Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability

In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering optimization Ročník 51; číslo 5; s. 733 - 752
Hlavní autoři: Mercier, Q., Poirion, F., Désidéri, J. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 04.05.2019
Taylor & Francis Ltd
Témata:
ISSN:0305-215X, 1029-0273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure.
AbstractList In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure.
In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure. Nous présentons un algorithme de descente pour résoudre numériquement les problèmes d’optimisation multi-critères sous incertitudes lorsque les fonctions objectifs sont non régulières ni convexes mais localement lipchitziennes. L'algorithme repose sur l'existence d'une direction de descente commune à l'ensemble des objectifs. Il est illustré sur un problème de conception optimale d'un matériau sandwich. La comparaison avec les algorithmes NSGA-II et DMS montrent les gains numériques importants de cette approche . Une seconde illustration montre également les apports de cet algorithme pour résoudre les problèmes d'optimisation fiabilistes.
Author Mercier, Q.
Poirion, F.
Désidéri, J. A.
Author_xml – sequence: 1
  givenname: Q.
  surname: Mercier
  fullname: Mercier, Q.
  organization: ONERA, The French Aerospace Lab
– sequence: 2
  givenname: F.
  orcidid: 0000-0002-3557-6144
  surname: Poirion
  fullname: Poirion, F.
  email: fabrice.poirion@onera.fr
  organization: ONERA, The French Aerospace Lab
– sequence: 3
  givenname: J. A.
  surname: Désidéri
  fullname: Désidéri, J. A.
  organization: INRIA
BackLink https://hal.science/hal-01870135$$DView record in HAL
BookMark eNqFkUFv1DAUhC1UJLYtPwHJEicOWew4Tmy4sKooRVqVC0jcrBfH6Xrl2MHxbtle-eM4pHDgABc_afTNyJo5R2c-eIPQC0rWlAjymjDCS8q_rktCxZpWoq4IfYJWlJSyIGXDztBqZooZeobOp2lPCGWEiBX6cRt8oYM_mu94OLhkQ7s3OtmjwWFMdrAPkDWPD74zMb_axATWp9MbDLgzkzY-YXB3Idq0G9Z4M47O6sWTAp7Ad_dW7_DoIJnZYO88ziKOxllorbPpdIme9uAm8_zxXqAv1-8_X90U208fPl5ttoVmTZkKLVtudCNBNpTxVldGM1oDCN5VVd1xWpKy19Jo0vTcyNZIyARhFdRSt7VmF-jVkrsDp8ZoB4gnFcCqm81WzVqur8nF8CPN7MuFHWP4djBTUvtwiD5_T5VUCCGZYFWm-ELpGKYpmv5PLCVq3kb93kbN26jHbbLv7V8-bdOv0lIE6_7rfre4re9DHOA-RNepBCcXYh_Bazsp9u-In1CSrLE
CitedBy_id crossref_primary_10_1080_0305215X_2022_2055007
Cites_doi 10.1016/S0927-0507(03)10006-0
10.1016/j.ejor.2018.05.064
10.1137/10079731X
10.1088/1757-899X/10/1/012037
10.1016/j.matdes.2017.07.057
10.1080/17442508308833246
10.1287/moor.27.3.567.317
10.1007/s10957-013-0367-8
10.1007/s00158-004-0384-1
10.1016/j.cor.2016.06.020
10.1214/aoms/1177729586
10.1016/j.ejor.2013.10.028
10.1080/03052150802046304
10.1016/j.probengmech.2017.04.001
10.1287/mnsc.1.3-4.197
10.1007/s10957-011-9859-6
10.1007/s00158-016-1504-4
10.1016/j.cirp.2008.09.007
10.1016/j.ejor.2014.09.012
10.1080/0305215X.2012.690871
10.1007/s00158-016-1592-1
10.1016/S0020-7403(00)00069-2
10.1017/CBO9781139878326
10.1007/978-3-319-08114-4
10.1023/B:OPTE.0000048538.35456.45
10.1109/TEVC.2005.861417
10.1007/1-84628-095-8_1
10.1016/j.apm.2017.08.016
10.1016/j.ijmecsci.2017.02.027
10.1007/978-3-642-61370-8
10.1007/978-3-319-23564-6_12
10.1016/S0377-2217(03)00371-0
10.1109/ICNC.2011.6022313
10.1016/j.ejor.2016.05.021
10.1007/BFb0074500
10.1016/j.ejor.2016.12.045
10.1137/030601296
10.1016/j.ijimpeng.2015.09.003
10.1016/j.compstruct.2017.09.025
10.1007/978-1-4615-5563-6
10.1016/j.crma.2012.03.014
10.2514/1.46665
10.1002/adem.201400075
10.1145/1527125.1527138
10.1007/s10957-012-0167-6
10.1007/b106458
10.1007/s10589-017-9921-x
10.1080/03052150108940926
10.1109/4235.996017
10.1007/s00158-010-0601-z
10.1007/978-3-662-22199-0
10.1016/j.compchemeng.2003.09.017
10.1080/03052150310001627338
10.1287/mnsc.17.4.B141
10.1016/j.ejor.2013.09.036
ContentType Journal Article
Copyright 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
2018 Informa UK Limited, trading as Taylor & Francis Group
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018
– notice: 2018 Informa UK Limited, trading as Taylor & Francis Group
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
DOI 10.1080/0305215X.2018.1486401
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1029-0273
EndPage 752
ExternalDocumentID oai:HAL:hal-01870135v1
10_1080_0305215X_2018_1486401
1486401
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c372t-c9b5ec79a97135bc4ec316aa85d446d51202fc9ec07f5e9be9aec3034a69cb6c3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460643500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-215X
IngestDate Tue Oct 14 20:22:36 EDT 2025
Wed Aug 13 09:07:53 EDT 2025
Sat Nov 29 06:22:48 EST 2025
Tue Nov 18 22:43:22 EST 2025
Mon Oct 20 23:49:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords INCERTITUDE
ALGORITHME STOCHASTIQUE
FIABILITE
OPTIMISATION MULTIDISCIPLINAIRE
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-c9b5ec79a97135bc4ec316aa85d446d51202fc9ec07f5e9be9aec3034a69cb6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3557-6144
PQID 2188893834
PQPubID 53195
PageCount 20
ParticipantIDs crossref_primary_10_1080_0305215X_2018_1486401
proquest_journals_2188893834
crossref_citationtrail_10_1080_0305215X_2018_1486401
hal_primary_oai_HAL_hal_01870135v1
informaworld_taylorfrancis_310_1080_0305215X_2018_1486401
PublicationCentury 2000
PublicationDate 2019-05-04
PublicationDateYYYYMMDD 2019-05-04
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-04
  day: 04
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Zenkert D. (CIT0058) 1995
CIT0036
CIT0035
CIT0038
CIT0037
Clarke Frank H. (CIT0011) 1983
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0055
CIT0014
CIT0013
CIT0057
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0047
  doi: 10.1016/S0927-0507(03)10006-0
– ident: CIT0035
  doi: 10.1016/j.ejor.2018.05.064
– ident: CIT0012
  doi: 10.1137/10079731X
– ident: CIT0040
  doi: 10.1088/1757-899X/10/1/012037
– ident: CIT0050
  doi: 10.1016/j.matdes.2017.07.057
– ident: CIT0019
  doi: 10.1080/17442508308833246
– ident: CIT0007
  doi: 10.1287/moor.27.3.567.317
– ident: CIT0006
  doi: 10.1007/s10957-013-0367-8
– ident: CIT0001
  doi: 10.1007/s00158-004-0384-1
– ident: CIT0017
  doi: 10.1016/j.cor.2016.06.020
– ident: CIT0044
  doi: 10.1214/aoms/1177729586
– ident: CIT0021
  doi: 10.1016/j.ejor.2013.10.028
– ident: CIT0029
  doi: 10.1080/03052150802046304
– ident: CIT0048
  doi: 10.1016/j.probengmech.2017.04.001
– ident: CIT0013
  doi: 10.1287/mnsc.1.3-4.197
– ident: CIT0022
  doi: 10.1007/s10957-011-9859-6
– ident: CIT0038
  doi: 10.1007/s00158-016-1504-4
– ident: CIT0045
  doi: 10.1016/j.cirp.2008.09.007
– ident: CIT0055
  doi: 10.1016/j.ejor.2014.09.012
– ident: CIT0031
  doi: 10.1080/0305215X.2012.690871
– ident: CIT0054
  doi: 10.1007/s00158-016-1592-1
– ident: CIT0010
  doi: 10.1016/S0020-7403(00)00069-2
– ident: CIT0024
  doi: 10.1017/CBO9781139878326
– ident: CIT0004
  doi: 10.1007/978-3-319-08114-4
– ident: CIT0034
  doi: 10.1023/B:OPTE.0000048538.35456.45
– ident: CIT0025
  doi: 10.1109/TEVC.2005.861417
– ident: CIT0039
  doi: 10.1007/1-84628-095-8_1
– ident: CIT0053
  doi: 10.1016/j.apm.2017.08.016
– ident: CIT0052
  doi: 10.1016/j.ijmecsci.2017.02.027
– ident: CIT0020
  doi: 10.1007/978-3-642-61370-8
– ident: CIT0033
  doi: 10.1007/978-3-319-23564-6_12
– ident: CIT0009
  doi: 10.1016/S0377-2217(03)00371-0
– ident: CIT0042
  doi: 10.1109/ICNC.2011.6022313
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: CIT0011
– ident: CIT0032
  doi: 10.1016/j.ejor.2016.05.021
– ident: CIT0027
  doi: 10.1007/BFb0074500
– ident: CIT0028
  doi: 10.1016/j.ejor.2016.12.045
– ident: CIT0008
  doi: 10.1137/030601296
– ident: CIT0057
  doi: 10.1016/j.ijimpeng.2015.09.003
– ident: CIT0049
  doi: 10.1016/j.compstruct.2017.09.025
– ident: CIT0056
– ident: CIT0036
  doi: 10.1007/978-1-4615-5563-6
– ident: CIT0016
  doi: 10.1016/j.crma.2012.03.014
– ident: CIT0037
  doi: 10.2514/1.46665
– volume-title: An Introduction to Sandwich Construction
  year: 1995
  ident: CIT0058
– ident: CIT0030
  doi: 10.1002/adem.201400075
– ident: CIT0002
  doi: 10.1145/1527125.1527138
– ident: CIT0003
  doi: 10.1007/s10957-012-0167-6
– ident: CIT0014
  doi: 10.1007/b106458
– ident: CIT0041
  doi: 10.1007/s10589-017-9921-x
– ident: CIT0043
  doi: 10.1080/03052150108940926
– ident: CIT0015
  doi: 10.1109/4235.996017
– ident: CIT0051
  doi: 10.1007/s00158-010-0601-z
– ident: CIT0018
  doi: 10.1007/978-3-662-22199-0
– ident: CIT0046
  doi: 10.1016/j.compchemeng.2003.09.017
– ident: CIT0026
  doi: 10.1080/03052150310001627338
– ident: CIT0005
  doi: 10.1287/mnsc.17.4.B141
– ident: CIT0023
  doi: 10.1016/j.ejor.2013.09.036
SSID ssj0013008
Score 2.1973727
Snippet In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is...
SourceID hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 733
SubjectTerms Algorithms
Computer Science
Data Structures and Algorithms
Descent
Design optimization
Engineering Sciences
Genetic algorithms
Materials
Multiobjective optimization
Multiple objective analysis
Parallel processing
Parameter uncertainty
Reliability
stochastic algorithm
uncertainty
Title Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2018.1486401
https://www.proquest.com/docview/2188893834
https://hal.science/hal-01870135
Volume 51
WOSCitedRecordID wos000460643500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 0305-215X
  databaseCode: TFW
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVa1EN7KPRLpQVkVb2GZhMnsXtbIVYc0KoHqu7NsscOm2pJUJLScuaPM3YcWFQhDnCJFMvjJPZ4PI7fvCHkqy61xnEVOAJZEbHEQCQSW0ZMaTExWaxg4gOFj4v5nC8W4kdAE3YBVun20OVAFOFttZvcSncjIu6b01FcqRYOmMVxqvOc-QguXPrd1DyZ_bo9R4h9TjonETmRMYbnvlburE7Plx4buc5g-p_F9svQbPMJPmCLvA4-KJ0OSvOGPLP1W_JqjZnwHbmaN3XkEen_qMccNvr3YBppg0bmLERvUheC1uIVBmRBf_mdKmoGiiiqVqdNW_XLs306vT0np31DO3z1vxUs6fkKfV0nUJ3WFAtpa1fVQB1--Z78nB2eHBxFIV9DBGmR9BEInVkohBIu758GZiGd5ErxzOCm06BrESclCAtxUWZWaCsU1ohTpnIBOof0A9mom9p-JJRBUpjc5GkZAxOcaWwj4bHihikwpd0mbBwnCYHM3OXUWMnJyHka-li6Ppahj7fJ_o3Y-cDm8ZDAF1SCm7qOi_toeixdmctmiAqWXWAlsa4jsvf_WsohMYpMH3jAzqhQMliPTqLbxdGP5Cn79IimP5OXeCs8OpPtkI2-_WN3yQu46Kuu3fPz5BqBWxDV
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgIAGH8i1KC1iIa0o2cRKb26rqahHLnhaxN8ueON1U26TKhkLP_HFmnKRdhFAPcMnB8TiJPR6PnTdvGHtnC2txXBWOQJIFIsohUJErAmGsGuVJaGDkA4Vn2Xwul0u1HQtDsEraQxcdUYS31TS56TB6gMS9JyXFpWpJyCyJc12mgkK47iS41hJ__mLy9fpPQuiz0pFIQDJDFM_fmvltfbq98ujIbQ7TP2y2X4gmD__HJzxiu70bysed3jxmt1z1hD3YIid8yn7O6yrwoPQf3MMOa3vaWUdeo5056wM4OUWhNXiFDlzQXn7ghucdSxQ365O6KdvV2SEfX_8q523NN_ju30tY8fM1urskUJ5UHAt549Zlxx5--Yx9mRwvjqZBn7IhgDiL2gCUTRxkyihK_WdBOIhHqTEyyXHfmaN3EUYFKAdhViROWacM1ghjYVIFNoX4Odup6sq9YFxAlOVpnsZFCEJJYbGNSIZG5sJAXrg9JoaB0tDzmVNajbUeDbSnfR9r6mPd9_EeO7wSO-8IPW4SeItacFWX6Lin45mmMkpoiBqWXGAlta0kuvXHLUWXG0XHNzzgYNAo3RuQjUbPS6IrKWPx8h-afsPuTRefZ3r2cf5pn93HW8qDNcUB22mbb-4VuwsXbblpXvtJ8wu5VxT_
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIASH8iqitICFuKZkE-dhbquWVRGrVQ9F7M2yx3Y3aJussqHQM3-cseO0ixDqAS45OB4nscfjcfzNN4S8VVYpHFeOI5AVEUs0RDwxNmJS8ZHOYgkjHyg8LWazcj7nJwFNuA6wSreHtj1RhLfVbnKvtB0Qce-cjuJKNXfArBKnepkzF8F1B13n3Cn56eTL9UFC7JPSOZHIyQxBPH9r5rfl6fbCgyM3KUz_MNl-HZo8_A9f8IhsByeUjnuteUxumfoJebBBTfiU_Jw1deQh6T-oBx026mtvG2mDVuY8hG9SF4PW4hV6aEF3-Z5KqnuOKCqXZ01bdYvzAzq-PiinXUPX-OrfK1jQ1RKdXSdQndUUC2lrllXPHX65Qz5PPpweHkchYUMEaZF0EXCVGSi45C7xnwJmIB3lUpaZxl2nRt8iTixwA3FhM8OV4RJrxCmTOQeVQ_qMbNVNbZ4TyiApdK7z1MbAeMkUtpGUsSw1k6Ct2SVsGCcBgc3cJdVYitFAehr6WLg-FqGPd8nBldiqp_O4SeANKsFVXUfGfTyeClfm0hmigmUXWIlv6ojo_M8W22dGEekND9gfFEoE87EW6HeV6EiWKXvxD02_JvdOjiZi-nH2aY_cxzvcIzXZPtnq2m_mJbkLF121bl_5KfMLZmgTsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+multiobjective+optimization+under+uncertainty%3A+a+descent+algorithm.+Application+to+sandwich+plate+design+and+reliability&rft.jtitle=Engineering+optimization&rft.au=Mercier%2C+Quentin&rft.au=Poirion%2C+Fabrice&rft.au=D%C3%A9sid%C3%A9ri%2C+J.&rft.date=2019-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0305-215X&rft.eissn=1029-0273&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1080%2F0305215X.2018.1486401&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01870135v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon