Characterizing the river water quality in China: Recent progress and on-going challenges

•Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water research (Oxford) Ročník 201; s. 117309
Hlavní autori: Huang, Jiacong, Zhang, Yinjun, Bing, Haijian, Peng, Jian, Dong, Feifei, Gao, Junfeng, Arhonditsis, George B.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.08.2021
Predmet:
ISSN:0043-1354, 1879-2448, 1879-2448
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust in linking river water quality and watershed landscape characteristics. Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading. [Display omitted]
AbstractList Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.
Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH₃-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH₃-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH₃-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH₃-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH₃-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.
•Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust in linking river water quality and watershed landscape characteristics. Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading. [Display omitted]
ArticleNumber 117309
Author Zhang, Yinjun
Bing, Haijian
Dong, Feifei
Arhonditsis, George B.
Huang, Jiacong
Gao, Junfeng
Peng, Jian
Author_xml – sequence: 1
  givenname: Jiacong
  orcidid: 0000-0003-4296-5823
  surname: Huang
  fullname: Huang, Jiacong
  email: jchuang@niglas.ac.cn
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
– sequence: 2
  givenname: Yinjun
  surname: Zhang
  fullname: Zhang, Yinjun
  organization: China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China
– sequence: 3
  givenname: Haijian
  surname: Bing
  fullname: Bing, Haijian
  organization: Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9, Block 4, Renminnanlu Road, Chengdu, 610041, China
– sequence: 4
  givenname: Jian
  surname: Peng
  fullname: Peng, Jian
  organization: Department of Remote Sensing, Helmholtz Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
– sequence: 5
  givenname: Feifei
  surname: Dong
  fullname: Dong, Feifei
  organization: Institute of Groundwater and Earth Sciences, Jinan University, 601 Huangpu Avenue, Guangzhou, 510630, China
– sequence: 6
  givenname: Junfeng
  surname: Gao
  fullname: Gao, Junfeng
  organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
– sequence: 7
  givenname: George B.
  orcidid: 0000-0001-5359-8737
  surname: Arhonditsis
  fullname: Arhonditsis, George B.
  email: george.arhonditsis@utoronto.ca
  organization: Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
BookMark eNqFkE1LAzEQhoNUsK3-Aw85etmayWa3mx4EKX5BQRAFbyGbnW1TttmapEr99W5ZTx7sHGYu87wzPCMycK1DQi6BTYBBfr2efOnoMUw44zABmKZMnpAhFFOZcCGKARkyJtIE0kyckVEIa8YY56kckvf5SnttInr7bd2SxhVSbz_R0y6y6x873di4p9bR-co6PaMvaNBFuvXtsjsZqHYVbV2ybA-4WemmQbfEcE5Oa90EvPidY_J2f_c6f0wWzw9P89tFYtIpj4kRoPOuRJaCwDLXrBalqcoyS4u6AixBSm1KhiXLoZJ5lXOdTZmUVQ01r0U6Jld9bvfQxw5DVBsbDDaNdtjuguKyyEEWTPDjq5lgGYe8OKSKftX4NgSPtdp6u9F-r4Cpg3O1Vr1zdXCueucdNvuDGRt1tK2LXtvmGHzTw9jp-rToVTAWncHKejRRVa39P-AH39eiNA
CitedBy_id crossref_primary_10_1016_j_chroma_2025_465830
crossref_primary_10_3389_fenvs_2025_1612658
crossref_primary_10_1016_j_jhazmat_2024_133450
crossref_primary_10_1016_j_jclepro_2024_144362
crossref_primary_10_1016_j_jhydrol_2025_133958
crossref_primary_10_1016_j_ecolind_2024_112091
crossref_primary_10_1080_15715124_2024_2448998
crossref_primary_10_1016_j_jenvman_2022_115925
crossref_primary_10_1007_s00343_024_3206_x
crossref_primary_10_1016_j_jhydrol_2025_133032
crossref_primary_10_1016_j_jconhyd_2025_104641
crossref_primary_10_1016_j_ecolind_2025_113100
crossref_primary_10_1016_j_scitotenv_2022_157942
crossref_primary_10_1016_j_chemosphere_2023_139221
crossref_primary_10_1016_j_biortech_2024_131587
crossref_primary_10_1007_s11356_023_29549_8
crossref_primary_10_1016_j_jhazmat_2025_138075
crossref_primary_10_3390_w16233353
crossref_primary_10_1016_j_ecolind_2024_112423
crossref_primary_10_1007_s10750_023_05387_0
crossref_primary_10_1016_j_envsoft_2024_106284
crossref_primary_10_1016_j_gexplo_2025_107736
crossref_primary_10_1016_j_eti_2024_103987
crossref_primary_10_1016_j_watres_2022_119280
crossref_primary_10_1016_j_envres_2025_122747
crossref_primary_10_3390_w14193068
crossref_primary_10_1002_etc_5886
crossref_primary_10_1016_j_envres_2024_118191
crossref_primary_10_1029_2023WR036587
crossref_primary_10_1016_j_resconrec_2022_106537
crossref_primary_10_1016_j_envpol_2023_122219
crossref_primary_10_1016_j_watres_2025_123168
crossref_primary_10_3390_su15075700
crossref_primary_10_3390_s25061850
crossref_primary_10_1007_s11356_023_29140_1
crossref_primary_10_1016_j_scitotenv_2024_172194
crossref_primary_10_1007_s00477_025_02929_x
crossref_primary_10_1016_j_cej_2024_157993
crossref_primary_10_1016_j_scitotenv_2024_173040
crossref_primary_10_1007_s11356_023_27962_7
crossref_primary_10_1016_j_jconhyd_2025_104617
crossref_primary_10_1007_s00477_025_03006_z
crossref_primary_10_1016_j_jhazmat_2024_136864
crossref_primary_10_3390_hydrology11090135
crossref_primary_10_1016_j_envres_2022_113843
crossref_primary_10_1016_j_scitotenv_2022_156633
crossref_primary_10_1016_j_scitotenv_2022_157843
crossref_primary_10_1016_j_jenvman_2023_117846
crossref_primary_10_3390_su16010185
crossref_primary_10_3390_rs16122246
crossref_primary_10_1016_j_ecolind_2024_111553
crossref_primary_10_1016_j_ecolind_2025_113914
crossref_primary_10_3389_ffgc_2024_1345207
crossref_primary_10_1016_j_envres_2023_117255
crossref_primary_10_1016_j_jhydrol_2022_127582
crossref_primary_10_1016_j_watres_2023_120670
crossref_primary_10_1016_j_jenvman_2024_123688
crossref_primary_10_1016_j_jag_2025_104826
crossref_primary_10_1016_j_watres_2024_122597
crossref_primary_10_3390_w17010111
crossref_primary_10_1038_s41598_023_34184_x
crossref_primary_10_3390_rs14194693
crossref_primary_10_1021_acsestwater_5c00044
crossref_primary_10_1038_s44221_023_00039_y
crossref_primary_10_1016_j_scitotenv_2024_174260
crossref_primary_10_1016_j_crmicr_2025_100447
crossref_primary_10_3390_w14040610
crossref_primary_10_3390_land11091428
crossref_primary_10_3390_w17131892
crossref_primary_10_1002_rvr2_87
crossref_primary_10_1016_j_watres_2024_121262
crossref_primary_10_1029_2022EA002363
crossref_primary_10_1016_j_ecolind_2023_110961
crossref_primary_10_1038_s41598_024_65837_0
crossref_primary_10_3390_su131910740
crossref_primary_10_1016_j_dwt_2024_100206
crossref_primary_10_1016_j_ecolind_2022_109324
crossref_primary_10_1016_j_chemosphere_2022_136827
crossref_primary_10_1016_j_jenvman_2023_118283
crossref_primary_10_1007_s11769_025_1519_0
crossref_primary_10_1016_j_scitotenv_2023_164317
crossref_primary_10_1016_j_jhydrol_2025_133992
crossref_primary_10_1080_09593330_2025_2464981
crossref_primary_10_1016_j_ecolind_2025_113700
crossref_primary_10_3390_w14050793
crossref_primary_10_1016_j_ecolind_2024_112225
crossref_primary_10_1016_j_jenvman_2024_122137
crossref_primary_10_1016_j_scitotenv_2024_174641
crossref_primary_10_3390_w16243635
crossref_primary_10_1016_j_jhazmat_2025_138156
crossref_primary_10_3390_environments12050158
crossref_primary_10_1109_TGRS_2025_3555791
crossref_primary_10_1016_j_ecoinf_2024_102745
crossref_primary_10_1111_raq_12997
crossref_primary_10_1016_j_scitotenv_2023_165869
crossref_primary_10_1016_j_jenvman_2022_116828
crossref_primary_10_1007_s10661_023_11641_8
crossref_primary_10_1007_s11356_022_20667_3
crossref_primary_10_1016_j_jenvman_2024_122022
crossref_primary_10_1016_j_watres_2023_120492
crossref_primary_10_34133_ehs_0041
crossref_primary_10_1029_2022EF003013
crossref_primary_10_1016_j_ecoinf_2025_103320
crossref_primary_10_1016_j_jhydrol_2022_129037
crossref_primary_10_1088_1572_9494_ad3617
crossref_primary_10_1016_j_watres_2024_122605
crossref_primary_10_1088_1748_9326_ac50d3
crossref_primary_10_1016_j_jenvman_2025_124078
crossref_primary_10_1038_s43247_025_02653_y
crossref_primary_10_1016_j_scitotenv_2022_157803
crossref_primary_10_1016_j_jclepro_2024_143448
crossref_primary_10_1016_j_jconhyd_2025_104668
crossref_primary_10_1007_s43832_025_00220_2
crossref_primary_10_1016_j_jag_2024_104209
crossref_primary_10_3390_w14193007
crossref_primary_10_1016_j_envpol_2024_124402
crossref_primary_10_1177_11786221241259949
crossref_primary_10_1016_j_jhydrol_2025_133889
crossref_primary_10_3390_su151411017
crossref_primary_10_1016_j_jwpe_2025_108041
crossref_primary_10_1016_j_jhydrol_2024_132373
crossref_primary_10_1038_s43247_025_02016_7
crossref_primary_10_3390_w15020257
crossref_primary_10_1016_j_watres_2022_118419
crossref_primary_10_1016_j_rse_2024_114147
crossref_primary_10_1016_j_jenvman_2023_118883
crossref_primary_10_1016_j_uclim_2024_102082
crossref_primary_10_1016_j_scitotenv_2024_176733
crossref_primary_10_1016_j_jhydrol_2025_133797
crossref_primary_10_1016_j_watres_2023_120724
crossref_primary_10_1039_D4EW00689E
crossref_primary_10_1016_j_psep_2024_05_146
crossref_primary_10_1016_j_jclepro_2022_132415
crossref_primary_10_1038_s41545_025_00481_3
crossref_primary_10_1016_j_jhydrol_2022_127711
crossref_primary_10_1038_s41467_024_46968_4
crossref_primary_10_1016_j_ecolind_2024_112269
crossref_primary_10_1016_j_jclepro_2024_144519
crossref_primary_10_1038_s41598_025_00604_3
crossref_primary_10_1007_s10163_023_01766_w
crossref_primary_10_1016_j_jhazmat_2025_139205
crossref_primary_10_1016_j_jwpe_2024_106185
crossref_primary_10_1007_s11270_025_08198_2
crossref_primary_10_1007_s11269_025_04230_6
crossref_primary_10_1016_j_jenvman_2023_118077
crossref_primary_10_1016_j_eiar_2025_108047
crossref_primary_10_3390_ijerph191811818
crossref_primary_10_1007_s11356_023_30409_8
crossref_primary_10_1016_j_psep_2024_08_109
crossref_primary_10_1016_j_jenvman_2025_127138
crossref_primary_10_1016_j_psep_2025_107847
crossref_primary_10_1016_j_ecohyd_2024_01_012
crossref_primary_10_1016_j_watres_2025_123561
crossref_primary_10_3390_rs15205001
crossref_primary_10_3390_su17052182
crossref_primary_10_1007_s44288_025_00158_x
crossref_primary_10_1038_s41598_025_02964_2
crossref_primary_10_1016_j_psep_2022_10_079
crossref_primary_10_1016_j_watres_2025_123578
crossref_primary_10_1016_j_ecofro_2025_04_010
crossref_primary_10_1016_j_cbd_2024_101281
crossref_primary_10_1029_2024EF004860
crossref_primary_10_1016_j_fmre_2022_01_035
crossref_primary_10_1016_j_scitotenv_2023_161613
crossref_primary_10_1111_ajae_12510
crossref_primary_10_1016_j_jhydrol_2025_133218
crossref_primary_10_1371_journal_pone_0323134
crossref_primary_10_1016_j_jhydrol_2025_133572
crossref_primary_10_1007_s10652_025_10025_5
crossref_primary_10_1016_j_jes_2025_04_027
crossref_primary_10_1007_s10653_025_02658_8
crossref_primary_10_5814_j_issn_1674_764x_2022_01_010
crossref_primary_10_1016_j_watres_2023_120382
crossref_primary_10_3390_nano14121037
crossref_primary_10_1016_j_ecolind_2022_108582
crossref_primary_10_3390_rs17040731
crossref_primary_10_1016_j_jece_2025_115519
crossref_primary_10_1016_j_envpol_2025_126640
crossref_primary_10_1007_s11053_022_10040_z
crossref_primary_10_1016_j_scs_2025_106151
crossref_primary_10_1016_j_jenvman_2024_121308
crossref_primary_10_1016_j_jece_2023_109714
crossref_primary_10_1016_j_jenvman_2022_115638
crossref_primary_10_3390_su15086455
crossref_primary_10_3390_rs15184487
crossref_primary_10_1016_j_jhazmat_2024_134951
crossref_primary_10_1016_j_psep_2025_107706
crossref_primary_10_5194_essd_16_1137_2024
crossref_primary_10_3390_rs15092441
crossref_primary_10_1016_j_ecolind_2025_113995
crossref_primary_10_1016_j_ecolind_2024_112853
crossref_primary_10_1007_s44177_024_00081_9
crossref_primary_10_1088_1755_1315_1041_1_012052
crossref_primary_10_1016_j_ecoinf_2024_102571
crossref_primary_10_1016_j_ecohyd_2025_100678
crossref_primary_10_1016_j_jece_2025_116452
crossref_primary_10_1016_j_jclepro_2023_140360
crossref_primary_10_1016_j_cej_2024_150494
crossref_primary_10_1016_j_scitotenv_2023_164713
crossref_primary_10_1007_s11270_023_06503_5
crossref_primary_10_3390_pr12122922
crossref_primary_10_1007_s10661_024_13228_3
crossref_primary_10_5194_bg_21_2253_2024
crossref_primary_10_1016_j_chemosphere_2021_132354
crossref_primary_10_1007_s10661_025_14069_4
crossref_primary_10_1007_s11356_022_21348_x
crossref_primary_10_1002_ldr_70188
crossref_primary_10_1007_s11356_022_19083_4
crossref_primary_10_3389_fenvs_2022_924350
crossref_primary_10_1016_j_jconhyd_2025_104604
crossref_primary_10_1016_j_marpolbul_2024_116825
crossref_primary_10_1016_j_scitotenv_2024_177757
crossref_primary_10_1080_15715124_2023_2165089
crossref_primary_10_1016_j_scitotenv_2024_173036
crossref_primary_10_1016_j_scitotenv_2024_171094
crossref_primary_10_7189_jogh_15_04120
crossref_primary_10_1016_j_watres_2025_124457
crossref_primary_10_1007_s11269_024_04006_4
crossref_primary_10_1016_j_scitotenv_2023_168866
crossref_primary_10_3390_w16050732
crossref_primary_10_1016_j_jenvman_2022_115581
crossref_primary_10_1016_j_scitotenv_2024_172061
crossref_primary_10_1016_j_ecolind_2025_114061
crossref_primary_10_1016_j_jhydrol_2025_133581
crossref_primary_10_1016_j_watres_2021_117406
crossref_primary_10_1016_j_psep_2025_107648
crossref_primary_10_3390_w15112113
crossref_primary_10_1016_j_jece_2024_115196
crossref_primary_10_1016_j_srs_2025_100282
crossref_primary_10_1016_j_scitotenv_2021_152208
crossref_primary_10_3390_ijerph20032431
crossref_primary_10_1007_s11252_023_01441_w
crossref_primary_10_1016_j_jenvman_2023_118465
crossref_primary_10_1016_j_watres_2024_121237
crossref_primary_10_1016_j_rse_2023_113848
crossref_primary_10_1016_j_ecolind_2023_111223
crossref_primary_10_1016_j_scitotenv_2024_174212
crossref_primary_10_1016_j_watres_2023_120622
crossref_primary_10_1016_j_ecolind_2024_112396
crossref_primary_10_1016_j_jenvman_2024_123653
crossref_primary_10_3390_ijerph191912367
crossref_primary_10_3390_w15061151
crossref_primary_10_1016_j_jclepro_2025_145995
crossref_primary_10_1016_j_watres_2023_120749
crossref_primary_10_1016_j_agee_2023_108482
crossref_primary_10_3390_su141911811
crossref_primary_10_1016_j_jhydrol_2025_133813
crossref_primary_10_1038_s41396_023_01481_2
crossref_primary_10_1007_s11356_023_29390_z
crossref_primary_10_1088_1748_9326_acbc8e
crossref_primary_10_1016_j_watres_2023_121049
crossref_primary_10_1016_j_wasman_2025_114832
crossref_primary_10_1016_j_jenvman_2024_123522
crossref_primary_10_3390_w17040467
crossref_primary_10_1016_j_biortech_2021_126056
crossref_primary_10_7498_aps_74_20250930
crossref_primary_10_1007_s11356_023_25558_9
crossref_primary_10_1016_j_jenvman_2022_115684
crossref_primary_10_3389_fmars_2025_1538897
crossref_primary_10_3390_w15122244
crossref_primary_10_1016_j_scitotenv_2024_172285
crossref_primary_10_2166_wcc_2025_838
crossref_primary_10_1007_s12403_025_00730_3
crossref_primary_10_1038_s41545_023_00260_y
crossref_primary_10_3389_fenvs_2022_931642
crossref_primary_10_3390_w16121701
crossref_primary_10_1002_ldr_70054
crossref_primary_10_1016_j_jenvman_2025_127191
Cites_doi 10.1016/j.scitotenv.2009.12.015
10.1016/j.jhydrol.2018.03.053
10.1126/science.1128845
10.1038/ncomms13603
10.1038/s43017-019-0019-0
10.1021/acs.est.5b00729
10.1890/100125
10.1016/j.envint.2018.07.047
10.1073/pnas.1920759117
10.1073/pnas.1519554113
10.1126/science.aaw2087
10.1016/j.jspi.2012.09.006
10.1088/1748-9326/11/2/024014
10.1111/gcb.15033
10.1016/j.watres.2019.02.059
10.1016/j.jglr.2015.04.001
10.1016/j.envsci.2017.11.016
10.1038/548275a
10.1093/nsr/nwz022
10.1073/pnas.2013445117
10.1038/nature09440
10.1038/ngeo2602
10.1073/pnas.1511797112
10.1021/es501670j
10.1016/j.envpol.2020.114292
10.1016/j.scitotenv.2016.01.162
10.1016/j.envint.2018.11.048
10.1038/ncomms15611
10.1021/es4005619
10.1007/s11783-019-1172-x
10.1021/acs.est.8b07352
10.1016/j.envpol.2009.10.047
10.1016/j.landusepol.2013.03.013
10.1038/ngeo2693
10.1016/j.scitotenv.2017.11.128
10.1016/j.jglr.2014.09.017
10.1038/511527a
10.1016/j.seppur.2011.01.018
10.1021/acs.est.6b06278
10.1029/2007JG000403
10.1016/j.envint.2019.05.015
10.1007/s11069-014-1463-2
10.1016/j.scitotenv.2020.141916
10.1038/nature25785
10.1016/j.envpol.2006.01.047
10.1016/j.gloenvcha.2012.11.002
10.1016/j.scitotenv.2017.09.328
10.1214/06-BA122C
10.1038/srep25250
10.1038/s41586-019-1111-9
10.1038/s41597-020-0369-y
10.1016/j.jclepro.2019.06.243
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.watres.2021.117309
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 10_1016_j_watres_2021_117309
S0043135421005078
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
SEW
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c372t-c41a666645314eb6a0f4bcdbb538fd1eb199acb0eb061d96d62a57099df1f2f43
ISICitedReferencesCount 298
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684281700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sun Sep 28 05:51:52 EDT 2025
Sat Sep 27 22:38:09 EDT 2025
Sat Nov 29 07:31:04 EST 2025
Tue Nov 18 21:33:03 EST 2025
Fri Feb 23 02:47:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords River water quality
Urbanization
Watershed management
Bayesian modelling
Eutrophication
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-c41a666645314eb6a0f4bcdbb538fd1eb199acb0eb061d96d62a57099df1f2f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5359-8737
0000-0003-4296-5823
PQID 2540521684
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2986198042
proquest_miscellaneous_2540521684
crossref_primary_10_1016_j_watres_2021_117309
crossref_citationtrail_10_1016_j_watres_2021_117309
elsevier_sciencedirect_doi_10_1016_j_watres_2021_117309
PublicationCentury 2000
PublicationDate 2021-08-01
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Water research (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Plummer (bib0036) 2006; 1
Lehner, Liermann, Revenga, Vörösmarty, Fekete, Crouzet, Döll, Endejan, Frenken, Magome, Nilsson, Robertson, Rödel, Sindorf, Wisser (bib0017) 2011; 9
Yang, Yang, Geng, Yin, Chen (bib0058) 2020; 262
He, Yang, Tang, Lu, Qin, Chen, Li (bib0012) 2020; 7
Lin, Xia, Zhang, Zhai, Wang (bib0020) 2021; 752
Grill, Lehner, Thieme, Geenen, Tickner, Antonelli, Babu, Borrelli, Cheng, Crochetiere, Ehalt Macedo, Filgueiras, Goichot, Higgins, Hogan, Lip, McClain, Meng, Mulligan, Nilsson, Olden, Opperman, Petry, Reidy Liermann, Sáenz, Salinas-Rodríguez, Schelle, Schmitt, Snider, Tan, Tockner, Valdujo, van Soesbergen, Zarfl (bib0011) 2019; 569
Palmer, Ruhi (bib0034) 2019; 365
Liu, Sheng, Jiang, Yuan, Zhang, Elser (bib0021) 2016; 113
Liu, Li (bib0025) 2017; 548
Qu, Wang, Wang, Yu, Ke, Yu, Ren, Zheng, Li, Li, Gao, Gong (bib0040) 2019; 13
van Vliet, Franssen, Yearsley, Ludwig, Haddeland, Lettenmaier, Kabat (bib0050) 2013; 23
Strokal, Ma, Bai, Luan, Kroeze, Oenema, Velthof, Zhang (bib0044) 2016; 11
Long, Wellen, Arhonditsis, Boyd, Mohamed, O'Connor (bib0027) 2015; 41
Bouriga, Féron (bib0004) 2013; 143
Maavara, Chen, Van Meter, Brown, Zhang, Ni, Zarfl (bib0028) 2020; 1
Wang, Ni, Yue, Li, Borthwick, Cai, Xue, Li, Wang (bib0054) 2019; 6
The Ministry of Ecology and Environment, P.R.C., 2020a. Annual Bulletin of China's Ecology and Environment.
Xiao, Wang, Zhang, Zhang (bib0057) 2016; 6
Huang, Zhang, Arhonditsis, Gao, Chen, Wu, Dong, Shi (bib0013) 2019; 123
Liu, Engel, Flanagan, Gitau, McMillan, Chaubey, Singh (bib0022) 2018; 560
Oki, Kanae (bib0032) 2006; 313
Yi, Chen, Hu, Shi (bib0060) 2017; 51
Ongley, Zhang, Yu (bib0033) 2010; 158
.
Shen, Liao, Hong, Gong (bib0041) 2012; 84
Zhou, Li, Zheng, Yan, Li, Odey, Mang, Uddin (bib0062) 2018; 120
Green, Nieber, Johnson, Magner, Schaefer (bib0010) 2007; 112
Li, Xia, Yang, Wang, Voulvoulis (bib0018) 2006; 144
Arhonditsis, Neumann, Shimoda, Kim, Dong, Onandia, Yang, Javed, Brady, Visha, Ni, Cheng (bib0002) 2019; 53
Du, Gu, Wen, Chen, Van Rompaey (bib0008) 2015; 7
Vörösmarty, McIntyre, Gessner, Dudgeon, Prusevich, Green, Glidden, Bunn, Sullivan, Liermann, Davies (bib0052) 2010; 467
Du, Shi, Van Rompaey, Wen (bib0009) 2015; 76
Wang, Fu, Piao, Lu, Ciais, Feng, Wang (bib0053) 2016; 9
Jarvie, Smith, Norton, Edwards, Bowes, King, Scarlett, Davies, Dils, Bachiller-Jareno (bib0014) 2018; 621
Stockwell, Doubek, Adrian, Anneville, Carey, Carvalho, De Senerpont Domis, Dur, Frassl, Grossart, Ibelings, Lajeunesse, Lewandowska, Llames, Matsuzaki, Nodine, Nõges, Patil, Pomati, Rinke, Rudstam, Rusak, Salmaso, Seltmann, Straile, Thackeray, Thiery, Urrutia-Cordero, Venail, Verburg, Woolway, Zohary, Andersen, Bhattacharya, Hejzlar, Janatian, Kpodonu, Williamson, Wilson (bib0043) 2020; 26
Yang, Jomaa, Büttner, Rode (bib0059) 2019; 157
Ding, Jiang, Liu, Hou, Liao, Fu, Peng (bib0007) 2016; 551-552
Maavara, Parsons, Ridenour, Stojanovic, Dürr, Powley, Van Cappellen (bib0029) 2015; 112
Arhonditsis, Neumann, Shimoda, Kim, Dong, Onandia, Yang, Javed, Brady, Visha, Ni, Cheng (bib0003) 2019; 53
Singh, Singh, Kumar, Giri, Kim (bib0042) 2019; 234
Qu, Kroeze (bib0039) 2010; 408
Long, Wellen, Arhonditsis, Boyd (bib0026) 2014; 40
Jiang, Zevenbergen, Ma (bib0015) 2018; 80
Liu, Fang, Li (bib0023) 2014; 40
Xia, Zhang, Li, Zhang, Wang, Zhang, Wang, Li (bib0056) 2018; 20
Messager, Lehner, Grill, Nedeva, Schmitt (bib0031) 2016; 7
Withers, Sylvester-Bradley, Jones, Healey, Talboys (bib0055) 2014; 48
United Nations, 2020.
Zhang, Ying, Pan, Liu, Zhao (bib0061) 2015; 49
Vehtari, Gelman, Simpson, Carpenter, Bürknery (bib0051) 2020
Qin, Zhang, Zhu, Gong, Deng, Hamilton, Gao, Shi, Zhou, Shao, Zhu, Zhou, Tang, Li (bib0038) 2020; 117
Tong, Wang, Peñuelas, Liu, Paerl, Elser, Sardans, Couture, Larssen, Hu, Dong, He, Zhang, Wang, Zhang, Liu, Zeng, Kong, Janssen, Lin (bib0048) 2020; 117
Li, Shi, Liu, Li, Zhang, Hu, Ke, Sun, Ni (bib0019) 2018; 615
Liu, Wang (bib0024) 2016; 4
Pan, Krom, Zhang, Zhang, Wang, Dai, Sheng, Mortimer (bib0035) 2013; 47
Cui, Zhang, Chen, Zhang, Ma, Huang, Zhang, Mi, Miao, Li, Gao, Yang, Wang, Ye, Guo, Lu, Huang, Lv, Sun, Liu, Peng, Ren, Li, Deng, Shi, Zhang, Yang, Tang, Wei, Jia, Zhang, He, Tong, Tang, Zhong, Liu, Cao, Kou, Ying, Yin, Jiao, Zhang, Fan, Jiang, Zhang, Dou (bib0006) 2018; 555
Mallows (bib0030) 2000; 42
Tao, Xin (bib0045) 2014; 511
Arhonditsis, Neumann, Shimoda, Javed, Blukacz-Richards, Mugalingam (bib0001) 2019; 130
Powers, Bruulsema, Burt, Chan, Elser, Haygarth, Howden, Jarvie, Lyu, Peterson, Sharpley, Shen, Worrall, Zhang (bib0037) 2016; 9
Chen, Strokal, Van Vliet, Stuiver, Wang, Bai, Ma, Kroeze (bib0005) 2019; 53
Lebreton, Van der Zwet, Damsteeg, Slat, Andrady, Reisser (bib0016) 2017; 8
The Ministry of Ecology and Environment, P.R.C., 2020b. Second National Pollutant Source Census Bulletin.
10.1016/j.watres.2021.117309_bib0049
10.1016/j.watres.2021.117309_bib0046
10.1016/j.watres.2021.117309_bib0047
Tong (10.1016/j.watres.2021.117309_bib0048) 2020; 117
Liu (10.1016/j.watres.2021.117309_bib0023) 2014; 40
Wang (10.1016/j.watres.2021.117309_bib0053) 2016; 9
Tao (10.1016/j.watres.2021.117309_bib0045) 2014; 511
Lebreton (10.1016/j.watres.2021.117309_bib0016) 2017; 8
Wang (10.1016/j.watres.2021.117309_bib0054) 2019; 6
Zhou (10.1016/j.watres.2021.117309_bib0062) 2018; 120
Pan (10.1016/j.watres.2021.117309_bib0035) 2013; 47
Vehtari (10.1016/j.watres.2021.117309_bib0051) 2020
Zhang (10.1016/j.watres.2021.117309_bib0061) 2015; 49
Ding (10.1016/j.watres.2021.117309_bib0007) 2016; 551-552
Xia (10.1016/j.watres.2021.117309_bib0056) 2018; 20
Yang (10.1016/j.watres.2021.117309_bib0058) 2020; 262
Li (10.1016/j.watres.2021.117309_bib0019) 2018; 615
Qin (10.1016/j.watres.2021.117309_bib0038) 2020; 117
Oki (10.1016/j.watres.2021.117309_bib0032) 2006; 313
Ongley (10.1016/j.watres.2021.117309_bib0033) 2010; 158
Long (10.1016/j.watres.2021.117309_bib0027) 2015; 41
Yang (10.1016/j.watres.2021.117309_bib0059) 2019; 157
Withers (10.1016/j.watres.2021.117309_bib0055) 2014; 48
Liu (10.1016/j.watres.2021.117309_bib0022) 2018; 560
Arhonditsis (10.1016/j.watres.2021.117309_bib0003) 2019; 53
Arhonditsis (10.1016/j.watres.2021.117309_bib0001) 2019; 130
Du (10.1016/j.watres.2021.117309_bib0008) 2015; 7
Lin (10.1016/j.watres.2021.117309_bib0020) 2021; 752
Palmer (10.1016/j.watres.2021.117309_bib0034) 2019; 365
Powers (10.1016/j.watres.2021.117309_bib0037) 2016; 9
Chen (10.1016/j.watres.2021.117309_bib0005) 2019; 53
Vörösmarty (10.1016/j.watres.2021.117309_bib0052) 2010; 467
Grill (10.1016/j.watres.2021.117309_bib0011) 2019; 569
Maavara (10.1016/j.watres.2021.117309_bib0029) 2015; 112
He (10.1016/j.watres.2021.117309_bib0012) 2020; 7
Yi (10.1016/j.watres.2021.117309_bib0060) 2017; 51
Messager (10.1016/j.watres.2021.117309_bib0031) 2016; 7
Xiao (10.1016/j.watres.2021.117309_bib0057) 2016; 6
Huang (10.1016/j.watres.2021.117309_bib0013) 2019; 123
Lehner (10.1016/j.watres.2021.117309_bib0017) 2011; 9
Arhonditsis (10.1016/j.watres.2021.117309_bib0002) 2019; 53
Jarvie (10.1016/j.watres.2021.117309_bib0014) 2018; 621
Strokal (10.1016/j.watres.2021.117309_bib0044) 2016; 11
Liu (10.1016/j.watres.2021.117309_bib0021) 2016; 113
Liu (10.1016/j.watres.2021.117309_bib0025) 2017; 548
Qu (10.1016/j.watres.2021.117309_bib0040) 2019; 13
Cui (10.1016/j.watres.2021.117309_bib0006) 2018; 555
Shen (10.1016/j.watres.2021.117309_bib0041) 2012; 84
Mallows (10.1016/j.watres.2021.117309_bib0030) 2000; 42
Liu (10.1016/j.watres.2021.117309_bib0024) 2016; 4
Long (10.1016/j.watres.2021.117309_bib0026) 2014; 40
van Vliet (10.1016/j.watres.2021.117309_bib0050) 2013; 23
Singh (10.1016/j.watres.2021.117309_bib0042) 2019; 234
Plummer (10.1016/j.watres.2021.117309_bib0036) 2006; 1
Stockwell (10.1016/j.watres.2021.117309_bib0043) 2020; 26
Green (10.1016/j.watres.2021.117309_bib0010) 2007; 112
Qu (10.1016/j.watres.2021.117309_bib0039) 2010; 408
Jiang (10.1016/j.watres.2021.117309_bib0015) 2018; 80
Bouriga (10.1016/j.watres.2021.117309_bib0004) 2013; 143
Maavara (10.1016/j.watres.2021.117309_bib0028) 2020; 1
Li (10.1016/j.watres.2021.117309_bib0018) 2006; 144
Du (10.1016/j.watres.2021.117309_bib0009) 2015; 76
References_xml – volume: 551-552
  start-page: 205
  year: 2016
  end-page: 216
  ident: bib0007
  article-title: Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: a multi-scale analysis
  publication-title: Sci. Total Environ.
– volume: 9
  start-page: 353
  year: 2016
  ident: bib0037
  article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins
  publication-title: Nat. Geosci.
– volume: 120
  start-page: 246
  year: 2018
  end-page: 261
  ident: bib0062
  article-title: Review of global sanitation development
  publication-title: Environ. Int.
– volume: 130
  year: 2019
  ident: bib0001
  article-title: When can we declare a success? A Bayesian framework to assess the recovery rate of impaired freshwater ecosystems
  publication-title: Environ. Int.
– volume: 51
  start-page: 5396
  year: 2017
  end-page: 5403
  ident: bib0060
  article-title: Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 103
  year: 2020
  end-page: 116
  ident: bib0028
  article-title: River dam impacts on biogeochemical cycling
  publication-title: Nat. Rev. Earth Environ.
– volume: 234
  start-page: 1484
  year: 2019
  end-page: 1505
  ident: bib0042
  article-title: Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 1239
  year: 2019
  end-page: 1246
  ident: bib0054
  article-title: Solving the mystery of vanishing rivers in China
  publication-title: Natl. Sci. Rev.
– volume: 42
  start-page: 87
  year: 2000
  end-page: 94
  ident: bib0030
  article-title: Some comments on C-P
  publication-title: Technometrics
– volume: 53
  year: 2019
  ident: bib0003
  article-title: Castles built on sand or predictive limnology in action? Part B: designing the next monitoring-modelling-assessment cycle of adaptive management in Lake Erie
  publication-title: Ecol. Inform.
– volume: 40
  start-page: 6
  year: 2014
  end-page: 12
  ident: bib0023
  article-title: Key issues of land use in China and implications for policy making
  publication-title: Land Use Policy
– volume: 6
  start-page: 25250
  year: 2016
  ident: bib0057
  article-title: Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons
  publication-title: Sci Rep
– volume: 9
  start-page: 494
  year: 2011
  end-page: 502
  ident: bib0017
  article-title: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management
  publication-title: Front. Ecol. Environ.
– volume: 752
  year: 2021
  ident: bib0020
  article-title: Can the hydrophobic organic contaminants in the filtrate passing through 0.45μm filter membranes reflect the water quality?
  publication-title: Sci. Total Environ.
– volume: 262
  year: 2020
  ident: bib0058
  article-title: Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication
  publication-title: Environ. Pollut.
– volume: 113
  start-page: 2609
  year: 2016
  end-page: 2614
  ident: bib0021
  article-title: Intensification of phosphorus cycling in China since the 1600s
  publication-title: Proc. Natl. Acad. Sci.
– volume: 511
  start-page: 527
  year: 2014
  end-page: 529
  ident: bib0045
  article-title: A sustainable plan for China’s drinking water: tackling pollution and using different grades of water for different tasks is more efficient than making all water potable
  publication-title: Nature
– volume: 143
  start-page: 795
  year: 2013
  end-page: 808
  ident: bib0004
  article-title: Estimation of covariance matrices based on hierarchical inverse-Wishart priors
  publication-title: J. Stat. Plan. Inference
– volume: 53
  start-page: 9614
  year: 2019
  end-page: 9625
  ident: bib0005
  article-title: Multi-scale modeling of nutrient pollution in the rivers of China
  publication-title: Environ. Sci. Technol.
– reference: The Ministry of Ecology and Environment, P.R.C., 2020a. Annual Bulletin of China's Ecology and Environment.
– volume: 48
  start-page: 6523
  year: 2014
  end-page: 6530
  ident: bib0055
  article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 964
  year: 2014
  end-page: 979
  ident: bib0026
  article-title: Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario, Canada
  publication-title: J. Gt. Lakes Res.
– volume: 158
  start-page: 1159
  year: 2010
  end-page: 1168
  ident: bib0033
  article-title: Current status of agricultural and rural non-point source Pollution assessment in China
  publication-title: Environ. Pollut.
– volume: 7
  year: 2015
  ident: bib0008
  article-title: Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database
  publication-title: Water (Basel)
– volume: 8
  start-page: 10
  year: 2017
  ident: bib0016
  article-title: River plastic emissions to the world’s oceans
  publication-title: Nat. Commun.
– volume: 408
  start-page: 2075
  year: 2010
  end-page: 2086
  ident: bib0039
  article-title: Past and future trends in nutrients export by rivers to the coastal waters of China
  publication-title: Sci. Total Environ.
– volume: 13
  start-page: 88
  year: 2019
  ident: bib0040
  article-title: Municipal wastewater treatment in China: development history and future perspectives
  publication-title: Front. Environ. Sci. Eng.
– reference: United Nations, 2020.
– volume: 615
  start-page: 906
  year: 2018
  end-page: 917
  ident: bib0019
  article-title: A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005–2016)
  publication-title: Sci. Total Environ.
– volume: 621
  start-page: 849
  year: 2018
  end-page: 862
  ident: bib0014
  article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication
  publication-title: Sci. Total Environ.
– volume: 117
  start-page: 21000
  year: 2020
  end-page: 21002
  ident: bib0038
  article-title: Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing?
  publication-title: Proc. Natl. Acad. Sci.
– volume: 555
  start-page: 363
  year: 2018
  end-page: 366
  ident: bib0006
  article-title: Pursuing sustainable productivity with millions of smallholder farmers
  publication-title: Nature
– volume: 84
  start-page: 104
  year: 2012
  end-page: 111
  ident: bib0041
  article-title: An overview of research on agricultural non-point source pollution modelling in China
  publication-title: Sep. Purif. Technol.
– volume: 80
  start-page: 132
  year: 2018
  end-page: 143
  ident: bib0015
  article-title: Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy
  publication-title: Environ. Sci. Policy
– volume: 11
  year: 2016
  ident: bib0044
  article-title: Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions
  publication-title: Environ. Res. Lett.
– volume: 313
  start-page: 1068
  year: 2006
  end-page: 1072
  ident: bib0032
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
– volume: 41
  start-page: 780
  year: 2015
  end-page: 793
  ident: bib0027
  article-title: Estimation of tributary total phosphorus loads to Hamilton Harbour, Ontario, Canada, using a series of regression equations
  publication-title: J. Gt. Lakes Res.
– volume: 9
  start-page: 38
  year: 2016
  end-page: 42
  ident: bib0053
  article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes
  publication-title: Nat. Geosci.
– volume: 112
  start-page: G03015
  year: 2007
  ident: bib0010
  article-title: Flow path influence on an N: P ratio in two headwater streams: a paired watershed study
  publication-title: J. Geophys. Res.-Biogeosci.
– volume: 112
  start-page: 15603
  year: 2015
  end-page: 15608
  ident: bib0029
  article-title: Global phosphorus retention by river damming
  publication-title: Proc. Natl. Acad. Sci.
– volume: 123
  start-page: 96
  year: 2019
  end-page: 103
  ident: bib0013
  article-title: How successful are the restoration efforts of China's lakes and reservoirs?
  publication-title: Environ. Int.
– volume: 157
  start-page: 258
  year: 2019
  end-page: 268
  ident: bib0059
  article-title: Autotrophic nitrate uptake in river networks: a modeling approach using continuous high-frequency data
  publication-title: Water Res.
– volume: 365
  start-page: eaaw2087
  year: 2019
  ident: bib0034
  article-title: Linkages between flow regime, biota, and ecosystem processes: implications for river restoration
  publication-title: Science
– volume: 47
  start-page: 9685
  year: 2013
  end-page: 9692
  ident: bib0035
  article-title: Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China)
  publication-title: Environ. Sci. Technol.
– volume: 49
  start-page: 6772
  year: 2015
  end-page: 6782
  ident: bib0061
  article-title: Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
– volume: 53
  year: 2019
  ident: bib0002
  article-title: Castles built on sand or predictive limnology in action? Part A: evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie
  publication-title: Ecol. Inform.
– volume: 20
  start-page: 863
  year: 2018
  end-page: 891
  ident: bib0056
  article-title: The cycle of nitrogen in river systems: sources, transformation, and flux
  publication-title: Environ. Sci.
– volume: 7
  start-page: 25
  year: 2020
  ident: bib0012
  article-title: The first high-resolution meteorological forcing dataset for land process studies over China
  publication-title: Sci. Data
– volume: 117
  start-page: 11566
  year: 2020
  end-page: 11572
  ident: bib0048
  article-title: Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions
  publication-title: Proc. Natl. Acad. Sci.
– reference: .
– volume: 467
  start-page: 555
  year: 2010
  end-page: 561
  ident: bib0052
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
– volume: 569
  start-page: 215
  year: 2019
  end-page: 221
  ident: bib0011
  article-title: Mapping the world’s free-flowing rivers
  publication-title: Nature
– volume: 76
  start-page: 1457
  year: 2015
  end-page: 1471
  ident: bib0009
  article-title: Quantifying the impact of impervious surface location on flood peak discharge in urban areas
  publication-title: Nat. Hazards
– volume: 26
  start-page: 2756
  year: 2020
  end-page: 2784
  ident: bib0043
  article-title: Storm impacts on phytoplankton community dynamics in lakes
  publication-title: Glob. Change Biol.
– volume: 144
  start-page: 985
  year: 2006
  end-page: 993
  ident: bib0018
  article-title: Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River
  publication-title: China. Environ. Pollut.
– reference: The Ministry of Ecology and Environment, P.R.C., 2020b. Second National Pollutant Source Census Bulletin.
– volume: 560
  start-page: 530
  year: 2018
  end-page: 545
  ident: bib0022
  article-title: Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: framework development and demonstration using a Bayesian method
  publication-title: J. Hydrol.
– volume: 4
  start-page: 54
  year: 2016
  end-page: 59
  ident: bib0024
  article-title: Exploring the integrated planning of city drainage and waterlogging prevention based on Sponge City idea: the case of Badali district in Tianjin (In Chinese)
  publication-title: City
– volume: 548
  start-page: 275
  year: 2017
  end-page: 277
  ident: bib0025
  article-title: Revitalize the world’s countryside
  publication-title: Nature
– volume: 23
  start-page: 450
  year: 2013
  end-page: 464
  ident: bib0050
  article-title: Global river discharge and water temperature under climate change
  publication-title: Glob. Environ. Change-Human Policy Dimens.
– year: 2020
  ident: bib0051
  article-title: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC
  publication-title: Bayesian Anal.
– volume: 7
  start-page: 13603
  year: 2016
  ident: bib0031
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
– volume: 1
  start-page: 681
  year: 2006
  end-page: 686
  ident: bib0036
  article-title: Comment on article by Celeux et al
  publication-title: Bayesian Anal.
– volume: 408
  start-page: 2075
  issue: 9
  year: 2010
  ident: 10.1016/j.watres.2021.117309_bib0039
  article-title: Past and future trends in nutrients export by rivers to the coastal waters of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2009.12.015
– volume: 560
  start-page: 530
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0022
  article-title: Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: framework development and demonstration using a Bayesian method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.03.053
– volume: 313
  start-page: 1068
  issue: 5790
  year: 2006
  ident: 10.1016/j.watres.2021.117309_bib0032
  article-title: Global hydrological cycles and world water resources
  publication-title: Science
  doi: 10.1126/science.1128845
– volume: 7
  start-page: 13603
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0031
  article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13603
– volume: 1
  start-page: 103
  issue: 2
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0028
  article-title: River dam impacts on biogeochemical cycling
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-019-0019-0
– volume: 49
  start-page: 6772
  issue: 11
  year: 2015
  ident: 10.1016/j.watres.2021.117309_bib0061
  article-title: Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00729
– volume: 9
  start-page: 494
  issue: 9
  year: 2011
  ident: 10.1016/j.watres.2021.117309_bib0017
  article-title: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/100125
– volume: 120
  start-page: 246
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0062
  article-title: Review of global sanitation development
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.07.047
– volume: 117
  start-page: 11566
  issue: 21
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0048
  article-title: Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1920759117
– volume: 113
  start-page: 2609
  issue: 10
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0021
  article-title: Intensification of phosphorus cycling in China since the 1600s
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1519554113
– volume: 365
  start-page: eaaw2087
  issue: 6459
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0034
  article-title: Linkages between flow regime, biota, and ecosystem processes: implications for river restoration
  publication-title: Science
  doi: 10.1126/science.aaw2087
– volume: 143
  start-page: 795
  issue: 4
  year: 2013
  ident: 10.1016/j.watres.2021.117309_bib0004
  article-title: Estimation of covariance matrices based on hierarchical inverse-Wishart priors
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2012.09.006
– volume: 53
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0003
  article-title: Castles built on sand or predictive limnology in action? Part B: designing the next monitoring-modelling-assessment cycle of adaptive management in Lake Erie
  publication-title: Ecol. Inform.
– ident: 10.1016/j.watres.2021.117309_bib0047
– volume: 11
  issue: 2
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0044
  article-title: Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/11/2/024014
– volume: 26
  start-page: 2756
  issue: 5
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0043
  article-title: Storm impacts on phytoplankton community dynamics in lakes
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.15033
– volume: 157
  start-page: 258
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0059
  article-title: Autotrophic nitrate uptake in river networks: a modeling approach using continuous high-frequency data
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.02.059
– volume: 41
  start-page: 780
  issue: 3
  year: 2015
  ident: 10.1016/j.watres.2021.117309_bib0027
  article-title: Estimation of tributary total phosphorus loads to Hamilton Harbour, Ontario, Canada, using a series of regression equations
  publication-title: J. Gt. Lakes Res.
  doi: 10.1016/j.jglr.2015.04.001
– volume: 80
  start-page: 132
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0015
  article-title: Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy
  publication-title: Environ. Sci. Policy
  doi: 10.1016/j.envsci.2017.11.016
– volume: 548
  start-page: 275
  issue: 7667
  year: 2017
  ident: 10.1016/j.watres.2021.117309_bib0025
  article-title: Revitalize the world’s countryside
  publication-title: Nature
  doi: 10.1038/548275a
– volume: 7
  issue: 5
  year: 2015
  ident: 10.1016/j.watres.2021.117309_bib0008
  article-title: Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database
  publication-title: Water (Basel)
– volume: 42
  start-page: 87
  issue: 1
  year: 2000
  ident: 10.1016/j.watres.2021.117309_bib0030
  article-title: Some comments on C-P
  publication-title: Technometrics
– volume: 6
  start-page: 1239
  issue: 6
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0054
  article-title: Solving the mystery of vanishing rivers in China
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwz022
– volume: 117
  start-page: 21000
  issue: 35
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0038
  article-title: Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing?
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2013445117
– volume: 467
  start-page: 555
  issue: 7315
  year: 2010
  ident: 10.1016/j.watres.2021.117309_bib0052
  article-title: Global threats to human water security and river biodiversity
  publication-title: Nature
  doi: 10.1038/nature09440
– ident: 10.1016/j.watres.2021.117309_bib0046
– volume: 9
  start-page: 38
  issue: 1
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0053
  article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2602
– volume: 112
  start-page: 15603
  issue: 51
  year: 2015
  ident: 10.1016/j.watres.2021.117309_bib0029
  article-title: Global phosphorus retention by river damming
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1511797112
– volume: 48
  start-page: 6523
  issue: 12
  year: 2014
  ident: 10.1016/j.watres.2021.117309_bib0055
  article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501670j
– volume: 262
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0058
  article-title: Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114292
– volume: 551-552
  start-page: 205
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0007
  article-title: Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: a multi-scale analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.162
– volume: 123
  start-page: 96
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0013
  article-title: How successful are the restoration efforts of China's lakes and reservoirs?
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.11.048
– volume: 8
  start-page: 10
  year: 2017
  ident: 10.1016/j.watres.2021.117309_bib0016
  article-title: River plastic emissions to the world’s oceans
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15611
– volume: 53
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0002
  article-title: Castles built on sand or predictive limnology in action? Part A: evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie
  publication-title: Ecol. Inform.
– volume: 47
  start-page: 9685
  issue: 17
  year: 2013
  ident: 10.1016/j.watres.2021.117309_bib0035
  article-title: Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4005619
– volume: 13
  start-page: 88
  issue: 6
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0040
  article-title: Municipal wastewater treatment in China: development history and future perspectives
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-019-1172-x
– volume: 53
  start-page: 9614
  issue: 16
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0005
  article-title: Multi-scale modeling of nutrient pollution in the rivers of China
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07352
– volume: 158
  start-page: 1159
  issue: 5
  year: 2010
  ident: 10.1016/j.watres.2021.117309_bib0033
  article-title: Current status of agricultural and rural non-point source Pollution assessment in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2009.10.047
– volume: 40
  start-page: 6
  year: 2014
  ident: 10.1016/j.watres.2021.117309_bib0023
  article-title: Key issues of land use in China and implications for policy making
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2013.03.013
– volume: 9
  start-page: 353
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0037
  article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2693
– volume: 621
  start-page: 849
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0014
  article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.128
– volume: 40
  start-page: 964
  issue: 4
  year: 2014
  ident: 10.1016/j.watres.2021.117309_bib0026
  article-title: Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario, Canada
  publication-title: J. Gt. Lakes Res.
  doi: 10.1016/j.jglr.2014.09.017
– volume: 511
  start-page: 527
  issue: 7511
  year: 2014
  ident: 10.1016/j.watres.2021.117309_bib0045
  article-title: A sustainable plan for China’s drinking water: tackling pollution and using different grades of water for different tasks is more efficient than making all water potable
  publication-title: Nature
  doi: 10.1038/511527a
– ident: 10.1016/j.watres.2021.117309_bib0049
– volume: 84
  start-page: 104
  year: 2012
  ident: 10.1016/j.watres.2021.117309_bib0041
  article-title: An overview of research on agricultural non-point source pollution modelling in China
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2011.01.018
– volume: 51
  start-page: 5396
  issue: 10
  year: 2017
  ident: 10.1016/j.watres.2021.117309_bib0060
  article-title: Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06278
– volume: 112
  start-page: G03015
  issue: G3
  year: 2007
  ident: 10.1016/j.watres.2021.117309_bib0010
  article-title: Flow path influence on an N: P ratio in two headwater streams: a paired watershed study
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1029/2007JG000403
– volume: 130
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0001
  article-title: When can we declare a success? A Bayesian framework to assess the recovery rate of impaired freshwater ecosystems
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.05.015
– volume: 76
  start-page: 1457
  issue: 3
  year: 2015
  ident: 10.1016/j.watres.2021.117309_bib0009
  article-title: Quantifying the impact of impervious surface location on flood peak discharge in urban areas
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1463-2
– volume: 752
  year: 2021
  ident: 10.1016/j.watres.2021.117309_bib0020
  article-title: Can the hydrophobic organic contaminants in the filtrate passing through 0.45μm filter membranes reflect the water quality?
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141916
– volume: 555
  start-page: 363
  issue: 7696
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0006
  article-title: Pursuing sustainable productivity with millions of smallholder farmers
  publication-title: Nature
  doi: 10.1038/nature25785
– volume: 144
  start-page: 985
  issue: 3
  year: 2006
  ident: 10.1016/j.watres.2021.117309_bib0018
  article-title: Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River
  publication-title: China. Environ. Pollut.
  doi: 10.1016/j.envpol.2006.01.047
– volume: 23
  start-page: 450
  issue: 2
  year: 2013
  ident: 10.1016/j.watres.2021.117309_bib0050
  article-title: Global river discharge and water temperature under climate change
  publication-title: Glob. Environ. Change-Human Policy Dimens.
  doi: 10.1016/j.gloenvcha.2012.11.002
– volume: 615
  start-page: 906
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0019
  article-title: A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005–2016)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.328
– volume: 1
  start-page: 681
  issue: 4
  year: 2006
  ident: 10.1016/j.watres.2021.117309_bib0036
  article-title: Comment on article by Celeux et al
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA122C
– volume: 4
  start-page: 54
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0024
  article-title: Exploring the integrated planning of city drainage and waterlogging prevention based on Sponge City idea: the case of Badali district in Tianjin (In Chinese)
  publication-title: City
– volume: 6
  start-page: 25250
  year: 2016
  ident: 10.1016/j.watres.2021.117309_bib0057
  article-title: Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons
  publication-title: Sci Rep
  doi: 10.1038/srep25250
– year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0051
  article-title: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC
  publication-title: Bayesian Anal.
– volume: 569
  start-page: 215
  issue: 7755
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0011
  article-title: Mapping the world’s free-flowing rivers
  publication-title: Nature
  doi: 10.1038/s41586-019-1111-9
– volume: 7
  start-page: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.watres.2021.117309_bib0012
  article-title: The first high-resolution meteorological forcing dataset for land process studies over China
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0369-y
– volume: 234
  start-page: 1484
  year: 2019
  ident: 10.1016/j.watres.2021.117309_bib0042
  article-title: Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.06.243
– volume: 20
  start-page: 863
  issue: 6
  year: 2018
  ident: 10.1016/j.watres.2021.117309_bib0056
  article-title: The cycle of nitrogen in river systems: sources, transformation, and flux
  publication-title: Environ. Sci.
SSID ssj0002239
Score 2.7058883
Snippet •Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of...
Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117309
SubjectTerms ammonium nitrogen
Bayesian modelling
Bayesian theory
China
data collection
Eutrophication
food production
heavy metals
landscapes
light intensity
nonpoint source pollution
riparian areas
river water
River water quality
rivers
surface water
total phosphorus
Urbanization
water quality
Watershed management
watersheds
Title Characterizing the river water quality in China: Recent progress and on-going challenges
URI https://dx.doi.org/10.1016/j.watres.2021.117309
https://www.proquest.com/docview/2540521684
https://www.proquest.com/docview/2986198042
Volume 201
WOSCitedRecordID wos000684281700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LQc4IJ6iPCojcUNZNbbzMLdSFZUKVT0UCKfIdhzIqvJW292ygj_P-JVNC7T0wCWKImfizXz5Zjw7M0bolWbAeETD902zNmGctInQIkvAl28lMCJtXbzj04fi8LCsKn40Gv2MtTDnJ4Ux5XLJT_-rquEaKNuWzt5A3b1QuADnoHQ4gtrh-E-K3-1bMP-IpVAzm3zx-ruwDRF9FaWv9rN7Z_uMOJuj6XO1LPPZYPrUJF-nriI3brdyNnRkPzthoVXQN9e0dOnz5PkKKSEWfdAB7QYLOYxRf-nMZNGD823YXWVfdJMBZo90L8QMQxQk7RPketq1fVCp7xYdaZeEEZ440xSohv-R0314YTKGtwS_amwfMF4Nv9hC-5Jp6xMOYy7bpPZSaiul9lLW0AYpMg6UuLHzfq866A05eE48JijY2cfKS5ce-Pts_ubZXLLxznE5vofuhhUH3vFIuY9G2jxAdwZ9KB-i6iJmMGAGO8xghxkcMIM7gx1m3mCPGBwRgwExOCIGrxDzCH18t3e8u5-ELTcSRQsyTxRLBSxocwbUzLTMxXbLpGqkBLvYNikYds6Fkttagh_Y8LzJicgKWGU0bdqSltHHaN1MjX6CsGI5JYWiqiGKNVqUVEiVaVvtnJW5JJuIxtdVq9CP3m6LclJfpaxNlPR3nfp-LNeML6Im6uBTel-xBnhdc-fLqLgaKNf-jyaMni5gkF3lkDQv2RVjeJmnvAST-PSGM36Gbq--oedofT5b6Bfoljqfd2ezLbRWVOVWQOovk_qy6Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+river+water+quality+in+China%3A+Recent+progress+and+on-going+challenges&rft.jtitle=Water+research+%28Oxford%29&rft.au=Huang%2C+Jiacong&rft.au=Zhang%2C+Yinjun&rft.au=Bing%2C+Haijian&rft.au=Peng%2C+Jian&rft.date=2021-08-01&rft.issn=0043-1354&rft.volume=201&rft.spage=117309&rft_id=info:doi/10.1016%2Fj.watres.2021.117309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2021_117309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon