetric change detector in radar imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2211883
– start-page: 791
  year: 2007
  ident: 10.1016/j.patcog.2019.106971_bib0027
  article-title: Restricted Boltzmann machines for collaborative filtering
– volume: 53
  start-page: 4712
  issue: 8
  year: 2015
  ident: 10.1016/j.patcog.2019.106971_bib0047
  article-title: Change-detection map learning using matching pursuit
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2015.2407953
SSID ssj0017142
Score 2.535563
Snippet •The original SAE is expanded to suit with the multiplicative noise in SAR change detection.•The features extracted by SFAE are more discriminative than the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106971
SubjectTerms Change detection
Fisher criterion
Stacked autoencoder (SAE)
Stacked fisher autoencoder (SFAE)
Synthetic aperture radar (SAR)
Title Stacked Fisher autoencoder for SAR change detection
URI https://dx.doi.org/10.1016/j.patcog.2019.106971
Volume 96
WOSCitedRecordID wos000487569700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbo0kMvLX2ptAX5wG0VFD8S28dVC6IVQohStJwix87CIpSs2GzFz-84dh6FCsqhlySaxE6UbzKecT7PILTDrJAstzyKwTuOeAoBijQpiVKTaNBnaXhTDObsUBwdyelUHYfyVsumnIAoS3l7qxb_FWqQAdhu6ewT4O46BQEcA-iwBdhh-0_Ag_sIX6Yd-6LmY72qK5es0uWMcJTCH5OTsNp3bIu6IWKVQw_1uEm46Ra5BGZR_5_-cL5qptFBUS511UtDbH9x3Q6DjpEz15WXg1b04q-BAXwO-2V3Isw6EDVgcARLykjEaMyGllQNTSHEmspXV7lnpf2EwdXuAkab6sLx69Ruf_mfSbHvDFYdhbBlp11lvpfM9ZL5Xp6hdSoSJUdoffJtb_q9-60kCPfp48PDt2spG8Lf_af5u68y8D9ON9DLEDjgiQf8NVoryjfoVVuUAwcb_RaxgD_2-OMB_hjwx4A_9vjjDv936Of-3umXgyhUxogME7SOjDJiRkiuUgn-r7ZJbmeC0lhzw6hOTC5jURA-k6IwacELTm1qaMLyNKGJ1IS9R6OyKosPCBPubL42SkhoHVtlqM3Br4YwV1tl-SZi7TvITEgb76qXXGcPIbCJoq7VwqdNeeR60b7eLLh-3qXLQGcebPnxiXf6hF70-vwZjeqbVbGFnptf9Xx5sx0U5jf0V3iH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Fisher+autoencoder+for+SAR+change+detection&rft.jtitle=Pattern+recognition&rft.au=Liu%2C+Ganchao&rft.au=Li%2C+Lingling&rft.au=Jiao%2C+Licheng&rft.au=Dong%2C+Yongsheng&rft.date=2019-12-01&rft.issn=0031-3203&rft.volume=96&rft.spage=106971&rft_id=info:doi/10.1016%2Fj.patcog.2019.106971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_106971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon