Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system

•Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstracti...

Full description

Saved in:
Bibliographic Details
Published in:Water research (Oxford) Vol. 229; p. 119392
Main Authors: Zhang, Huixuan, Xie, Chenghan, Chen, Long, Duan, Jun, Li, Fan, Liu, Wen
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.02.2023
Subjects:
ISSN:0043-1354, 1879-2448, 1879-2448
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstraction (HAA) route.••OH shows larger energy barriers than SO4•− through radical adduct formation (RAF). Hydroxyl radical (•OH) and sulfate radical (SO4•−) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•− and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•− at the molecular orbital level. In total, SO4•− is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•−due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•− attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•− in AOPs. [Display omitted]
AbstractList •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than •OH.•Only SO4•−can react with CAF through single electron transfer reaction (SET) route.•Only •OH can react with CAF through hydrogen atom abstraction (HAA) route.••OH shows larger energy barriers than SO4•− through radical adduct formation (RAF). Hydroxyl radical (•OH) and sulfate radical (SO4•−) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•− and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•− at the molecular orbital level. In total, SO4•− is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•−due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•− attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•− in AOPs. [Display omitted]
Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•- and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•- at the molecular orbital level. In total, SO4•- is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•-due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•- attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•- in AOPs.Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO4•- and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO4•- at the molecular orbital level. In total, SO4•- is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO4•-due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO4•- attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO4•- in AOPs.
Hydroxyl radical (•OH) and sulfate radical (SO₄•⁻) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants degradation, however, the different radical characteristics and reaction mechanisms on organics degradation are still needed. In this study, a homogeneous Co(II)/peroxymonosulfate activation system was established for caffeine (CAF) degradation, and pH was controlled to regulate the radicals production. The different attack routes driven by SO₄•⁻ and •OH were deeply explored by transformation products (TPs) identification and theoretical calculations. Specifically, a method on dynamic electronic structure analysis of reactants (R), transition state (TS) and intermediates (IMs) during reaction was proposed, which was applied to elucidate the underlying mechanism of CAF oxidation by •OH and SO₄•⁻ at the molecular orbital level. In total, SO₄•⁻ is kinetically more likely to attack CAF than •OH due to its higher oxidation potential and electrophilicity index. Single electron transfer reaction (SET) is only favorable for SO₄•⁻due to its higher electron affinity than •OH, while only •OH can react with CAF via hydrogen atom abstraction (HAA) route. Radical adduct formation (RAF) is the most favorable route for both •OH and SO₄•⁻ attack according to both kinetics and thermodynamics results. These findings can significantly promote the understanding on the degradation mechanism of organic pollutants driven by •OH and SO₄•⁻ in AOPs.
ArticleNumber 119392
Author Li, Fan
Chen, Long
Xie, Chenghan
Zhang, Huixuan
Duan, Jun
Liu, Wen
Author_xml – sequence: 1
  givenname: Huixuan
  surname: Zhang
  fullname: Zhang, Huixuan
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 2
  givenname: Chenghan
  surname: Xie
  fullname: Xie, Chenghan
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 3
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0002-5823-2440
  surname: Duan
  fullname: Duan, Jun
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 5
  givenname: Fan
  surname: Li
  fullname: Li, Fan
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
– sequence: 6
  givenname: Wen
  orcidid: 0000-0002-6787-2431
  surname: Liu
  fullname: Liu, Wen
  email: wen.liu@pku.edu.cn
  organization: College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
BookMark eNqFkb9uFDEQxi0UJC6BN6BwGYq7-N-udymQ0PEnJ0W6Aqgtn3eW-OS1F9t74TpKah6BjtfKk-BjqShINSPN7_s0M985OvPBA0LPKVlRQuur_epO5whpxQhjK0pb3rJHaEEb2S6ZEM0ZWhAi-JLySjxB5yntCSkkbxfo1xvb9xDBZxxBm2yDxwOYW-1tGhIOPf6wFfffft5__4G173Bpt9f4zuZbHOLnQhlswjCGqcyszxDHCBk6rDMeggMzOR0LubNZO-zgAK5geB0uN5sXVyPE8PU4BB_S5HqdARtduGMurqddDvrPPumYMgxP0eNeuwTP_tYL9Ond24_r6-XN9v1m_fpmabhkeWnalrNaaskNMNbXFaGk3vWMUsqaHaklVEZoWpuGCyY6Q6uul7tadIR0kteMX6DL2XeM4csEKavBJgPOaQ9hSorTijcVkaJ5EGVS8Io0leQFfTmjJoaUIvTKlJeczstRW6coUaco1V7NUapTlGqOsojFP-Ix2kHH40OyV7MMyrsOFqJKxoI30NkIJqsu2P8b_AbXBcH2
CitedBy_id crossref_primary_10_1016_j_cej_2024_149227
crossref_primary_10_1016_j_envres_2024_118870
crossref_primary_10_1007_s11270_025_08303_5
crossref_primary_10_3390_cryst15030263
crossref_primary_10_1016_j_eti_2023_103337
crossref_primary_10_1016_j_jwpe_2024_106454
crossref_primary_10_1016_j_apcatb_2024_123998
crossref_primary_10_1007_s11356_023_31183_3
crossref_primary_10_1016_j_jhazmat_2024_134544
crossref_primary_10_1016_j_watres_2024_121373
crossref_primary_10_1016_j_jece_2025_117184
crossref_primary_10_1016_j_envres_2023_117828
crossref_primary_10_1016_j_jece_2025_115336
crossref_primary_10_1016_j_clay_2025_107790
crossref_primary_10_1016_j_foodres_2025_117140
crossref_primary_10_1016_j_watres_2024_122699
crossref_primary_10_1016_j_dwt_2024_100871
crossref_primary_10_1016_j_watres_2025_124016
crossref_primary_10_1021_acs_est_5c03593
crossref_primary_10_1016_j_cej_2024_157087
crossref_primary_10_1016_j_cej_2024_154490
crossref_primary_10_1016_j_psep_2025_107686
crossref_primary_10_1016_j_watres_2025_124132
crossref_primary_10_1016_j_jece_2025_118287
crossref_primary_10_1016_j_scitotenv_2024_174718
crossref_primary_10_1016_j_cej_2024_153604
crossref_primary_10_1016_j_seppur_2024_127963
crossref_primary_10_1016_j_apcatb_2025_125784
crossref_primary_10_1016_j_apsusc_2023_157649
crossref_primary_10_1007_s11783_024_1769_6
crossref_primary_10_1016_j_seppur_2024_128928
crossref_primary_10_3390_app14178075
crossref_primary_10_1016_j_chemosphere_2023_140598
crossref_primary_10_1002_anie_202508548
crossref_primary_10_1016_j_colsurfa_2025_138323
crossref_primary_10_1016_j_seppur_2024_130200
crossref_primary_10_1016_j_jece_2023_110649
crossref_primary_10_1016_j_jece_2025_119265
crossref_primary_10_1016_j_apcatb_2025_125676
crossref_primary_10_1016_j_cej_2025_163357
crossref_primary_10_1016_j_seppur_2023_124763
crossref_primary_10_1016_j_seppur_2024_127039
crossref_primary_10_3390_su162310544
crossref_primary_10_1016_j_cej_2023_146692
crossref_primary_10_1016_j_cej_2023_144388
crossref_primary_10_1002_ange_202508548
crossref_primary_10_1016_j_jece_2025_115352
crossref_primary_10_1016_j_efmat_2023_08_002
crossref_primary_10_1016_j_jhazmat_2025_137565
crossref_primary_10_1016_j_jwpe_2024_105116
crossref_primary_10_1016_j_cej_2025_161747
crossref_primary_10_1016_j_ijbiomac_2025_139700
crossref_primary_10_1016_j_cej_2024_158836
crossref_primary_10_1016_j_seppur_2025_131937
crossref_primary_10_1007_s11356_024_33657_4
crossref_primary_10_1016_j_cej_2024_152979
crossref_primary_10_1021_acs_jafc_5c02597
crossref_primary_10_1016_j_jenvman_2023_119930
crossref_primary_10_1016_j_surfin_2024_104539
crossref_primary_10_1039_D3EN00660C
crossref_primary_10_1016_j_jhazmat_2024_134063
crossref_primary_10_1016_j_apcatb_2023_123314
crossref_primary_10_1016_j_watres_2023_120480
crossref_primary_10_1016_j_surfin_2025_106269
crossref_primary_10_1016_j_ceramint_2024_12_225
crossref_primary_10_1016_j_jhazmat_2024_136354
crossref_primary_10_1021_acs_est_5c08289
crossref_primary_10_1016_j_chemphys_2024_112479
crossref_primary_10_1016_j_jece_2024_114944
crossref_primary_10_1016_j_jece_2025_115416
crossref_primary_10_1038_s44221_024_00236_3
crossref_primary_10_1016_j_jhazmat_2025_138715
crossref_primary_10_1038_s41467_024_51878_6
crossref_primary_10_1016_j_apcatb_2025_125747
crossref_primary_10_1016_j_cej_2025_163588
crossref_primary_10_1016_j_jece_2025_118361
crossref_primary_10_1016_j_seppur_2023_125539
crossref_primary_10_1016_j_cej_2024_155096
crossref_primary_10_1016_j_chemosphere_2024_143382
crossref_primary_10_1016_j_cej_2024_158124
crossref_primary_10_1016_j_envres_2025_120779
crossref_primary_10_1016_j_seppur_2025_132315
crossref_primary_10_1016_j_seppur_2024_126269
crossref_primary_10_1016_j_cej_2023_146523
crossref_primary_10_1021_acsnano_5c04030
crossref_primary_10_1016_j_molliq_2024_126617
crossref_primary_10_1016_j_scitotenv_2024_172200
crossref_primary_10_1016_j_cej_2025_159740
crossref_primary_10_1016_j_efmat_2023_02_002
crossref_primary_10_1016_j_envres_2025_122603
crossref_primary_10_1016_j_seppur_2025_132300
crossref_primary_10_1016_j_jwpe_2024_104860
crossref_primary_10_1016_j_jece_2025_119111
crossref_primary_10_1016_j_seppur_2024_127101
crossref_primary_10_1016_j_jece_2025_118381
crossref_primary_10_1016_j_watres_2023_119926
crossref_primary_10_1039_D5LF00102A
crossref_primary_10_1016_j_watres_2024_122621
crossref_primary_10_1016_j_cej_2025_166922
crossref_primary_10_1016_j_cej_2025_166924
crossref_primary_10_1016_j_seppur_2025_131683
crossref_primary_10_1016_j_seppur_2025_131563
crossref_primary_10_1016_j_jwpe_2025_108512
crossref_primary_10_1016_j_apcatb_2025_125933
crossref_primary_10_1016_j_seppur_2024_128424
crossref_primary_10_1016_j_cej_2025_166362
crossref_primary_10_1016_j_psep_2025_107839
crossref_primary_10_1016_j_envres_2025_121480
crossref_primary_10_1016_j_jhazmat_2024_135915
crossref_primary_10_1016_j_jclepro_2024_140951
crossref_primary_10_1016_j_cej_2024_148789
crossref_primary_10_1016_j_watres_2024_121521
crossref_primary_10_1016_j_jclepro_2024_144510
crossref_primary_10_5004_dwt_2023_29924
crossref_primary_10_1016_j_envres_2025_121813
crossref_primary_10_1016_j_cej_2024_149195
crossref_primary_10_1016_j_cej_2025_168432
crossref_primary_10_1016_j_psep_2024_12_106
crossref_primary_10_1016_j_jcis_2025_138610
crossref_primary_10_1016_j_cej_2024_150715
crossref_primary_10_1016_j_watres_2024_122526
crossref_primary_10_1002_adma_202505128
crossref_primary_10_1016_j_chemosphere_2024_141680
crossref_primary_10_1016_j_jhazmat_2025_138121
crossref_primary_10_1016_j_jhazmat_2024_134720
crossref_primary_10_1038_s41467_023_44422_5
crossref_primary_10_1016_j_jcis_2025_137639
crossref_primary_10_1016_j_cej_2025_168412
crossref_primary_10_1016_j_cej_2024_150966
crossref_primary_10_1016_j_watres_2024_122755
crossref_primary_10_1016_j_watres_2025_123105
crossref_primary_10_1016_j_jcis_2025_01_059
crossref_primary_10_1038_s41467_024_50238_8
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_jcis_2024_06_160
crossref_primary_10_1016_j_jcis_2023_10_156
crossref_primary_10_1016_j_apcatb_2024_124339
crossref_primary_10_1016_j_colsurfa_2025_138037
crossref_primary_10_1016_j_cej_2023_146281
crossref_primary_10_1016_j_jece_2024_112182
crossref_primary_10_1016_j_seppur_2023_124259
crossref_primary_10_1016_j_seppur_2024_126339
crossref_primary_10_1016_j_jece_2025_118516
crossref_primary_10_1016_j_envres_2023_117981
crossref_primary_10_1016_j_jallcom_2025_181780
crossref_primary_10_1016_j_jwpe_2023_103781
crossref_primary_10_1016_j_envres_2025_120912
crossref_primary_10_1007_s10653_024_02352_1
crossref_primary_10_1016_j_seppur_2023_123867
crossref_primary_10_1016_j_cej_2025_166214
crossref_primary_10_1016_j_cej_2023_142466
crossref_primary_10_1007_s11356_023_31566_6
crossref_primary_10_1016_j_ecoenv_2024_116049
crossref_primary_10_1016_j_trechm_2023_03_009
crossref_primary_10_1016_j_cej_2024_149152
crossref_primary_10_1016_j_colsurfa_2024_134156
crossref_primary_10_1016_j_jhazmat_2023_133303
crossref_primary_10_1016_j_chemosphere_2023_139659
crossref_primary_10_1016_j_ijbiomac_2025_142011
crossref_primary_10_1016_j_jcis_2023_05_092
crossref_primary_10_1080_10643389_2025_2496385
crossref_primary_10_3390_toxics12040283
crossref_primary_10_1007_s11356_025_35966_8
crossref_primary_10_1016_j_chemosphere_2024_143542
crossref_primary_10_1007_s11270_024_07465_y
crossref_primary_10_1016_j_jece_2025_118411
crossref_primary_10_1016_j_seppur_2025_132396
crossref_primary_10_1016_j_jhazmat_2024_134363
crossref_primary_10_1016_j_cej_2024_149928
crossref_primary_10_1016_j_envres_2025_121903
crossref_primary_10_1016_j_cej_2024_154168
crossref_primary_10_1016_j_jhazmat_2023_133198
crossref_primary_10_1016_j_seppur_2024_128842
crossref_primary_10_1016_j_seppur_2024_129018
crossref_primary_10_1016_j_jhazmat_2025_138568
crossref_primary_10_1016_j_apcatb_2024_123693
crossref_primary_10_1073_pnas_2305378120
crossref_primary_10_1007_s11144_024_02622_0
crossref_primary_10_3390_catal13091308
crossref_primary_10_1016_j_cherd_2025_07_008
crossref_primary_10_1016_j_jhazmat_2025_138215
crossref_primary_10_1016_j_watres_2025_124116
crossref_primary_10_1016_j_jenvman_2023_118571
crossref_primary_10_1016_j_jhazmat_2025_138574
crossref_primary_10_1016_j_jwpe_2024_106520
crossref_primary_10_1016_j_seppur_2025_133119
crossref_primary_10_1007_s12551_025_01292_z
crossref_primary_10_1016_j_jhazmat_2024_134119
crossref_primary_10_1016_j_envres_2025_121596
crossref_primary_10_1016_j_seppur_2023_126231
crossref_primary_10_1016_j_seppur_2024_129487
crossref_primary_10_1016_j_envpol_2025_126717
crossref_primary_10_1016_j_jece_2025_115395
crossref_primary_10_1007_s11356_024_35642_3
crossref_primary_10_1016_j_cej_2023_147696
Cites_doi 10.1007/s00214-007-0310-x
10.1016/j.jhazmat.2010.01.091
10.1021/ol071038k
10.1016/j.watres.2018.03.002
10.1271/bbb.56.324
10.1021/es802274h
10.1021/acs.est.0c02377
10.1002/jcc.22885
10.1021/es035121o
10.1016/j.apcatb.2019.118549
10.1021/acs.chemrev.8b00299
10.1021/ar00072a001
10.1016/j.watres.2021.117397
10.1016/j.cej.2020.126877
10.1021/ie402633n
10.1016/j.cej.2020.124264
10.1021/acs.est.9b07113
10.3390/cleantechnol3020019
10.1016/j.apcatb.2013.01.038
10.1016/j.jhazmat.2008.12.138
10.1016/j.chemosphere.2019.125343
10.1002/jctb.4525
10.1016/j.carbon.2020.05.023
10.1021/acs.est.8b05129
10.1016/j.cej.2016.10.064
10.1103/RevModPhys.65.599
10.1002/ange.202005739
10.1016/j.watres.2022.118113
10.1021/acs.est.2c00464
10.1016/j.envpol.2019.113498
10.1021/acs.est.0c04410
10.1063/1.467146
10.1021/acs.est.2c00132
10.1039/C9TA07634D
10.1021/acs.est.8b00735
10.1021/es2017363
10.1016/j.apcatb.2020.118971
10.1021/jp953748q
10.1021/acs.est.1c08806
10.1021/es503741d
10.1021/ja00756a009
10.1016/j.scitotenv.2020.144733
10.1002/qua.10109
10.1021/acs.est.1c04563
10.1016/j.cej.2017.06.179
10.1016/j.watres.2019.115378
10.1021/jp506172a
10.1063/1.463096
10.1021/acs.est.5b03078
10.1016/j.scitotenv.2017.03.039
10.1016/j.watres.2022.118747
10.1021/es047985v
10.1039/ft9928801653
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2022.119392
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2022_119392
S0043135422013379
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-c993267a73ce22f650106bf211128b067e5c4a16c83424dc15df7b64d00d73623
ISICitedReferencesCount 225
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000904127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sat Sep 27 17:08:39 EDT 2025
Sun Sep 28 01:37:44 EDT 2025
Sat Nov 29 07:29:18 EST 2025
Tue Nov 18 20:07:21 EST 2025
Fri Feb 23 02:38:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molecular orbital
Reaction mechanism
Sulfate radical
Peroxymonosulfate
Hydroxyl radical
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-c993267a73ce22f650106bf211128b067e5c4a16c83424dc15df7b64d00d73623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6787-2431
0000-0002-5823-2440
PQID 2743508573
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153850748
proquest_miscellaneous_2743508573
crossref_citationtrail_10_1016_j_watres_2022_119392
crossref_primary_10_1016_j_watres_2022_119392
elsevier_sciencedirect_doi_10_1016_j_watres_2022_119392
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Mei, Han, Wei, An, Cao, Xie, He (bib0022) 2021; 768
Li, He, Wang, Liu, Hu (bib0023) 2020; 243
Yang, Lin, Peng, Yuan, Dionysiou, Huang, Zhang, Fu (bib0048) 2020; 268
Hayon, Treinin, Wilf (bib0019) 1972; 94
Xiao, Ma, Luo, Zeng, Wei, Spinney, Hu, Dionysiou (bib0045) 2020; 257
Coughlin, Zhugayevych, Bakus, van der Poll, Welch, Teat, Bazan, Tretiak (bib0006) 2014; 118
Chen, Wu, Zheng, Wang, Niu, Fang (bib0003) 2020; 54
Long, Lei, Zhang (bib0027) 2014; 53
Truhlar, Garrett, Klippenstein (bib0043) 1996; 100
Schäfer, Huber, Ahlrichs (bib0040) 1994; 100
Zhou, Zhang, Chen (bib0055) 2015; 90
Yang, Song, Yu, Wang, Zhang, Geng, Cao, Baran, Tang (bib0049) 2019; 7
Yang, Su, Luo, Spinney, Cai, Xiao, Wei (bib0052) 2017; 590-591
Gao, Minakata, Wei, Spinney, Dionysiou, Tang, Chai, Xiao (bib0016) 2019; 53
Qi, Chu, Xu (bib0036) 2013; 134
Zhao, Truhlar (bib0054) 2008; 120
Patel, Kumar, Kishor, Mlsna, Pittman, Mohan (bib0034) 2019; 119
Cuvelier, Richard, Berset (bib0007) 1992; 56
Samuni, Krisna, Packer, Cadenas (bib0038) 1997
Du, Wang, Sun, Chen, Liu (bib0012) 2022; 212
Chen, Duan, Du, Sun, Lai, Liu (bib0004) 2022; 221
Marcus (bib0031) 1993; 65
Huang, Huang (bib0020) 2009; 167
De Vleeschouwer, Van Speybroeck, Waroquier, Geerlings, De Proft (bib0009) 2007; 9
Ling, Wang, Peng (bib0024) 2010; 178
Muchowska, Pascoe, Borsley, Smolyar, Mati, Adam, Nichol, Ling, Cockroft (bib0033) 2020; 132
Smith (bib0041) 2020
Zhu, Wang, Li, Qian, Lv, Pan (bib0056) 2021; 202
Liu, Lu, Chen (bib0026) 2020; 165
Guan, Ma, Li, Fang, Chen (bib0018) 2011; 45
Dalmázio, Santos, Lopes, Eberlin, Augusti (bib0008) 2005; 39
Politzer, Murray, Concha (bib0035) 2002; 88
Dong, Ren, Zhang, Liu, Sun, Li, Tan, Yang, Zheng, Dionysiou (bib0011) 2020; 272
Vandeponseele, Draye, Piot, Chatel (bib0044) 2021; 3
Gao, Huang, Mao, Shao, Shao, Yan, Tang, Zhu (bib0015) 2020; 54
Yang, Ding, Zhou, Fan, Wang, Ferronato, Chovelon, Xiu (bib0050) 2020; 171
Liu, Zhang, Yin, Yang, Luo, Crittenden (bib0025) 2020; 388
Chen, Ji, Qi, Huang, Wang, Liu (bib0005) 2021; 406
Masomboon, Ratanatamskul, Lu (bib0032) 2009; 43
Yang, Banerjee, Brudvig, Kim, Pignatello (bib0051) 2018; 52
Zhang, Liu, Moores, Ghoshal (bib0053) 2020; 54
Luo, Wei, Dionysiou, Spinney, Hu, Chai, Yang, Ye, Xiao (bib0030) 2017; 327
Schäfer, Horn, Ahlrichs (bib0039) 1992; 97
Jiang, Katsumura, Nagaishi, Domae, Ishikawa, Ishigure, Yoshida (bib0021) 1992; 88
Fukui (bib0014) 1981; 14
Xie, He, Zhou, Li, Liu, Du, Liu, Mu, Lai (bib0047) 2022; 56
Anipsitakis, Dionysiou (bib0001) 2004; 38
Luo, Gao, Wei, Spinney, Dionysiou, Hu, Chai, Xiao (bib0029) 2018; 137
Qi, Yang, Pan, Huang, Yang, Wang, Liu (bib0037) 2022; 56
Frisch, Trucks, Schlegel, Scuseria, Robb, Cheeseman, Scalmani, Barone, Petersson, Nakatsuji (bib0013) 2016
Ghanbari, Moradi (bib0017) 2017; 310
Tian, Luo, Nie, Shi, Tian, Dionysiou, Wang (bib0042) 2022; 56
Dong, Xu, Lian, Li, Wang, Li, Guan (bib0010) 2021; 55
Avetta, Pensato, Minella, Malandrino, Maurino, Minero, Hanna, Vione (bib0002) 2015; 49
Xiao, Ye, Wei, Luo, Yang, Spinney (bib0046) 2015; 49
Lu, Chen (bib0028) 2012; 33
Luo (10.1016/j.watres.2022.119392_bib0030) 2017; 327
Huang (10.1016/j.watres.2022.119392_bib0020) 2009; 167
Lu (10.1016/j.watres.2022.119392_bib0028) 2012; 33
Li (10.1016/j.watres.2022.119392_bib0022) 2021; 768
Tian (10.1016/j.watres.2022.119392_bib0042) 2022; 56
Schäfer (10.1016/j.watres.2022.119392_bib0040) 1994; 100
Zhao (10.1016/j.watres.2022.119392_bib0054) 2008; 120
Chen (10.1016/j.watres.2022.119392_bib0005) 2021; 406
Vandeponseele (10.1016/j.watres.2022.119392_bib0044) 2021; 3
Chen (10.1016/j.watres.2022.119392_bib0004) 2022; 221
Cuvelier (10.1016/j.watres.2022.119392_bib0007) 1992; 56
Dong (10.1016/j.watres.2022.119392_bib0011) 2020; 272
Politzer (10.1016/j.watres.2022.119392_bib0035) 2002; 88
Yang (10.1016/j.watres.2022.119392_bib0048) 2020; 268
Chen (10.1016/j.watres.2022.119392_bib0003) 2020; 54
Ghanbari (10.1016/j.watres.2022.119392_bib0017) 2017; 310
Xiao (10.1016/j.watres.2022.119392_bib0045) 2020; 257
Long (10.1016/j.watres.2022.119392_bib0027) 2014; 53
Hayon (10.1016/j.watres.2022.119392_bib0019) 1972; 94
Schäfer (10.1016/j.watres.2022.119392_bib0039) 1992; 97
Patel (10.1016/j.watres.2022.119392_bib0034) 2019; 119
Qi (10.1016/j.watres.2022.119392_bib0036) 2013; 134
Xie (10.1016/j.watres.2022.119392_bib0047) 2022; 56
Smith (10.1016/j.watres.2022.119392_bib0041) 2020
Jiang (10.1016/j.watres.2022.119392_bib0021) 1992; 88
Ling (10.1016/j.watres.2022.119392_bib0024) 2010; 178
Yang (10.1016/j.watres.2022.119392_bib0049) 2019; 7
Marcus (10.1016/j.watres.2022.119392_bib0031) 1993; 65
Truhlar (10.1016/j.watres.2022.119392_bib0043) 1996; 100
Dong (10.1016/j.watres.2022.119392_bib0010) 2021; 55
Gao (10.1016/j.watres.2022.119392_bib0015) 2020; 54
Gao (10.1016/j.watres.2022.119392_bib0016) 2019; 53
Avetta (10.1016/j.watres.2022.119392_bib0002) 2015; 49
Guan (10.1016/j.watres.2022.119392_bib0018) 2011; 45
De Vleeschouwer (10.1016/j.watres.2022.119392_bib0009) 2007; 9
Dalmázio (10.1016/j.watres.2022.119392_bib0008) 2005; 39
Zhang (10.1016/j.watres.2022.119392_bib0053) 2020; 54
Qi (10.1016/j.watres.2022.119392_bib0037) 2022; 56
Fukui (10.1016/j.watres.2022.119392_bib0014) 1981; 14
Coughlin (10.1016/j.watres.2022.119392_bib0006) 2014; 118
Li (10.1016/j.watres.2022.119392_bib0023) 2020; 243
Liu (10.1016/j.watres.2022.119392_bib0026) 2020; 165
Xiao (10.1016/j.watres.2022.119392_bib0046) 2015; 49
Du (10.1016/j.watres.2022.119392_bib0012) 2022; 212
Samuni (10.1016/j.watres.2022.119392_bib0038) 1997
Yang (10.1016/j.watres.2022.119392_bib0050) 2020; 171
Yang (10.1016/j.watres.2022.119392_bib0052) 2017; 590-591
Luo (10.1016/j.watres.2022.119392_bib0029) 2018; 137
Yang (10.1016/j.watres.2022.119392_bib0051) 2018; 52
Anipsitakis (10.1016/j.watres.2022.119392_bib0001) 2004; 38
Liu (10.1016/j.watres.2022.119392_bib0025) 2020; 388
Muchowska (10.1016/j.watres.2022.119392_bib0033) 2020; 132
Masomboon (10.1016/j.watres.2022.119392_bib0032) 2009; 43
Frisch (10.1016/j.watres.2022.119392_bib0013) 2016
Zhou (10.1016/j.watres.2022.119392_bib0055) 2015; 90
Zhu (10.1016/j.watres.2022.119392_bib0056) 2021; 202
References_xml – volume: 88
  start-page: 1653
  year: 1992
  end-page: 1658
  ident: bib0021
  article-title: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals
  publication-title: J. Chem. Soc. Faraday T.
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  ident: bib0054
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
– volume: 119
  start-page: 3510
  year: 2019
  end-page: 3673
  ident: bib0034
  article-title: Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods
  publication-title: Chem. Rev.
– volume: 55
  start-page: 15390
  year: 2021
  end-page: 15399
  ident: bib0010
  article-title: Degradation of organic contaminants in the Fe(II)/peroxymonosulfate process under acidic conditions: the overlooked rapid oxidation stage
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 335
  year: 2021
  end-page: 350
  ident: bib0044
  article-title: Study of influential parameters of the caffeine extraction from spent coffee grounds: from brewing coffee method to the waste treatment conditions
  publication-title: Clean Technol.
– volume: 53
  start-page: 1033
  year: 2014
  end-page: 1039
  ident: bib0027
  article-title: Degradation of toluene by a selective ferrous ion activated persulfate oxidation process
  publication-title: Ind. Eng. Chem. Res.
– volume: 43
  start-page: 8629
  year: 2009
  end-page: 8634
  ident: bib0032
  article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process
  publication-title: Environ. Sci. Technol.
– volume: 165
  start-page: 461
  year: 2020
  end-page: 467
  ident: bib0026
  article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity
  publication-title: Carbon
– volume: 49
  start-page: 13394
  year: 2015
  end-page: 13402
  ident: bib0046
  article-title: Quantitative structure–activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical
  publication-title: Environ. Sci. Technol.
– volume: 590-591
  start-page: 751
  year: 2017
  end-page: 760
  ident: bib0052
  article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study
  publication-title: Sci. Total Environ.
– volume: 243
  year: 2020
  ident: bib0023
  article-title: Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program
  publication-title: Chemosphere
– volume: 221
  year: 2022
  ident: bib0004
  article-title: Accurate identification of radicals by
  publication-title: Water Res.
– volume: 406
  year: 2021
  ident: bib0005
  article-title: Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)
  publication-title: Chem. Eng. J.
– volume: 310
  start-page: 41
  year: 2017
  end-page: 62
  ident: bib0017
  article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants
  publication-title: Chem. Eng. J.
– volume: 137
  start-page: 233
  year: 2018
  end-page: 241
  ident: bib0029
  article-title: Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates
  publication-title: Water Res.
– volume: 65
  start-page: 599
  year: 1993
  ident: bib0031
  article-title: Electron transfer reactions in chemistry. Theory and experiment
  publication-title: Rev. Mod. Phys.
– volume: 272
  year: 2020
  ident: bib0011
  article-title: Diatomite supported hierarchical 2D CoNi
  publication-title: Appl. Catal. B
– volume: 38
  start-page: 3705
  year: 2004
  end-page: 3712
  ident: bib0001
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 5542
  year: 2022
  end-page: 5551
  ident: bib0042
  article-title: New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: key role of sulfidation in efficient iron(III) reduction and sulfate radical generation
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 1043
  year: 2015
  end-page: 1050
  ident: bib0002
  article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions
  publication-title: Environ. Sci. Technol.
– volume: 388
  year: 2020
  ident: bib0025
  article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation
  publication-title: Chem. Eng. J.
– volume: 178
  start-page: 385
  year: 2010
  end-page: 389
  ident: bib0024
  article-title: Oxidative degradation of dyes in water using Co
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 5200
  year: 2022
  end-page: 5212
  ident: bib0037
  article-title: Interface engineering of Co(OH)
  publication-title: Environ. Sci. Technol.
– volume: 327
  start-page: 1056
  year: 2017
  end-page: 1065
  ident: bib0030
  article-title: Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 19
  year: 2002
  end-page: 27
  ident: bib0035
  article-title: The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes
  publication-title: Int. J. Quantum Chem.
– volume: 768
  year: 2021
  ident: bib0022
  article-title: The roles of HO•, ClO• and BrO• radicals in caffeine degradation: a theoretical study
  publication-title: Sci. Total Environ.
– volume: 56
  start-page: 8784
  year: 2022
  end-page: 8795
  ident: bib0047
  article-title: Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS
  publication-title: Environ. Sci. Technol.
– volume: 132
  start-page: 14710
  year: 2020
  end-page: 14716
  ident: bib0033
  article-title: Reconciling electrostatic and n→π* orbital contributions in carbonyl interactions
  publication-title: Angew. Chem.-Int. Ed.
– volume: 100
  start-page: 5829
  year: 1994
  end-page: 5835
  ident: bib0040
  article-title: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 15610
  year: 2014
  end-page: 15623
  ident: bib0006
  article-title: A combined experimental and theoretical study of conformational preferences of molecular semiconductors
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 324
  year: 2013
  end-page: 332
  ident: bib0036
  article-title: Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 22279
  year: 2019
  end-page: 22286
  ident: bib0049
  article-title: Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells
  publication-title: J. Mater. Chem. A
– volume: 45
  start-page: 9308
  year: 2011
  end-page: 9314
  ident: bib0018
  article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
– volume: 94
  start-page: 47
  year: 1972
  end-page: 57
  ident: bib0019
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO
  publication-title: J. Am. Chem. Soc.
– volume: 268
  year: 2020
  ident: bib0048
  article-title: Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: radical oxidation versus singlet oxygenation
  publication-title: Appl. Catal. B
– volume: 52
  start-page: 5911
  year: 2018
  end-page: 5919
  ident: bib0051
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
– volume: 212
  year: 2022
  ident: bib0012
  article-title: Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system
  publication-title: Water Res.
– year: 2016
  ident: bib0013
  article-title: Gaussian 16
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: bib0028
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
– volume: 167
  start-page: 418
  year: 2009
  end-page: 426
  ident: bib0020
  article-title: Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co
  publication-title: J. Hazard. Mater.
– volume: 90
  start-page: 775
  year: 2015
  end-page: 779
  ident: bib0055
  article-title: Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies?
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 257
  year: 2020
  ident: bib0045
  article-title: Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine
  publication-title: Environ. Pollut.
– volume: 171
  year: 2020
  ident: bib0050
  article-title: New insights into clopyralid degradation by sulfate radical: pyridine ring cleavage pathways
  publication-title: Water Res.
– volume: 202
  year: 2021
  ident: bib0056
  article-title: Degradation of phosphonates in Co(II)/peroxymonosulfate process: performance and mechanism
  publication-title: Water Res.
– volume: 9
  start-page: 2721
  year: 2007
  end-page: 2724
  ident: bib0009
  article-title: Electrophilicity and nucleophilicity index for radicals
  publication-title: Org. Lett.
– year: 2020
  ident: bib0041
  article-title: March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
– volume: 100
  start-page: 12771
  year: 1996
  end-page: 12800
  ident: bib0043
  article-title: Current status of transition-state theory
  publication-title: J. Phys. Chem.
– volume: 54
  start-page: 4631
  year: 2020
  end-page: 4640
  ident: bib0053
  article-title: Transformation of 6:2 fluorotelomer sulfonate by cobalt(II)-activated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 8455
  year: 2020
  end-page: 8463
  ident: bib0003
  article-title: Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite
  publication-title: Environ. Sci. Technol.
– volume: 53
  start-page: 342
  year: 2019
  end-page: 353
  ident: bib0016
  article-title: Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals
  publication-title: Environ. Sci. Technol.
– start-page: 351
  year: 1997
  end-page: 373
  ident: bib0038
  article-title: Handbook of Synthetic Antioxidants
– volume: 97
  start-page: 2571
  year: 1992
  end-page: 2577
  ident: bib0039
  article-title: Fully optimized contracted Gaussian basis sets for atoms Li to Kr
  publication-title: J. Chem. Phys.
– volume: 56
  start-page: 324
  year: 1992
  end-page: 325
  ident: bib0007
  article-title: Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 39
  start-page: 5982
  year: 2005
  end-page: 5988
  ident: bib0008
  article-title: Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 54
  start-page: 14046
  year: 2020
  end-page: 14056
  ident: bib0015
  article-title: First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 363
  year: 1981
  end-page: 368
  ident: bib0014
  article-title: The path of chemical reactions-the IRC approach
  publication-title: Acc. Chem. Res.
– volume: 120
  start-page: 215
  issue: 1
  year: 2008
  ident: 10.1016/j.watres.2022.119392_bib0054
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 178
  start-page: 385
  issue: 1
  year: 2010
  ident: 10.1016/j.watres.2022.119392_bib0024
  article-title: Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.01.091
– volume: 9
  start-page: 2721
  issue: 14
  year: 2007
  ident: 10.1016/j.watres.2022.119392_bib0009
  article-title: Electrophilicity and nucleophilicity index for radicals
  publication-title: Org. Lett.
  doi: 10.1021/ol071038k
– volume: 137
  start-page: 233
  year: 2018
  ident: 10.1016/j.watres.2022.119392_bib0029
  article-title: Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.002
– volume: 56
  start-page: 324
  issue: 2
  year: 1992
  ident: 10.1016/j.watres.2022.119392_bib0007
  article-title: Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.56.324
– volume: 43
  start-page: 8629
  issue: 22
  year: 2009
  ident: 10.1016/j.watres.2022.119392_bib0032
  article-title: Chemical oxidation of 2,6-dimethylaniline in the Fenton process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802274h
– volume: 54
  start-page: 8455
  issue: 13
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0003
  article-title: Comparative study for interactions of sulfate radical and hydroxyl radical with phenol in the presence of nitrite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02377
– volume: 33
  start-page: 580
  issue: 5
  year: 2012
  ident: 10.1016/j.watres.2022.119392_bib0028
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 38
  start-page: 3705
  issue: 13
  year: 2004
  ident: 10.1016/j.watres.2022.119392_bib0001
  article-title: Radical generation by the interaction of transition metals with common oxidants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es035121o
– volume: 268
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0048
  article-title: Novel magnetic rod-like Mn-Fe oxycarbide toward peroxymonosulfate activation for efficient oxidation of butyl paraben: radical oxidation versus singlet oxygenation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2019.118549
– volume: 119
  start-page: 3510
  issue: 6
  year: 2019
  ident: 10.1016/j.watres.2022.119392_bib0034
  article-title: Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00299
– volume: 14
  start-page: 363
  issue: 12
  year: 1981
  ident: 10.1016/j.watres.2022.119392_bib0014
  article-title: The path of chemical reactions-the IRC approach
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar00072a001
– volume: 202
  year: 2021
  ident: 10.1016/j.watres.2022.119392_bib0056
  article-title: Degradation of phosphonates in Co(II)/peroxymonosulfate process: performance and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117397
– volume: 406
  year: 2021
  ident: 10.1016/j.watres.2022.119392_bib0005
  article-title: Degradation of acetaminophen by activated peroxymonosulfate using Co(OH)2 hollow microsphere supported titanate nanotubes: insights into sulfate radical production pathway through CoOH+ activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126877
– volume: 53
  start-page: 1033
  issue: 3
  year: 2014
  ident: 10.1016/j.watres.2022.119392_bib0027
  article-title: Degradation of toluene by a selective ferrous ion activated persulfate oxidation process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402633n
– volume: 388
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0025
  article-title: Degradation of thiacloprid via unactivated peroxymonosulfate: the overlooked singlet oxygen oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124264
– start-page: 351
  year: 1997
  ident: 10.1016/j.watres.2022.119392_bib0038
– volume: 54
  start-page: 4631
  issue: 7
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0053
  article-title: Transformation of 6:2 fluorotelomer sulfonate by cobalt(II)-activated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b07113
– volume: 3
  start-page: 335
  issue: 2
  year: 2021
  ident: 10.1016/j.watres.2022.119392_bib0044
  article-title: Study of influential parameters of the caffeine extraction from spent coffee grounds: from brewing coffee method to the waste treatment conditions
  publication-title: Clean Technol.
  doi: 10.3390/cleantechnol3020019
– volume: 134
  start-page: 324
  year: 2013
  ident: 10.1016/j.watres.2022.119392_bib0036
  article-title: Catalytic degradation of caffeine in aqueous solutions by cobalt-MCM41 activation of peroxymonosulfate
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.01.038
– volume: 167
  start-page: 418
  issue: 1
  year: 2009
  ident: 10.1016/j.watres.2022.119392_bib0020
  article-title: Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.12.138
– volume: 243
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0023
  article-title: Risks of caffeine residues in the environment: necessity for a targeted ecopharmacovigilance program
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125343
– volume: 90
  start-page: 775
  issue: 5
  year: 2015
  ident: 10.1016/j.watres.2022.119392_bib0055
  article-title: Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies?
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4525
– volume: 165
  start-page: 461
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0026
  article-title: An sp-hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.023
– volume: 53
  start-page: 342
  issue: 1
  year: 2019
  ident: 10.1016/j.watres.2022.119392_bib0016
  article-title: Mechanistic study on the role of soluble microbial products in sulfate radical-mediated degradation of pharmaceuticals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05129
– volume: 310
  start-page: 41
  year: 2017
  ident: 10.1016/j.watres.2022.119392_bib0017
  article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.064
– year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0041
– volume: 65
  start-page: 599
  issue: 3
  year: 1993
  ident: 10.1016/j.watres.2022.119392_bib0031
  article-title: Electron transfer reactions in chemistry. Theory and experiment
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.599
– volume: 132
  start-page: 14710
  issue: 34
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0033
  article-title: Reconciling electrostatic and n→π* orbital contributions in carbonyl interactions
  publication-title: Angew. Chem.-Int. Ed.
  doi: 10.1002/ange.202005739
– volume: 212
  year: 2022
  ident: 10.1016/j.watres.2022.119392_bib0012
  article-title: Hydrogen atom abstraction mechanism for organic compound oxidation by acetylperoxyl radical in Co(II)/peracetic acid activation system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118113
– year: 2016
  ident: 10.1016/j.watres.2022.119392_bib0013
– volume: 56
  start-page: 8784
  issue: 12
  year: 2022
  ident: 10.1016/j.watres.2022.119392_bib0047
  article-title: Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00464
– volume: 257
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0045
  article-title: Experimental and theoretical insight into hydroxyl and sulfate radicals-mediated degradation of carbamazepine
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113498
– volume: 54
  start-page: 14046
  issue: 21
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0015
  article-title: First direct and unequivocal electron spin resonance spin-trapping evidence for pH-dependent production of hydroxyl radicals from sulfate radicals
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c04410
– volume: 100
  start-page: 5829
  issue: 8
  year: 1994
  ident: 10.1016/j.watres.2022.119392_bib0040
  article-title: Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467146
– volume: 56
  start-page: 5542
  issue: 9
  year: 2022
  ident: 10.1016/j.watres.2022.119392_bib0042
  article-title: New insight into a Fenton-like reaction mechanism over sulfidated β-FeOOH: key role of sulfidation in efficient iron(III) reduction and sulfate radical generation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00132
– volume: 7
  start-page: 22279
  issue: 39
  year: 2019
  ident: 10.1016/j.watres.2022.119392_bib0049
  article-title: Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07634D
– volume: 52
  start-page: 5911
  issue: 10
  year: 2018
  ident: 10.1016/j.watres.2022.119392_bib0051
  article-title: Oxidation of organic compounds in water by unactivated peroxymonosulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00735
– volume: 45
  start-page: 9308
  issue: 21
  year: 2011
  ident: 10.1016/j.watres.2022.119392_bib0018
  article-title: Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2017363
– volume: 272
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0011
  article-title: Diatomite supported hierarchical 2D CoNi3O4 nanoribbons as highly efficient peroxymonosulfate catalyst for atrazine degradation
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118971
– volume: 100
  start-page: 12771
  issue: 31
  year: 1996
  ident: 10.1016/j.watres.2022.119392_bib0043
  article-title: Current status of transition-state theory
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp953748q
– volume: 56
  start-page: 5200
  issue: 8
  year: 2022
  ident: 10.1016/j.watres.2022.119392_bib0037
  article-title: Interface engineering of Co(OH)2 nanosheets growing on the KNbO3 perovskite based on electronic structure modulation for enhanced peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08806
– volume: 49
  start-page: 1043
  issue: 2
  year: 2015
  ident: 10.1016/j.watres.2022.119392_bib0002
  article-title: Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503741d
– volume: 94
  start-page: 47
  issue: 1
  year: 1972
  ident: 10.1016/j.watres.2022.119392_bib0019
  article-title: Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2−, SO3−, SO4−, and SO5− radicals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00756a009
– volume: 768
  year: 2021
  ident: 10.1016/j.watres.2022.119392_bib0022
  article-title: The roles of HO•, ClO• and BrO• radicals in caffeine degradation: a theoretical study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144733
– volume: 88
  start-page: 19
  issue: 1
  year: 2002
  ident: 10.1016/j.watres.2022.119392_bib0035
  article-title: The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.10109
– volume: 55
  start-page: 15390
  issue: 22
  year: 2021
  ident: 10.1016/j.watres.2022.119392_bib0010
  article-title: Degradation of organic contaminants in the Fe(II)/peroxymonosulfate process under acidic conditions: the overlooked rapid oxidation stage
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04563
– volume: 327
  start-page: 1056
  year: 2017
  ident: 10.1016/j.watres.2022.119392_bib0030
  article-title: Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.06.179
– volume: 171
  year: 2020
  ident: 10.1016/j.watres.2022.119392_bib0050
  article-title: New insights into clopyralid degradation by sulfate radical: pyridine ring cleavage pathways
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115378
– volume: 118
  start-page: 15610
  issue: 29
  year: 2014
  ident: 10.1016/j.watres.2022.119392_bib0006
  article-title: A combined experimental and theoretical study of conformational preferences of molecular semiconductors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506172a
– volume: 97
  start-page: 2571
  issue: 4
  year: 1992
  ident: 10.1016/j.watres.2022.119392_bib0039
  article-title: Fully optimized contracted Gaussian basis sets for atoms Li to Kr
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463096
– volume: 49
  start-page: 13394
  issue: 22
  year: 2015
  ident: 10.1016/j.watres.2022.119392_bib0046
  article-title: Quantitative structure–activity relationship (QSAR) for the oxidation of trace organic contaminants by sulfate radical
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b03078
– volume: 590-591
  start-page: 751
  year: 2017
  ident: 10.1016/j.watres.2022.119392_bib0052
  article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: an experimental and theoretical study
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.039
– volume: 221
  year: 2022
  ident: 10.1016/j.watres.2022.119392_bib0004
  article-title: Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118747
– volume: 39
  start-page: 5982
  issue: 16
  year: 2005
  ident: 10.1016/j.watres.2022.119392_bib0008
  article-title: Advanced oxidation of caffeine in water: on-line and real-time monitoring by electrospray ionization mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es047985v
– volume: 88
  start-page: 1653
  issue: 12
  year: 1992
  ident: 10.1016/j.watres.2022.119392_bib0021
  article-title: Pulse radiolysis study of concentrated sulfuric acid solutions. Formation mechanism, yield and reactivity of sulfate radicals
  publication-title: J. Chem. Soc. Faraday T.
  doi: 10.1039/ft9928801653
SSID ssj0002239
Score 2.7124238
Snippet •Dynamic electronic structure analysis is applied to reveal radical attack mechanism.•SO4•− has higher oxidation potential and electrophilic index than...
Hydroxyl radical (•OH) and sulfate radical (SO4•-) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants...
Hydroxyl radical (•OH) and sulfate radical (SO₄•⁻) produced in advanced oxidation processes (AOPs) have been widely studied for organic contaminants...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119392
SubjectTerms caffeine
electron transfer
hydrogen
Hydroxyl radical
hydroxyl radicals
Lewis acids
Molecular orbital
oxidation
Peroxymonosulfate
Reaction mechanism
Sulfate radical
sulfates
thermodynamics
water
Title Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system
URI https://dx.doi.org/10.1016/j.watres.2022.119392
https://www.proquest.com/docview/2743508573
https://www.proquest.com/docview/3153850748
Volume 229
WOSCitedRecordID wos000904127600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLa6jQMcEJ9ifExGYhKoytY4bmIfqzLUomlFYkBvUeIktFObTGs6uhtHzvwEbvwpDvslvP5KyqoxduASWZbjWnmf2o_t931ehF7wCDhx5gqHMu47lNLIYT5PnNiP2yn3U86U2PPH_eDggA2H_F2j8cvGwpxOgjxniwU__q-mhjowtgydvYa5q06hAspgdHiC2eH5T4Z_bVKelE3ggzoR-DSV8b3j2VT5bbwfUOPi0CGqwLY5UZcIVfWgpw9odc4noRzPZf4lpS6hfBSBp0Zlc2qT60LLWKYfaU6kE5IOJZTctb9NpNKoVCNfnMEnKGbzSQb0tqmOjc6UWqywGdaMrPQyX_4USRFHo0g0UtqoC-2OXx1gVEfevfl4Ma_BPtQ3L91Rmn8e1dVdE46yX5g1W7H4yISo5MunIMSzjtP1zC6lVj0tSG1ndmLGoudmF7iqzru3smzoE4yjnS-RDNDZgR8gO3XzP1W6L6yelU-jdZc7CnUvoewl1L2soQ0StDnMuhud_t7wbcUVgJxx6wMhR2-DO5UH4upoLiNPF2iE4kaHd9Bts6nBHQ3Gu6iR5vfQrSWpy_voZwVLbGGJa1jiIsMAy_OvP86_fccARQzFQQ9LEGIDQmxBiJdAiKMSVyDEBoRYgRCa4W7xst9_tbsCP1zBD9fwwxp-D9CHN3uH3Z5j0oQ4wgtI6Qgu9yBBFHgiJSSDLYfb8uOMwCpOWAxsLG0LGrm-YB4lNBFuO8mC2KdJq5UEwN-8h2g9L_L0EcJ-1uKJCJKIZIJSkcYsc6mgLY_6BDrhm8iz3z8URkNfpnKZhH-z_iZyqreOtYbMFe0Da9rQ8GDNb0PA6xVvPrdICGGZkHd_UZ4Wc2gEO4W2zGbhXd7Gk-wH9oeUPb7miJ-gm_Wf8ilaL0_m6TN0Q5yW49nJFloLhmzLQP83iVDzDQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+reaction+mechanisms+of+SO4%E2%80%A2%E2%88%92+and+%E2%80%A2OH+with+organic+compound+interpreted+at+molecular+orbital+level+in+Co%28II%29%2Fperoxymonosulfate+catalytic+activation+system&rft.jtitle=Water+research+%28Oxford%29&rft.au=Zhang%2C+Huixuan&rft.au=Xie%2C+Chenghan&rft.au=Chen%2C+Long&rft.au=Duan%2C+Jun&rft.date=2023-02-01&rft.issn=0043-1354&rft.volume=229&rft.spage=119392&rft_id=info:doi/10.1016%2Fj.watres.2022.119392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2022_119392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon