Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability
In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension...
Uloženo v:
| Vydáno v: | Engineering optimization Ročník 51; číslo 5; s. 733 - 752 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
04.05.2019
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 0305-215X, 1029-0273 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure. |
|---|---|
| AbstractList | In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure. In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is presented. The algorithm is based on the existence of a common descent vector for each sample of the random objective functions and on an extension of the stochastic gradient algorithm. The proposed algorithm is applied to the optimal design of sandwich material. Comparisons with the genetic algorithm NSGA-II and the DMS solver are given and show that it is numerically more efficient due to the fact that it does not necessitate the objective function expectation evaluation. It can moreover be entirely parallelizable. Another simple illustration highlights its potential for solving general reliability problems, replacing each probability constraint by a new objective written in terms of an expectation. Moreover, for this last application, the proposed algorithm does not necessitate the computation of the (small) probability of failure. Nous présentons un algorithme de descente pour résoudre numériquement les problèmes d’optimisation multi-critères sous incertitudes lorsque les fonctions objectifs sont non régulières ni convexes mais localement lipchitziennes. L'algorithme repose sur l'existence d'une direction de descente commune à l'ensemble des objectifs. Il est illustré sur un problème de conception optimale d'un matériau sandwich. La comparaison avec les algorithmes NSGA-II et DMS montrent les gains numériques importants de cette approche . Une seconde illustration montre également les apports de cet algorithme pour résoudre les problèmes d'optimisation fiabilistes. |
| Author | Mercier, Q. Poirion, F. Désidéri, J. A. |
| Author_xml | – sequence: 1 givenname: Q. surname: Mercier fullname: Mercier, Q. organization: ONERA, The French Aerospace Lab – sequence: 2 givenname: F. orcidid: 0000-0002-3557-6144 surname: Poirion fullname: Poirion, F. email: fabrice.poirion@onera.fr organization: ONERA, The French Aerospace Lab – sequence: 3 givenname: J. A. surname: Désidéri fullname: Désidéri, J. A. organization: INRIA |
| BackLink | https://hal.science/hal-01870135$$DView record in HAL |
| BookMark | eNqFkUFv1DAUhC1UJLYtPwHJEicOWew4Tmy4sKooRVqVC0jcrBfH6Xrl2MHxbtle-eM4pHDgABc_afTNyJo5R2c-eIPQC0rWlAjymjDCS8q_rktCxZpWoq4IfYJWlJSyIGXDztBqZooZeobOp2lPCGWEiBX6cRt8oYM_mu94OLhkQ7s3OtmjwWFMdrAPkDWPD74zMb_axATWp9MbDLgzkzY-YXB3Idq0G9Z4M47O6sWTAp7Ad_dW7_DoIJnZYO88ziKOxllorbPpdIme9uAm8_zxXqAv1-8_X90U208fPl5ttoVmTZkKLVtudCNBNpTxVldGM1oDCN5VVd1xWpKy19Jo0vTcyNZIyARhFdRSt7VmF-jVkrsDp8ZoB4gnFcCqm81WzVqur8nF8CPN7MuFHWP4djBTUvtwiD5_T5VUCCGZYFWm-ELpGKYpmv5PLCVq3kb93kbN26jHbbLv7V8-bdOv0lIE6_7rfre4re9DHOA-RNepBCcXYh_Bazsp9u-In1CSrLE |
| CitedBy_id | crossref_primary_10_1080_0305215X_2022_2055007 |
| Cites_doi | 10.1016/S0927-0507(03)10006-0 10.1016/j.ejor.2018.05.064 10.1137/10079731X 10.1088/1757-899X/10/1/012037 10.1016/j.matdes.2017.07.057 10.1080/17442508308833246 10.1287/moor.27.3.567.317 10.1007/s10957-013-0367-8 10.1007/s00158-004-0384-1 10.1016/j.cor.2016.06.020 10.1214/aoms/1177729586 10.1016/j.ejor.2013.10.028 10.1080/03052150802046304 10.1016/j.probengmech.2017.04.001 10.1287/mnsc.1.3-4.197 10.1007/s10957-011-9859-6 10.1007/s00158-016-1504-4 10.1016/j.cirp.2008.09.007 10.1016/j.ejor.2014.09.012 10.1080/0305215X.2012.690871 10.1007/s00158-016-1592-1 10.1016/S0020-7403(00)00069-2 10.1017/CBO9781139878326 10.1007/978-3-319-08114-4 10.1023/B:OPTE.0000048538.35456.45 10.1109/TEVC.2005.861417 10.1007/1-84628-095-8_1 10.1016/j.apm.2017.08.016 10.1016/j.ijmecsci.2017.02.027 10.1007/978-3-642-61370-8 10.1007/978-3-319-23564-6_12 10.1016/S0377-2217(03)00371-0 10.1109/ICNC.2011.6022313 10.1016/j.ejor.2016.05.021 10.1007/BFb0074500 10.1016/j.ejor.2016.12.045 10.1137/030601296 10.1016/j.ijimpeng.2015.09.003 10.1016/j.compstruct.2017.09.025 10.1007/978-1-4615-5563-6 10.1016/j.crma.2012.03.014 10.2514/1.46665 10.1002/adem.201400075 10.1145/1527125.1527138 10.1007/s10957-012-0167-6 10.1007/b106458 10.1007/s10589-017-9921-x 10.1080/03052150108940926 10.1109/4235.996017 10.1007/s00158-010-0601-z 10.1007/978-3-662-22199-0 10.1016/j.compchemeng.2003.09.017 10.1080/03052150310001627338 10.1287/mnsc.17.4.B141 10.1016/j.ejor.2013.09.036 |
| ContentType | Journal Article |
| Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC |
| DOI | 10.1080/0305215X.2018.1486401 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1029-0273 |
| EndPage | 752 |
| ExternalDocumentID | oai:HAL:hal-01870135v1 10_1080_0305215X_2018_1486401 1486401 |
| Genre | Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 1XC |
| ID | FETCH-LOGICAL-c372t-c9b5ec79a97135bc4ec316aa85d446d51202fc9ec07f5e9be9aec3034a69cb6c3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460643500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-215X |
| IngestDate | Tue Oct 14 20:22:36 EDT 2025 Wed Aug 13 09:07:53 EDT 2025 Sat Nov 29 06:22:48 EST 2025 Tue Nov 18 22:43:22 EST 2025 Mon Oct 20 23:49:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | INCERTITUDE ALGORITHME STOCHASTIQUE FIABILITE OPTIMISATION MULTIDISCIPLINAIRE |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-c9b5ec79a97135bc4ec316aa85d446d51202fc9ec07f5e9be9aec3034a69cb6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3557-6144 |
| PQID | 2188893834 |
| PQPubID | 53195 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1080_0305215X_2018_1486401 proquest_journals_2188893834 crossref_citationtrail_10_1080_0305215X_2018_1486401 hal_primary_oai_HAL_hal_01870135v1 informaworld_taylorfrancis_310_1080_0305215X_2018_1486401 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-04 |
| PublicationDateYYYYMMDD | 2019-05-04 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Engineering optimization |
| PublicationYear | 2019 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Zenkert D. (CIT0058) 1995 CIT0036 CIT0035 CIT0038 CIT0037 Clarke Frank H. (CIT0011) 1983 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0055 CIT0014 CIT0013 CIT0057 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0047 doi: 10.1016/S0927-0507(03)10006-0 – ident: CIT0035 doi: 10.1016/j.ejor.2018.05.064 – ident: CIT0012 doi: 10.1137/10079731X – ident: CIT0040 doi: 10.1088/1757-899X/10/1/012037 – ident: CIT0050 doi: 10.1016/j.matdes.2017.07.057 – ident: CIT0019 doi: 10.1080/17442508308833246 – ident: CIT0007 doi: 10.1287/moor.27.3.567.317 – ident: CIT0006 doi: 10.1007/s10957-013-0367-8 – ident: CIT0001 doi: 10.1007/s00158-004-0384-1 – ident: CIT0017 doi: 10.1016/j.cor.2016.06.020 – ident: CIT0044 doi: 10.1214/aoms/1177729586 – ident: CIT0021 doi: 10.1016/j.ejor.2013.10.028 – ident: CIT0029 doi: 10.1080/03052150802046304 – ident: CIT0048 doi: 10.1016/j.probengmech.2017.04.001 – ident: CIT0013 doi: 10.1287/mnsc.1.3-4.197 – ident: CIT0022 doi: 10.1007/s10957-011-9859-6 – ident: CIT0038 doi: 10.1007/s00158-016-1504-4 – ident: CIT0045 doi: 10.1016/j.cirp.2008.09.007 – ident: CIT0055 doi: 10.1016/j.ejor.2014.09.012 – ident: CIT0031 doi: 10.1080/0305215X.2012.690871 – ident: CIT0054 doi: 10.1007/s00158-016-1592-1 – ident: CIT0010 doi: 10.1016/S0020-7403(00)00069-2 – ident: CIT0024 doi: 10.1017/CBO9781139878326 – ident: CIT0004 doi: 10.1007/978-3-319-08114-4 – ident: CIT0034 doi: 10.1023/B:OPTE.0000048538.35456.45 – ident: CIT0025 doi: 10.1109/TEVC.2005.861417 – ident: CIT0039 doi: 10.1007/1-84628-095-8_1 – ident: CIT0053 doi: 10.1016/j.apm.2017.08.016 – ident: CIT0052 doi: 10.1016/j.ijmecsci.2017.02.027 – ident: CIT0020 doi: 10.1007/978-3-642-61370-8 – ident: CIT0033 doi: 10.1007/978-3-319-23564-6_12 – ident: CIT0009 doi: 10.1016/S0377-2217(03)00371-0 – ident: CIT0042 doi: 10.1109/ICNC.2011.6022313 – volume-title: Optimization and Nonsmooth Analysis year: 1983 ident: CIT0011 – ident: CIT0032 doi: 10.1016/j.ejor.2016.05.021 – ident: CIT0027 doi: 10.1007/BFb0074500 – ident: CIT0028 doi: 10.1016/j.ejor.2016.12.045 – ident: CIT0008 doi: 10.1137/030601296 – ident: CIT0057 doi: 10.1016/j.ijimpeng.2015.09.003 – ident: CIT0049 doi: 10.1016/j.compstruct.2017.09.025 – ident: CIT0056 – ident: CIT0036 doi: 10.1007/978-1-4615-5563-6 – ident: CIT0016 doi: 10.1016/j.crma.2012.03.014 – ident: CIT0037 doi: 10.2514/1.46665 – volume-title: An Introduction to Sandwich Construction year: 1995 ident: CIT0058 – ident: CIT0030 doi: 10.1002/adem.201400075 – ident: CIT0002 doi: 10.1145/1527125.1527138 – ident: CIT0003 doi: 10.1007/s10957-012-0167-6 – ident: CIT0014 doi: 10.1007/b106458 – ident: CIT0041 doi: 10.1007/s10589-017-9921-x – ident: CIT0043 doi: 10.1080/03052150108940926 – ident: CIT0015 doi: 10.1109/4235.996017 – ident: CIT0051 doi: 10.1007/s00158-010-0601-z – ident: CIT0018 doi: 10.1007/978-3-662-22199-0 – ident: CIT0046 doi: 10.1016/j.compchemeng.2003.09.017 – ident: CIT0026 doi: 10.1080/03052150310001627338 – ident: CIT0005 doi: 10.1287/mnsc.17.4.B141 – ident: CIT0023 doi: 10.1016/j.ejor.2013.09.036 |
| SSID | ssj0013008 |
| Score | 2.1973727 |
| Snippet | In this paper a novel algorithm for solving multiobjective design optimization problems with non-smooth objective functions and uncertain parameters is... |
| SourceID | hal proquest crossref informaworld |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 733 |
| SubjectTerms | Algorithms Computer Science Data Structures and Algorithms Descent Design optimization Engineering Sciences Genetic algorithms Materials Multiobjective optimization Multiple objective analysis Parallel processing Parameter uncertainty Reliability stochastic algorithm uncertainty |
| Title | Non-convex multiobjective optimization under uncertainty: a descent algorithm. Application to sandwich plate design and reliability |
| URI | https://www.tandfonline.com/doi/abs/10.1080/0305215X.2018.1486401 https://www.proquest.com/docview/2188893834 https://hal.science/hal-01870135 |
| Volume | 51 |
| WOSCitedRecordID | wos000460643500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1029-0273 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013008 issn: 0305-215X databaseCode: TFW dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELVa1EN7KPRLpQVkVb2GZhMnsXtbIVYc0KoHqu7NsscOm2pJUJLScuaPM3YcWFQhDnCJFMvjJPZ4PI7fvCHkqy61xnEVOAJZEbHEQCQSW0ZMaTExWaxg4gOFj4v5nC8W4kdAE3YBVun20OVAFOFttZvcSncjIu6b01FcqRYOmMVxqvOc-QguXPrd1DyZ_bo9R4h9TjonETmRMYbnvlburE7Plx4buc5g-p_F9svQbPMJPmCLvA4-KJ0OSvOGPLP1W_JqjZnwHbmaN3XkEen_qMccNvr3YBppg0bmLERvUheC1uIVBmRBf_mdKmoGiiiqVqdNW_XLs306vT0np31DO3z1vxUs6fkKfV0nUJ3WFAtpa1fVQB1--Z78nB2eHBxFIV9DBGmR9BEInVkohBIu758GZiGd5ErxzOCm06BrESclCAtxUWZWaCsU1ohTpnIBOof0A9mom9p-JJRBUpjc5GkZAxOcaWwj4bHihikwpd0mbBwnCYHM3OXUWMnJyHka-li6Ppahj7fJ_o3Y-cDm8ZDAF1SCm7qOi_toeixdmctmiAqWXWAlsa4jsvf_WsohMYpMH3jAzqhQMliPTqLbxdGP5Cn79IimP5OXeCs8OpPtkI2-_WN3yQu46Kuu3fPz5BqBWxDV |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgIAGH8i1KC1iIa0o2cRKb26rqahHLnhaxN8ueON1U26TKhkLP_HFmnKRdhFAPcMnB8TiJPR6PnTdvGHtnC2txXBWOQJIFIsohUJErAmGsGuVJaGDkA4Vn2Xwul0u1HQtDsEraQxcdUYS31TS56TB6gMS9JyXFpWpJyCyJc12mgkK47iS41hJ__mLy9fpPQuiz0pFIQDJDFM_fmvltfbq98ujIbQ7TP2y2X4gmD__HJzxiu70bysed3jxmt1z1hD3YIid8yn7O6yrwoPQf3MMOa3vaWUdeo5056wM4OUWhNXiFDlzQXn7ghucdSxQ365O6KdvV2SEfX_8q523NN_ju30tY8fM1urskUJ5UHAt549Zlxx5--Yx9mRwvjqZBn7IhgDiL2gCUTRxkyihK_WdBOIhHqTEyyXHfmaN3EUYFKAdhViROWacM1ghjYVIFNoX4Odup6sq9YFxAlOVpnsZFCEJJYbGNSIZG5sJAXrg9JoaB0tDzmVNajbUeDbSnfR9r6mPd9_EeO7wSO-8IPW4SeItacFWX6Lin45mmMkpoiBqWXGAlta0kuvXHLUWXG0XHNzzgYNAo3RuQjUbPS6IrKWPx8h-afsPuTRefZ3r2cf5pn93HW8qDNcUB22mbb-4VuwsXbblpXvtJ8wu5VxT_ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIASH8iqitICFuKZkE-dhbquWVRGrVQ9F7M2yx3Y3aJussqHQM3-cseO0ixDqAS45OB4nscfjcfzNN4S8VVYpHFeOI5AVEUs0RDwxNmJS8ZHOYgkjHyg8LWazcj7nJwFNuA6wSreHtj1RhLfVbnKvtB0Qce-cjuJKNXfArBKnepkzF8F1B13n3Cn56eTL9UFC7JPSOZHIyQxBPH9r5rfl6fbCgyM3KUz_MNl-HZo8_A9f8IhsByeUjnuteUxumfoJebBBTfiU_Jw1deQh6T-oBx026mtvG2mDVuY8hG9SF4PW4hV6aEF3-Z5KqnuOKCqXZ01bdYvzAzq-PiinXUPX-OrfK1jQ1RKdXSdQndUUC2lrllXPHX65Qz5PPpweHkchYUMEaZF0EXCVGSi45C7xnwJmIB3lUpaZxl2nRt8iTixwA3FhM8OV4RJrxCmTOQeVQ_qMbNVNbZ4TyiApdK7z1MbAeMkUtpGUsSw1k6Ct2SVsGCcBgc3cJdVYitFAehr6WLg-FqGPd8nBldiqp_O4SeANKsFVXUfGfTyeClfm0hmigmUXWIlv6ojo_M8W22dGEekND9gfFEoE87EW6HeV6EiWKXvxD02_JvdOjiZi-nH2aY_cxzvcIzXZPtnq2m_mJbkLF121bl_5KfMLZmgTsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-convex+multiobjective+optimization+under+uncertainty%3A+a+descent+algorithm.+Application+to+sandwich+plate+design+and+reliability&rft.jtitle=Engineering+optimization&rft.au=Mercier%2C+Quentin&rft.au=Poirion%2C+Fabrice&rft.au=D%C3%A9sid%C3%A9ri%2C+J.&rft.date=2019-05-04&rft.pub=Taylor+%26+Francis&rft.issn=0305-215X&rft.eissn=1029-0273&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1080%2F0305215X.2018.1486401&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01870135v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon |