Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system
•Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstracti...
Saved in:
| Published in: | Water research (Oxford) Vol. 229; p. 119392 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.02.2023
|
| Subjects: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstraction (HAA) route.••OH shows larger energy barriers than SO4•− through radical adduct formation (RAF).
Hydroxyl radical (•OH) and sulfate radical (SO4•−) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•− and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•− at the molecular orbital level. In total, SO4•− is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•−due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•− attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•− in AOPs.
[Display omitted] |
|---|---|
| AbstractList | •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstraction (HAA) route.••OH shows larger energy barriers than SO4•− through radical adduct formation (RAF).
Hydroxyl radical (•OH) and sulfate radical (SO4•−) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•− and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•− at the molecular orbital level. In total, SO4•− is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•−due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•− attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•− in AOPs.
[Display omitted] Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•- and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•- at the molecular orbital level. In total, SO4•- is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•-due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•- attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•- in AOPs.Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•- and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•- at the molecular orbital level. In total, SO4•- is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•-due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•- attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•- in AOPs. Hydroxyl radical (•OH) and sulfate radical (SO₄•⁻) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO₄•⁻ and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO₄•⁻ at the molecular orbital level. In total, SO₄•⁻ is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO₄•⁻due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO₄•⁻ attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO₄•⁻ in AOPs. |
| ArticleNumber | 119392 |
| Author | Li, Fan Chen, Long Xie, Chenghan Zhang, Huixuan Duan, Jun Liu, Wen |
| Author_xml | – sequence: 1 givenname: Huixuan surname: Zhang fullname: Zhang, Huixuan organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China – sequence: 2 givenname: Chenghan surname: Xie fullname: Xie, Chenghan organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China – sequence: 3 givenname: Long surname: Chen fullname: Chen, Long organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China – sequence: 4 givenname: Jun orcidid: 0000-0002-5823-2440 surname: Duan fullname: Duan, Jun organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China – sequence: 5 givenname: Fan surname: Li fullname: Li, Fan organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China – sequence: 6 givenname: Wen orcidid: 0000-0002-6787-2431 surname: Liu fullname: Liu, Wen email: wen.liu@pku.edu.cn organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China |
| BookMark | eNqFkb9uFDEQxi0UJC6BN6BwGYq7-N-udymQ0PEnJ0W6Aqgtn3eW-OS1F9t74TpKah6BjtfKk-BjqShINSPN7_s0M985OvPBA0LPKVlRQuur_epO5whpxQhjK0pb3rJHaEEb2S6ZEM0ZWhAi-JLySjxB5yntCSkkbxfo1xvb9xDBZxxBm2yDxwOYW-1tGhIOPf6wFfffft5__4G173Bpt9f4zuZbHOLnQhlswjCGqcyszxDHCBk6rDMeggMzOR0LubNZO-zgAK5geB0uN5sXVyPE8PU4BB_S5HqdARtduGMurqddDvrPPumYMgxP0eNeuwTP_tYL9Ond24_r6-XN9v1m_fpmabhkeWnalrNaaskNMNbXFaGk3vWMUsqaHaklVEZoWpuGCyY6Q6uul7tadIR0kteMX6DL2XeM4csEKavBJgPOaQ9hSorTijcVkaJ5EGVS8Io0leQFfTmjJoaUIvTKlJeczstRW6coUaco1V7NUapTlGqOsojFP-Ix2kHH40OyV7MMyrsOFqJKxoI30NkIJqsu2P8b_AbXBcH2 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_149227 crossref_primary_10_1016_j_envres_2024_118870 crossref_primary_10_1007_s11270_025_08303_5 crossref_primary_10_3390_cryst15030263 crossref_primary_10_1016_j_eti_2023_103337 crossref_primary_10_1016_j_jwpe_2024_106454 crossref_primary_10_1016_j_apcatb_2024_123998 crossref_primary_10_1007_s11356_023_31183_3 crossref_primary_10_1016_j_jhazmat_2024_134544 crossref_primary_10_1016_j_watres_2024_121373 crossref_primary_10_1016_j_jece_2025_117184 crossref_primary_10_1016_j_envres_2023_117828 crossref_primary_10_1016_j_jece_2025_115336 crossref_primary_10_1016_j_clay_2025_107790 crossref_primary_10_1016_j_foodres_2025_117140 crossref_primary_10_1016_j_watres_2024_122699 crossref_primary_10_1016_j_dwt_2024_100871 crossref_primary_10_1016_j_watres_2025_124016 crossref_primary_10_1021_acs_est_5c03593 crossref_primary_10_1016_j_cej_2024_157087 crossref_primary_10_1016_j_cej_2024_154490 crossref_primary_10_1016_j_psep_2025_107686 crossref_primary_10_1016_j_watres_2025_124132 crossref_primary_10_1016_j_jece_2025_118287 crossref_primary_10_1016_j_scitotenv_2024_174718 crossref_primary_10_1016_j_cej_2024_153604 crossref_primary_10_1016_j_seppur_2024_127963 crossref_primary_10_1016_j_apcatb_2025_125784 crossref_primary_10_1016_j_apsusc_2023_157649 crossref_primary_10_1007_s11783_024_1769_6 crossref_primary_10_1016_j_seppur_2024_128928 crossref_primary_10_3390_app14178075 crossref_primary_10_1016_j_chemosphere_2023_140598 crossref_primary_10_1002_anie_202508548 crossref_primary_10_1016_j_colsurfa_2025_138323 crossref_primary_10_1016_j_seppur_2024_130200 crossref_primary_10_1016_j_jece_2023_110649 crossref_primary_10_1016_j_jece_2025_119265 crossref_primary_10_1016_j_apcatb_2025_125676 crossref_primary_10_1016_j_cej_2025_163357 crossref_primary_10_1016_j_seppur_2023_124763 crossref_primary_10_1016_j_seppur_2024_127039 crossref_primary_10_3390_su162310544 crossref_primary_10_1016_j_cej_2023_146692 crossref_primary_10_1016_j_cej_2023_144388 crossref_primary_10_1002_ange_202508548 crossref_primary_10_1016_j_jece_2025_115352 crossref_primary_10_1016_j_efmat_2023_08_002 crossref_primary_10_1016_j_jhazmat_2025_137565 crossref_primary_10_1016_j_jwpe_2024_105116 crossref_primary_10_1016_j_cej_2025_161747 crossref_primary_10_1016_j_ijbiomac_2025_139700 crossref_primary_10_1016_j_cej_2024_158836 crossref_primary_10_1016_j_seppur_2025_131937 crossref_primary_10_1007_s11356_024_33657_4 crossref_primary_10_1016_j_cej_2024_152979 crossref_primary_10_1021_acs_jafc_5c02597 crossref_primary_10_1016_j_jenvman_2023_119930 crossref_primary_10_1016_j_surfin_2024_104539 crossref_primary_10_1039_D3EN00660C crossref_primary_10_1016_j_jhazmat_2024_134063 crossref_primary_10_1016_j_apcatb_2023_123314 crossref_primary_10_1016_j_watres_2023_120480 crossref_primary_10_1016_j_surfin_2025_106269 crossref_primary_10_1016_j_ceramint_2024_12_225 crossref_primary_10_1016_j_jhazmat_2024_136354 crossref_primary_10_1021_acs_est_5c08289 crossref_primary_10_1016_j_chemphys_2024_112479 crossref_primary_10_1016_j_jece_2024_114944 crossref_primary_10_1016_j_jece_2025_115416 crossref_primary_10_1038_s44221_024_00236_3 crossref_primary_10_1016_j_jhazmat_2025_138715 crossref_primary_10_1038_s41467_024_51878_6 crossref_primary_10_1016_j_apcatb_2025_125747 crossref_primary_10_1016_j_cej_2025_163588 crossref_primary_10_1016_j_jece_2025_118361 crossref_primary_10_1016_j_seppur_2023_125539 crossref_primary_10_1016_j_cej_2024_155096 crossref_primary_10_1016_j_chemosphere_2024_143382 crossref_primary_10_1016_j_cej_2024_158124 crossref_primary_10_1016_j_envres_2025_120779 crossref_primary_10_1016_j_seppur_2025_132315 crossref_primary_10_1016_j_seppur_2024_126269 crossref_primary_10_1016_j_cej_2023_146523 crossref_primary_10_1021_acsnano_5c04030 crossref_primary_10_1016_j_molliq_2024_126617 crossref_primary_10_1016_j_scitotenv_2024_172200 crossref_primary_10_1016_j_cej_2025_159740 crossref_primary_10_1016_j_efmat_2023_02_002 crossref_primary_10_1016_j_envres_2025_122603 crossref_primary_10_1016_j_seppur_2025_132300 crossref_primary_10_1016_j_jwpe_2024_104860 crossref_primary_10_1016_j_jece_2025_119111 crossref_primary_10_1016_j_seppur_2024_127101 crossref_primary_10_1016_j_jece_2025_118381 crossref_primary_10_1016_j_watres_2023_119926 crossref_primary_10_1039_D5LF00102A crossref_primary_10_1016_j_watres_2024_122621 crossref_primary_10_1016_j_cej_2025_166922 crossref_primary_10_1016_j_cej_2025_166924 crossref_primary_10_1016_j_seppur_2025_131683 crossref_primary_10_1016_j_seppur_2025_131563 crossref_primary_10_1016_j_jwpe_2025_108512 crossref_primary_10_1016_j_apcatb_2025_125933 crossref_primary_10_1016_j_seppur_2024_128424 crossref_primary_10_1016_j_cej_2025_166362 crossref_primary_10_1016_j_psep_2025_107839 crossref_primary_10_1016_j_envres_2025_121480 crossref_primary_10_1016_j_jhazmat_2024_135915 crossref_primary_10_1016_j_jclepro_2024_140951 crossref_primary_10_1016_j_cej_2024_148789 crossref_primary_10_1016_j_watres_2024_121521 crossref_primary_10_1016_j_jclepro_2024_144510 crossref_primary_10_5004_dwt_2023_29924 crossref_primary_10_1016_j_envres_2025_121813 crossref_primary_10_1016_j_cej_2024_149195 crossref_primary_10_1016_j_cej_2025_168432 crossref_primary_10_1016_j_psep_2024_12_106 crossref_primary_10_1016_j_jcis_2025_138610 crossref_primary_10_1016_j_cej_2024_150715 crossref_primary_10_1016_j_watres_2024_122526 crossref_primary_10_1002_adma_202505128 crossref_primary_10_1016_j_chemosphere_2024_141680 crossref_primary_10_1016_j_jhazmat_2025_138121 crossref_primary_10_1016_j_jhazmat_2024_134720 crossref_primary_10_1038_s41467_023_44422_5 crossref_primary_10_1016_j_jcis_2025_137639 crossref_primary_10_1016_j_cej_2025_168412 crossref_primary_10_1016_j_cej_2024_150966 crossref_primary_10_1016_j_watres_2024_122755 crossref_primary_10_1016_j_watres_2025_123105 crossref_primary_10_1016_j_jcis_2025_01_059 crossref_primary_10_1038_s41467_024_50238_8 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_jcis_2024_06_160 crossref_primary_10_1016_j_jcis_2023_10_156 crossref_primary_10_1016_j_apcatb_2024_124339 crossref_primary_10_1016_j_colsurfa_2025_138037 crossref_primary_10_1016_j_cej_2023_146281 crossref_primary_10_1016_j_jece_2024_112182 crossref_primary_10_1016_j_seppur_2023_124259 crossref_primary_10_1016_j_seppur_2024_126339 crossref_primary_10_1016_j_jece_2025_118516 crossref_primary_10_1016_j_envres_2023_117981 crossref_primary_10_1016_j_jallcom_2025_181780 crossref_primary_10_1016_j_jwpe_2023_103781 crossref_primary_10_1016_j_envres_2025_120912 crossref_primary_10_1007_s10653_024_02352_1 crossref_primary_10_1016_j_seppur_2023_123867 crossref_primary_10_1016_j_cej_2025_166214 crossref_primary_10_1016_j_cej_2023_142466 crossref_primary_10_1007_s11356_023_31566_6 crossref_primary_10_1016_j_ecoenv_2024_116049 crossref_primary_10_1016_j_trechm_2023_03_009 crossref_primary_10_1016_j_cej_2024_149152 crossref_primary_10_1016_j_colsurfa_2024_134156 crossref_primary_10_1016_j_jhazmat_2023_133303 crossref_primary_10_1016_j_chemosphere_2023_139659 crossref_primary_10_1016_j_ijbiomac_2025_142011 crossref_primary_10_1016_j_jcis_2023_05_092 crossref_primary_10_1080_10643389_2025_2496385 crossref_primary_10_3390_toxics12040283 crossref_primary_10_1007_s11356_025_35966_8 crossref_primary_10_1016_j_chemosphere_2024_143542 crossref_primary_10_1007_s11270_024_07465_y crossref_primary_10_1016_j_jece_2025_118411 crossref_primary_10_1016_j_seppur_2025_132396 crossref_primary_10_1016_j_jhazmat_2024_134363 crossref_primary_10_1016_j_cej_2024_149928 crossref_primary_10_1016_j_envres_2025_121903 crossref_primary_10_1016_j_cej_2024_154168 crossref_primary_10_1016_j_jhazmat_2023_133198 crossref_primary_10_1016_j_seppur_2024_128842 crossref_primary_10_1016_j_seppur_2024_129018 crossref_primary_10_1016_j_jhazmat_2025_138568 crossref_primary_10_1016_j_apcatb_2024_123693 crossref_primary_10_1073_pnas_2305378120 crossref_primary_10_1007_s11144_024_02622_0 crossref_primary_10_3390_catal13091308 crossref_primary_10_1016_j_cherd_2025_07_008 crossref_primary_10_1016_j_jhazmat_2025_138215 crossref_primary_10_1016_j_watres_2025_124116 crossref_primary_10_1016_j_jenvman_2023_118571 crossref_primary_10_1016_j_jhazmat_2025_138574 crossref_primary_10_1016_j_jwpe_2024_106520 crossref_primary_10_1016_j_seppur_2025_133119 crossref_primary_10_1007_s12551_025_01292_z crossref_primary_10_1016_j_jhazmat_2024_134119 crossref_primary_10_1016_j_envres_2025_121596 crossref_primary_10_1016_j_seppur_2023_126231 crossref_primary_10_1016_j_seppur_2024_129487 crossref_primary_10_1016_j_envpol_2025_126717 crossref_primary_10_1016_j_jece_2025_115395 crossref_primary_10_1007_s11356_024_35642_3 crossref_primary_10_1016_j_cej_2023_147696 |
| Cites_doi | 10.1007/s00214-007-0310-x 10.1016/j.jhazmat.2010.01.091 10.1021/ol071038k 10.1016/j.watres.2018.03.002 10.1271/bbb.56.324 10.1021/es802274h 10.1021/acs.est.0c02377 10.1002/jcc.22885 10.1021/es035121o 10.1016/j.apcatb.2019.118549 10.1021/acs.chemrev.8b00299 10.1021/ar00072a001 10.1016/j.watres.2021.117397 10.1016/j.cej.2020.126877 10.1021/ie402633n 10.1016/j.cej.2020.124264 10.1021/acs.est.9b07113 10.3390/cleantechnol3020019 10.1016/j.apcatb.2013.01.038 10.1016/j.jhazmat.2008.12.138 10.1016/j.chemosphere.2019.125343 10.1002/jctb.4525 10.1016/j.carbon.2020.05.023 10.1021/acs.est.8b05129 10.1016/j.cej.2016.10.064 10.1103/RevModPhys.65.599 10.1002/ange.202005739 10.1016/j.watres.2022.118113 10.1021/acs.est.2c00464 10.1016/j.envpol.2019.113498 10.1021/acs.est.0c04410 10.1063/1.467146 10.1021/acs.est.2c00132 10.1039/C9TA07634D 10.1021/acs.est.8b00735 10.1021/es2017363 10.1016/j.apcatb.2020.118971 10.1021/jp953748q 10.1021/acs.est.1c08806 10.1021/es503741d 10.1021/ja00756a009 10.1016/j.scitotenv.2020.144733 10.1002/qua.10109 10.1021/acs.est.1c04563 10.1016/j.cej.2017.06.179 10.1016/j.watres.2019.115378 10.1021/jp506172a 10.1063/1.463096 10.1021/acs.est.5b03078 10.1016/j.scitotenv.2017.03.039 10.1016/j.watres.2022.118747 10.1021/es047985v 10.1039/ft9928801653 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2022.119392 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 10_1016_j_watres_2022_119392 S0043135422013379 |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-c993267a73ce22f650106bf211128b067e5c4a16c83424dc15df7b64d00d73623 |
| ISICitedReferencesCount | 225 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sat Sep 27 17:08:39 EDT 2025 Sun Sep 28 01:37:44 EDT 2025 Sat Nov 29 07:29:18 EST 2025 Tue Nov 18 20:07:21 EST 2025 Fri Feb 23 02:38:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Molecular orbital Reaction mechanism Sulfate radical Peroxymonosulfate Hydroxyl radical |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-c993267a73ce22f650106bf211128b067e5c4a16c83424dc15df7b64d00d73623 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6787-2431 0000-0002-5823-2440 |
| PQID | 2743508573 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153850748 proquest_miscellaneous_2743508573 crossref_citationtrail_10_1016_j_watres_2022_119392 crossref_primary_10_1016_j_watres_2022_119392 elsevier_sciencedirect_doi_10_1016_j_watres_2022_119392 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Water research (Oxford) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Mei, Han, Wei, An, Cao, Xie, He (bib0022) 2021; 768 Li, He, Wang, Liu, Hu (bib0023) 2020; 243 Yang, Lin, Peng, Yuan, Dionysiou, Huang, Zhang, Fu (bib0048) 2020; 268 Hayon, Treinin, Wilf (bib0019) 1972; 94 Xiao, Ma, Luo, Zeng, Wei, Spinney, Hu, Dionysiou (bib0045) 2020; 257 Coughlin, Zhugayevych, Bakus, van der Poll, Welch, Teat, Bazan, Tretiak (bib0006) 2014; 118 Chen, Wu, Zheng, Wang, Niu, Fang (bib0003) 2020; 54 Long, Lei, Zhang (bib0027) 2014; 53 Truhlar, Garrett, Klippenstein (bib0043) 1996; 100 Schäfer, Huber, Ahlrichs (bib0040) 1994; 100 Zhou, Zhang, Chen (bib0055) 2015; 90 Yang, Song, Yu, Wang, Zhang, Geng, Cao, Baran, Tang (bib0049) 2019; 7 Yang, Su, Luo, Spinney, Cai, Xiao, Wei (bib0052) 2017; 590-591 Gao, Minakata, Wei, Spinney, Dionysiou, Tang, Chai, Xiao (bib0016) 2019; 53 Qi, Chu, Xu (bib0036) 2013; 134 Zhao, Truhlar (bib0054) 2008; 120 Patel, Kumar, Kishor, Mlsna, Pittman, Mohan (bib0034) 2019; 119 Cuvelier, Richard, Berset (bib0007) 1992; 56 Samuni, Krisna, Packer, Cadenas (bib0038) 1997 Du, Wang, Sun, Chen, Liu (bib0012) 2022; 212 Chen, Duan, Du, Sun, Lai, Liu (bib0004) 2022; 221 Marcus (bib0031) 1993; 65 Huang, Huang (bib0020) 2009; 167 De Vleeschouwer, Van Speybroeck, Waroquier, Geerlings, De Proft (bib0009) 2007; 9 Ling, Wang, Peng (bib0024) 2010; 178 Muchowska, Pascoe, Borsley, Smolyar, Mati, Adam, Nichol, Ling, Cockroft (bib0033) 2020; 132 Smith (bib0041) 2020 Zhu, Wang, Li, Qian, Lv, Pan (bib0056) 2021; 202 Liu, Lu, Chen (bib0026) 2020; 165 Guan, Ma, Li, Fang, Chen (bib0018) 2011; 45 Dalmázio, Santos, Lopes, Eberlin, Augusti (bib0008) 2005; 39 Politzer, Murray, Concha (bib0035) 2002; 88 Dong, Ren, Zhang, Liu, Sun, Li, Tan, Yang, Zheng, Dionysiou (bib0011) 2020; 272 Vandeponseele, Draye, Piot, Chatel (bib0044) 2021; 3 Gao, Huang, Mao, Shao, Shao, Yan, Tang, Zhu (bib0015) 2020; 54 Yang, Ding, Zhou, Fan, Wang, Ferronato, Chovelon, Xiu (bib0050) 2020; 171 Liu, Zhang, Yin, Yang, Luo, Crittenden (bib0025) 2020; 388 Chen, Ji, Qi, Huang, Wang, Liu (bib0005) 2021; 406 Masomboon, Ratanatamskul, Lu (bib0032) 2009; 43 Yang, Banerjee, Brudvig, Kim, Pignatello (bib0051) 2018; 52 Zhang, Liu, Moores, Ghoshal (bib0053) 2020; 54 Luo, Wei, Dionysiou, Spinney, Hu, Chai, Yang, Ye, Xiao (bib0030) 2017; 327 Schäfer, Horn, Ahlrichs (bib0039) 1992; 97 Jiang, Katsumura, Nagaishi, Domae, Ishikawa, Ishigure, Yoshida (bib0021) 1992; 88 Fukui (bib0014) 1981; 14 Xie, He, Zhou, Li, Liu, Du, Liu, Mu, Lai (bib0047) 2022; 56 Anipsitakis, Dionysiou (bib0001) 2004; 38 Luo, Gao, Wei, Spinney, Dionysiou, Hu, Chai, Xiao (bib0029) 2018; 137 Qi, Yang, Pan, Huang, Yang, Wang, Liu (bib0037) 2022; 56 Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji (bib0013) 2016 Ghanbari, Moradi (bib0017) 2017; 310 Tian, Luo, Nie, Shi, Tian, Dionysiou, Wang (bib0042) 2022; 56 Dong, Xu, Lian, Li, Wang, Li, Guan (bib0010) 2021; 55 Avetta, Pensato, Minella, Malandrino, Maurino, Minero, Hanna, Vione (bib0002) 2015; 49 Xiao, Ye, Wei, Luo, Yang, Spinney (bib0046) 2015; 49 Lu, Chen (bib0028) 2012; 33 Luo (10.1016/j.watres.2022.119392_bib0030) 2017; 327 Huang (10.1016/j.watres.2022.119392_bib0020) 2009; 167 Lu (10.1016/j.watres.2022.119392_bib0028) 2012; 33 Li (10.1016/j.watres.2022.119392_bib0022) 2021; 768 Tian (10.1016/j.watres.2022.119392_bib0042) 2022; 56 Schäfer (10.1016/j.watres.2022.119392_bib0040) 1994; 100 Zhao (10.1016/j.watres.2022.119392_bib0054) 2008; 120 Chen (10.1016/j.watres.2022.119392_bib0005) 2021; 406 Vandeponseele (10.1016/j.watres.2022.119392_bib0044) 2021; 3 Chen (10.1016/j.watres.2022.119392_bib0004) 2022; 221 Cuvelier (10.1016/j.watres.2022.119392_bib0007) 1992; 56 Dong (10.1016/j.watres.2022.119392_bib0011) 2020; 272 Politzer (10.1016/j.watres.2022.119392_bib0035) 2002; 88 Yang (10.1016/j.watres.2022.119392_bib0048) 2020; 268 Chen (10.1016/j.watres.2022.119392_bib0003) 2020; 54 Ghanbari (10.1016/j.watres.2022.119392_bib0017) 2017; 310 Xiao (10.1016/j.watres.2022.119392_bib0045) 2020; 257 Long (10.1016/j.watres.2022.119392_bib0027) 2014; 53 Hayon (10.1016/j.watres.2022.119392_bib0019) 1972; 94 Schäfer (10.1016/j.watres.2022.119392_bib0039) 1992; 97 Patel (10.1016/j.watres.2022.119392_bib0034) 2019; 119 Qi (10.1016/j.watres.2022.119392_bib0036) 2013; 134 Xie (10.1016/j.watres.2022.119392_bib0047) 2022; 56 Smith (10.1016/j.watres.2022.119392_bib0041) 2020 Jiang (10.1016/j.watres.2022.119392_bib0021) 1992; 88 Ling (10.1016/j.watres.2022.119392_bib0024) 2010; 178 Yang (10.1016/j.watres.2022.119392_bib0049) 2019; 7 Marcus (10.1016/j.watres.2022.119392_bib0031) 1993; 65 Truhlar (10.1016/j.watres.2022.119392_bib0043) 1996; 100 Dong (10.1016/j.watres.2022.119392_bib0010) 2021; 55 Gao (10.1016/j.watres.2022.119392_bib0015) 2020; 54 Gao (10.1016/j.watres.2022.119392_bib0016) 2019; 53 Avetta (10.1016/j.watres.2022.119392_bib0002) 2015; 49 Guan (10.1016/j.watres.2022.119392_bib0018) 2011; 45 De Vleeschouwer (10.1016/j.watres.2022.119392_bib0009) 2007; 9 Dalmázio (10.1016/j.watres.2022.119392_bib0008) 2005; 39 Zhang (10.1016/j.watres.2022.119392_bib0053) 2020; 54 Qi (10.1016/j.watres.2022.119392_bib0037) 2022; 56 Fukui (10.1016/j.watres.2022.119392_bib0014) 1981; 14 Coughlin (10.1016/j.watres.2022.119392_bib0006) 2014; 118 Li (10.1016/j.watres.2022.119392_bib0023) 2020; 243 Liu (10.1016/j.watres.2022.119392_bib0026) 2020; 165 Xiao (10.1016/j.watres.2022.119392_bib0046) 2015; 49 Du (10.1016/j.watres.2022.119392_bib0012) 2022; 212 Samuni (10.1016/j.watres.2022.119392_bib0038) 1997 Yang (10.1016/j.watres.2022.119392_bib0050) 2020; 171 Yang (10.1016/j.watres.2022.119392_bib0052) 2017; 590-591 Luo (10.1016/j.watres.2022.119392_bib0029) 2018; 137 Yang (10.1016/j.watres.2022.119392_bib0051) 2018; 52 Anipsitakis (10.1016/j.watres.2022.119392_bib0001) 2004; 38 Liu (10.1016/j.watres.2022.119392_bib0025) 2020; 388 Muchowska (10.1016/j.watres.2022.119392_bib0033) 2020; 132 Masomboon (10.1016/j.watres.2022.119392_bib0032) 2009; 43 Frisch (10.1016/j.watres.2022.119392_bib0013) 2016 Zhou (10.1016/j.watres.2022.119392_bib0055) 2015; 90 Zhu (10.1016/j.watres.2022.119392_bib0056) 2021; 202 |
| References_xml | – volume: 88 start-page: 1653 year: 1992 end-page: 1658 ident: bib0021 article-title: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals publication-title: J. Chem. Soc. Faraday T. – volume: 120 start-page: 215 year: 2008 end-page: 241 ident: bib0054 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. – volume: 119 start-page: 3510 year: 2019 end-page: 3673 ident: bib0034 article-title: Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods publication-title: Chem. Rev. – volume: 55 start-page: 15390 year: 2021 end-page: 15399 ident: bib0010 article-title: Degradation of organic contaminants in the Fe(II)/peroxymonosulfate process under acidic conditions: the overlooked rapid oxidation stage publication-title: Environ. Sci. Technol. – volume: 3 start-page: 335 year: 2021 end-page: 350 ident: bib0044 article-title: Study of influential parameters of the caffeine extraction from spent coffee grounds: from brewing coffee method to the waste treatment conditions publication-title: Clean Technol. – volume: 53 start-page: 1033 year: 2014 end-page: 1039 ident: bib0027 article-title: Degradation of toluene by a selective ferrous ion activated persulfate oxidation process publication-title: Ind. Eng. Chem. Res. – volume: 43 start-page: 8629 year: 2009 end-page: 8634 ident: bib0032 article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process publication-title: Environ. Sci. Technol. – volume: 165 start-page: 461 year: 2020 end-page: 467 ident: bib0026 article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity publication-title: Carbon – volume: 49 start-page: 13394 year: 2015 end-page: 13402 ident: bib0046 article-title: Quantitative structure–activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical publication-title: Environ. Sci. Technol. – volume: 590-591 start-page: 751 year: 2017 end-page: 760 ident: bib0052 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study publication-title: Sci. Total Environ. – volume: 243 year: 2020 ident: bib0023 article-title: Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program publication-title: Chemosphere – volume: 221 year: 2022 ident: bib0004 article-title: Accurate identification of radicals by publication-title: Water Res. – volume: 406 year: 2021 ident: bib0005 article-title: Degradation of acetaminophen by activated peroxymonosulfate using Co(OH) publication-title: Chem. Eng. J. – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: bib0017 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants publication-title: Chem. Eng. J. – volume: 137 start-page: 233 year: 2018 end-page: 241 ident: bib0029 article-title: Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates publication-title: Water Res. – volume: 65 start-page: 599 year: 1993 ident: bib0031 article-title: Electron transfer reactions in chemistry. Theory and experiment publication-title: Rev. Mod. Phys. – volume: 272 year: 2020 ident: bib0011 article-title: Diatomite supported hierarchical 2D CoNi publication-title: Appl. Catal. B – volume: 38 start-page: 3705 year: 2004 end-page: 3712 ident: bib0001 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. – volume: 56 start-page: 5542 year: 2022 end-page: 5551 ident: bib0042 article-title: New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: key role of sulfidation in efficient iron(III) reduction and sulfate radical generation publication-title: Environ. Sci. Technol. – volume: 49 start-page: 1043 year: 2015 end-page: 1050 ident: bib0002 article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions publication-title: Environ. Sci. Technol. – volume: 388 year: 2020 ident: bib0025 article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation publication-title: Chem. Eng. J. – volume: 178 start-page: 385 year: 2010 end-page: 389 ident: bib0024 article-title: Oxidative degradation of dyes in water using Co publication-title: J. Hazard. Mater. – volume: 56 start-page: 5200 year: 2022 end-page: 5212 ident: bib0037 article-title: Interface engineering of Co(OH) publication-title: Environ. Sci. Technol. – volume: 327 start-page: 1056 year: 2017 end-page: 1065 ident: bib0030 article-title: Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway publication-title: Chem. Eng. J. – volume: 88 start-page: 19 year: 2002 end-page: 27 ident: bib0035 article-title: The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes publication-title: Int. J. Quantum Chem. – volume: 768 year: 2021 ident: bib0022 article-title: The roles of HO•, ClO• and BrO• radicals in caffeine degradation: a theoretical study publication-title: Sci. Total Environ. – volume: 56 start-page: 8784 year: 2022 end-page: 8795 ident: bib0047 article-title: Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. – volume: 132 start-page: 14710 year: 2020 end-page: 14716 ident: bib0033 article-title: Reconciling electrostatic and n→π* orbital contributions in carbonyl interactions publication-title: Angew. Chem.-Int. Ed. – volume: 100 start-page: 5829 year: 1994 end-page: 5835 ident: bib0040 article-title: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr publication-title: J. Chem. Phys. – volume: 118 start-page: 15610 year: 2014 end-page: 15623 ident: bib0006 article-title: A combined experimental and theoretical study of conformational preferences of molecular semiconductors publication-title: J. Phys. Chem. C – volume: 134 start-page: 324 year: 2013 end-page: 332 ident: bib0036 article-title: Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate publication-title: Appl. Catal. B – volume: 7 start-page: 22279 year: 2019 end-page: 22286 ident: bib0049 article-title: Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells publication-title: J. Mater. Chem. A – volume: 45 start-page: 9308 year: 2011 end-page: 9314 ident: bib0018 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. – volume: 94 start-page: 47 year: 1972 end-page: 57 ident: bib0019 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO publication-title: J. Am. Chem. Soc. – volume: 268 year: 2020 ident: bib0048 article-title: Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: radical oxidation versus singlet oxygenation publication-title: Appl. Catal. B – volume: 52 start-page: 5911 year: 2018 end-page: 5919 ident: bib0051 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. – volume: 212 year: 2022 ident: bib0012 article-title: Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system publication-title: Water Res. – year: 2016 ident: bib0013 article-title: Gaussian 16 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: bib0028 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. – volume: 167 start-page: 418 year: 2009 end-page: 426 ident: bib0020 article-title: Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co publication-title: J. Hazard. Mater. – volume: 90 start-page: 775 year: 2015 end-page: 779 ident: bib0055 article-title: Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? publication-title: J. Chem. Technol. Biotechnol. – volume: 257 year: 2020 ident: bib0045 article-title: Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine publication-title: Environ. Pollut. – volume: 171 year: 2020 ident: bib0050 article-title: New insights into clopyralid degradation by sulfate radical: pyridine ring cleavage pathways publication-title: Water Res. – volume: 202 year: 2021 ident: bib0056 article-title: Degradation of phosphonates in Co(II)/peroxymonosulfate process: performance and mechanism publication-title: Water Res. – volume: 9 start-page: 2721 year: 2007 end-page: 2724 ident: bib0009 article-title: Electrophilicity and nucleophilicity index for radicals publication-title: Org. Lett. – year: 2020 ident: bib0041 article-title: March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure – volume: 100 start-page: 12771 year: 1996 end-page: 12800 ident: bib0043 article-title: Current status of transition-state theory publication-title: J. Phys. Chem. – volume: 54 start-page: 4631 year: 2020 end-page: 4640 ident: bib0053 article-title: Transformation of 6:2 fluorotelomer sulfonate by cobalt(II)-activated peroxymonosulfate publication-title: Environ. Sci. Technol. – volume: 54 start-page: 8455 year: 2020 end-page: 8463 ident: bib0003 article-title: Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite publication-title: Environ. Sci. Technol. – volume: 53 start-page: 342 year: 2019 end-page: 353 ident: bib0016 article-title: Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals publication-title: Environ. Sci. Technol. – start-page: 351 year: 1997 end-page: 373 ident: bib0038 article-title: Handbook of Synthetic Antioxidants – volume: 97 start-page: 2571 year: 1992 end-page: 2577 ident: bib0039 article-title: Fully optimized contracted Gaussian basis sets for atoms Li to Kr publication-title: J. Chem. Phys. – volume: 56 start-page: 324 year: 1992 end-page: 325 ident: bib0007 article-title: Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship publication-title: Biosci. Biotechnol. Biochem. – volume: 39 start-page: 5982 year: 2005 end-page: 5988 ident: bib0008 article-title: Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry publication-title: Environ. Sci. Technol. – volume: 54 start-page: 14046 year: 2020 end-page: 14056 ident: bib0015 article-title: First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals publication-title: Environ. Sci. Technol. – volume: 14 start-page: 363 year: 1981 end-page: 368 ident: bib0014 article-title: The path of chemical reactions-the IRC approach publication-title: Acc. Chem. Res. – volume: 120 start-page: 215 issue: 1 year: 2008 ident: 10.1016/j.watres.2022.119392_bib0054 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 178 start-page: 385 issue: 1 year: 2010 ident: 10.1016/j.watres.2022.119392_bib0024 article-title: Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.01.091 – volume: 9 start-page: 2721 issue: 14 year: 2007 ident: 10.1016/j.watres.2022.119392_bib0009 article-title: Electrophilicity and nucleophilicity index for radicals publication-title: Org. Lett. doi: 10.1021/ol071038k – volume: 137 start-page: 233 year: 2018 ident: 10.1016/j.watres.2022.119392_bib0029 article-title: Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates publication-title: Water Res. doi: 10.1016/j.watres.2018.03.002 – volume: 56 start-page: 324 issue: 2 year: 1992 ident: 10.1016/j.watres.2022.119392_bib0007 article-title: Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.56.324 – volume: 43 start-page: 8629 issue: 22 year: 2009 ident: 10.1016/j.watres.2022.119392_bib0032 article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process publication-title: Environ. Sci. Technol. doi: 10.1021/es802274h – volume: 54 start-page: 8455 issue: 13 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0003 article-title: Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02377 – volume: 33 start-page: 580 issue: 5 year: 2012 ident: 10.1016/j.watres.2022.119392_bib0028 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 38 start-page: 3705 issue: 13 year: 2004 ident: 10.1016/j.watres.2022.119392_bib0001 article-title: Radical generation by the interaction of transition metals with common oxidants publication-title: Environ. Sci. Technol. doi: 10.1021/es035121o – volume: 268 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0048 article-title: Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: radical oxidation versus singlet oxygenation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.118549 – volume: 119 start-page: 3510 issue: 6 year: 2019 ident: 10.1016/j.watres.2022.119392_bib0034 article-title: Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00299 – volume: 14 start-page: 363 issue: 12 year: 1981 ident: 10.1016/j.watres.2022.119392_bib0014 article-title: The path of chemical reactions-the IRC approach publication-title: Acc. Chem. Res. doi: 10.1021/ar00072a001 – volume: 202 year: 2021 ident: 10.1016/j.watres.2022.119392_bib0056 article-title: Degradation of phosphonates in Co(II)/peroxymonosulfate process: performance and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2021.117397 – volume: 406 year: 2021 ident: 10.1016/j.watres.2022.119392_bib0005 article-title: Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: insights into sulfate radical production pathway through CoOH+ activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126877 – volume: 53 start-page: 1033 issue: 3 year: 2014 ident: 10.1016/j.watres.2022.119392_bib0027 article-title: Degradation of toluene by a selective ferrous ion activated persulfate oxidation process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402633n – volume: 388 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0025 article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124264 – start-page: 351 year: 1997 ident: 10.1016/j.watres.2022.119392_bib0038 – volume: 54 start-page: 4631 issue: 7 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0053 article-title: Transformation of 6:2 fluorotelomer sulfonate by cobalt(II)-activated peroxymonosulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07113 – volume: 3 start-page: 335 issue: 2 year: 2021 ident: 10.1016/j.watres.2022.119392_bib0044 article-title: Study of influential parameters of the caffeine extraction from spent coffee grounds: from brewing coffee method to the waste treatment conditions publication-title: Clean Technol. doi: 10.3390/cleantechnol3020019 – volume: 134 start-page: 324 year: 2013 ident: 10.1016/j.watres.2022.119392_bib0036 article-title: Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.01.038 – volume: 167 start-page: 418 issue: 1 year: 2009 ident: 10.1016/j.watres.2022.119392_bib0020 article-title: Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.12.138 – volume: 243 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0023 article-title: Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125343 – volume: 90 start-page: 775 issue: 5 year: 2015 ident: 10.1016/j.watres.2022.119392_bib0055 article-title: Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4525 – volume: 165 start-page: 461 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0026 article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity publication-title: Carbon doi: 10.1016/j.carbon.2020.05.023 – volume: 53 start-page: 342 issue: 1 year: 2019 ident: 10.1016/j.watres.2022.119392_bib0016 article-title: Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05129 – volume: 310 start-page: 41 year: 2017 ident: 10.1016/j.watres.2022.119392_bib0017 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.064 – year: 2020 ident: 10.1016/j.watres.2022.119392_bib0041 – volume: 65 start-page: 599 issue: 3 year: 1993 ident: 10.1016/j.watres.2022.119392_bib0031 article-title: Electron transfer reactions in chemistry. Theory and experiment publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.599 – volume: 132 start-page: 14710 issue: 34 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0033 article-title: Reconciling electrostatic and n→π* orbital contributions in carbonyl interactions publication-title: Angew. Chem.-Int. Ed. doi: 10.1002/ange.202005739 – volume: 212 year: 2022 ident: 10.1016/j.watres.2022.119392_bib0012 article-title: Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system publication-title: Water Res. doi: 10.1016/j.watres.2022.118113 – year: 2016 ident: 10.1016/j.watres.2022.119392_bib0013 – volume: 56 start-page: 8784 issue: 12 year: 2022 ident: 10.1016/j.watres.2022.119392_bib0047 article-title: Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00464 – volume: 257 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0045 article-title: Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113498 – volume: 54 start-page: 14046 issue: 21 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0015 article-title: First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04410 – volume: 100 start-page: 5829 issue: 8 year: 1994 ident: 10.1016/j.watres.2022.119392_bib0040 article-title: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr publication-title: J. Chem. Phys. doi: 10.1063/1.467146 – volume: 56 start-page: 5542 issue: 9 year: 2022 ident: 10.1016/j.watres.2022.119392_bib0042 article-title: New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: key role of sulfidation in efficient iron(III) reduction and sulfate radical generation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00132 – volume: 7 start-page: 22279 issue: 39 year: 2019 ident: 10.1016/j.watres.2022.119392_bib0049 article-title: Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07634D – volume: 52 start-page: 5911 issue: 10 year: 2018 ident: 10.1016/j.watres.2022.119392_bib0051 article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00735 – volume: 45 start-page: 9308 issue: 21 year: 2011 ident: 10.1016/j.watres.2022.119392_bib0018 article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 272 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0011 article-title: Diatomite supported hierarchical 2D CoNi3O4 nanoribbons as highly efficient peroxymonosulfate catalyst for atrazine degradation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118971 – volume: 100 start-page: 12771 issue: 31 year: 1996 ident: 10.1016/j.watres.2022.119392_bib0043 article-title: Current status of transition-state theory publication-title: J. Phys. Chem. doi: 10.1021/jp953748q – volume: 56 start-page: 5200 issue: 8 year: 2022 ident: 10.1016/j.watres.2022.119392_bib0037 article-title: Interface engineering of Co(OH)2 nanosheets growing on the KNbO3 perovskite based on electronic structure modulation for enhanced peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08806 – volume: 49 start-page: 1043 issue: 2 year: 2015 ident: 10.1016/j.watres.2022.119392_bib0002 article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es503741d – volume: 94 start-page: 47 issue: 1 year: 1972 ident: 10.1016/j.watres.2022.119392_bib0019 article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2−, SO3−, SO4−, and SO5− radicals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00756a009 – volume: 768 year: 2021 ident: 10.1016/j.watres.2022.119392_bib0022 article-title: The roles of HO•, ClO• and BrO• radicals in caffeine degradation: a theoretical study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144733 – volume: 88 start-page: 19 issue: 1 year: 2002 ident: 10.1016/j.watres.2022.119392_bib0035 article-title: The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.10109 – volume: 55 start-page: 15390 issue: 22 year: 2021 ident: 10.1016/j.watres.2022.119392_bib0010 article-title: Degradation of organic contaminants in the Fe(II)/peroxymonosulfate process under acidic conditions: the overlooked rapid oxidation stage publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04563 – volume: 327 start-page: 1056 year: 2017 ident: 10.1016/j.watres.2022.119392_bib0030 article-title: Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.06.179 – volume: 171 year: 2020 ident: 10.1016/j.watres.2022.119392_bib0050 article-title: New insights into clopyralid degradation by sulfate radical: pyridine ring cleavage pathways publication-title: Water Res. doi: 10.1016/j.watres.2019.115378 – volume: 118 start-page: 15610 issue: 29 year: 2014 ident: 10.1016/j.watres.2022.119392_bib0006 article-title: A combined experimental and theoretical study of conformational preferences of molecular semiconductors publication-title: J. Phys. Chem. C doi: 10.1021/jp506172a – volume: 97 start-page: 2571 issue: 4 year: 1992 ident: 10.1016/j.watres.2022.119392_bib0039 article-title: Fully optimized contracted Gaussian basis sets for atoms Li to Kr publication-title: J. Chem. Phys. doi: 10.1063/1.463096 – volume: 49 start-page: 13394 issue: 22 year: 2015 ident: 10.1016/j.watres.2022.119392_bib0046 article-title: Quantitative structure–activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b03078 – volume: 590-591 start-page: 751 year: 2017 ident: 10.1016/j.watres.2022.119392_bib0052 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.039 – volume: 221 year: 2022 ident: 10.1016/j.watres.2022.119392_bib0004 article-title: Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes publication-title: Water Res. doi: 10.1016/j.watres.2022.118747 – volume: 39 start-page: 5982 issue: 16 year: 2005 ident: 10.1016/j.watres.2022.119392_bib0008 article-title: Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/es047985v – volume: 88 start-page: 1653 issue: 12 year: 1992 ident: 10.1016/j.watres.2022.119392_bib0021 article-title: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals publication-title: J. Chem. Soc. Faraday T. doi: 10.1039/ft9928801653 |
| SSID | ssj0002239 |
| Score | 2.7124238 |
| Snippet | •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than... Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants... Hydroxyl radical (•OH) and sulfate radical (SO₄•⁻) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 119392 |
| SubjectTerms | caffeine electron transfer hydrogen Hydroxyl radical hydroxyl radicals Lewis acids Molecular orbital oxidation Peroxymonosulfate Reaction mechanism Sulfate radical sulfates thermodynamics water |
| Title | Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system |
| URI | https://dx.doi.org/10.1016/j.watres.2022.119392 https://www.proquest.com/docview/2743508573 https://www.proquest.com/docview/3153850748 |
| Volume | 229 |
| WOSCitedRecordID | wos000904127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6jQMcEJ9ifExGYhKoytY4bmIfqzLUomlFYkBvUeIktFObTGs6uhtHzvwEbvwpDvslvP5KyqoxduASWZbjWnmf2o_t931ehF7wCDhx5gqHMu47lNLIYT5PnNiP2yn3U86U2PPH_eDggA2H_F2j8cvGwpxOgjxniwU__q-mhjowtgydvYa5q06hAspgdHiC2eH5T4Z_bVKelE3ggzoR-DSV8b3j2VT5bbwfUOPi0CGqwLY5UZcIVfWgpw9odc4noRzPZf4lpS6hfBSBp0Zlc2qT60LLWKYfaU6kE5IOJZTctb9NpNKoVCNfnMEnKGbzSQb0tqmOjc6UWqywGdaMrPQyX_4USRFHo0g0UtqoC-2OXx1gVEfevfl4Ma_BPtQ3L91Rmn8e1dVdE46yX5g1W7H4yISo5MunIMSzjtP1zC6lVj0tSG1ndmLGoudmF7iqzru3smzoE4yjnS-RDNDZgR8gO3XzP1W6L6yelU-jdZc7CnUvoewl1L2soQ0StDnMuhud_t7wbcUVgJxx6wMhR2-DO5UH4upoLiNPF2iE4kaHd9Bts6nBHQ3Gu6iR5vfQrSWpy_voZwVLbGGJa1jiIsMAy_OvP86_fccARQzFQQ9LEGIDQmxBiJdAiKMSVyDEBoRYgRCa4W7xst9_tbsCP1zBD9fwwxp-D9CHN3uH3Z5j0oQ4wgtI6Qgu9yBBFHgiJSSDLYfb8uOMwCpOWAxsLG0LGrm-YB4lNBFuO8mC2KdJq5UEwN-8h2g9L_L0EcJ-1uKJCJKIZIJSkcYsc6mgLY_6BDrhm8iz3z8URkNfpnKZhH-z_iZyqreOtYbMFe0Da9rQ8GDNb0PA6xVvPrdICGGZkHd_UZ4Wc2gEO4W2zGbhXd7Gk-wH9oeUPb7miJ-gm_Wf8ilaL0_m6TN0Q5yW49nJFloLhmzLQP83iVDzDQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+reaction+mechanisms+of+SO4%E2%80%A2%E2%88%92+and+%E2%80%A2OH+with+organic+compound+interpreted+at+molecular+orbital+level+in+Co%28II%29%2Fperoxymonosulfate+catalytic+activation+system&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Huixuan&rft.au=Xie%2C+Chenghan&rft.au=Chen%2C+Long&rft.au=Duan%2C+Jun&rft.date=2023-02-01&rft.issn=0043-1354&rft.volume=229&rft.spage=119392&rft_id=info:doi/10.1016%2Fj.watres.2022.119392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_119392 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |