Characterizing the river water quality in China: Recent progress and on-going challenges
•Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust...
Uložené v:
| Vydané v: | Water research (Oxford) Ročník 201; s. 117309 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2021
|
| Predmet: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust in linking river water quality and watershed landscape characteristics.
Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.
[Display omitted] |
|---|---|
| AbstractList | Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading.Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003-2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading. Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH₃-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH₃-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH₃-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH₃-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH₃-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading. •Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of poor water quality.•Water quality impairments are predominantly shaped by anthropogenic drivers (>75%).•Bayesian model is robust in linking river water quality and watershed landscape characteristics. Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily responsible for water quality impairments in China's rivers. This study compiled a 16-year (2003–2018) dataset of river water quality (161,337 records from 2424 sites), watershed/landscape features, and meteorological conditions to investigate the spatial water quality patterns and underlying drivers of river impairment (defined as water quality worse than Class V according to China's Environmental Quality Standards for Surface Waters, GB3838-2002) at a national scale. Our analysis provided evidence of a distinct water quality improvement with a gradual decrease in the frequency of prevalence of anoxic conditions, an alleviation of the severity of heavy metal pollution, whereas the cultural eutrophication has only been moderately mitigated between 2003 and 2018. We also identified significant spatial variation with relatively poorer water quality in eastern China, where 17.2% of the sampling sites registered poor water quality conditions, compared with only 4.6% in western China. Total phosphorus (TP) and ammonia-nitrogen (NH3-N) are collectively responsible for >85% of the identified incidences of impaired conditions. Bayesian modelling was used to delineate the most significant covariates of TP/NH3-N riverine levels in six large river basins (Liao, Hai, Yellow, Yangtze, Huai, and Pearl). Water quality impairments are predominantly shaped by anthropogenic drivers (82.5% for TP, 79.5% for NH3-N), whereas natural factors appear to play a secondary role (20.5% for TP, 17.5% for NH3-N). Two indicator variables of urbanization (urban areal extent and nighttime light intensity) and farmland areal extent were the strongest predictors of riverine TP/NH3-N levels and collectively accounted for most of the ambient nutrient variability. We concluded that there is still a long way to go in order to eradicate eutrophication and realize acceptable ecological conditions. The design of the remedial measures must be tailored to the site-specific landscape characteristics, meteorological conditions, and should also consider the increasing importance of non-point source pollution and internal nutrient loading. [Display omitted] |
| ArticleNumber | 117309 |
| Author | Zhang, Yinjun Bing, Haijian Dong, Feifei Arhonditsis, George B. Huang, Jiacong Gao, Junfeng Peng, Jian |
| Author_xml | – sequence: 1 givenname: Jiacong orcidid: 0000-0003-4296-5823 surname: Huang fullname: Huang, Jiacong email: jchuang@niglas.ac.cn organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China – sequence: 2 givenname: Yinjun surname: Zhang fullname: Zhang, Yinjun organization: China National Environmental Monitoring Centre, 8(B) Dayangfang Beiyuan Road, Chaoyang District, Beijing, 100012, China – sequence: 3 givenname: Haijian surname: Bing fullname: Bing, Haijian organization: Key Laboratory of Mountain Surface Process and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, 9, Block 4, Renminnanlu Road, Chengdu, 610041, China – sequence: 4 givenname: Jian surname: Peng fullname: Peng, Jian organization: Department of Remote Sensing, Helmholtz Centre for Environmental Research−UFZ, Permoserstrasse 15, 04318, Leipzig, Germany – sequence: 5 givenname: Feifei surname: Dong fullname: Dong, Feifei organization: Institute of Groundwater and Earth Sciences, Jinan University, 601 Huangpu Avenue, Guangzhou, 510630, China – sequence: 6 givenname: Junfeng surname: Gao fullname: Gao, Junfeng organization: Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China – sequence: 7 givenname: George B. orcidid: 0000-0001-5359-8737 surname: Arhonditsis fullname: Arhonditsis, George B. email: george.arhonditsis@utoronto.ca organization: Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada |
| BookMark | eNqFkE1LAzEQhoNUsK3-Aw85etmayWa3mx4EKX5BQRAFbyGbnW1TttmapEr99W5ZTx7sHGYu87wzPCMycK1DQi6BTYBBfr2efOnoMUw44zABmKZMnpAhFFOZcCGKARkyJtIE0kyckVEIa8YY56kckvf5SnttInr7bd2SxhVSbz_R0y6y6x873di4p9bR-co6PaMvaNBFuvXtsjsZqHYVbV2ybA-4WemmQbfEcE5Oa90EvPidY_J2f_c6f0wWzw9P89tFYtIpj4kRoPOuRJaCwDLXrBalqcoyS4u6AixBSm1KhiXLoZJ5lXOdTZmUVQ01r0U6Jld9bvfQxw5DVBsbDDaNdtjuguKyyEEWTPDjq5lgGYe8OKSKftX4NgSPtdp6u9F-r4Cpg3O1Vr1zdXCueucdNvuDGRt1tK2LXtvmGHzTw9jp-rToVTAWncHKejRRVa39P-AH39eiNA |
| CitedBy_id | crossref_primary_10_1016_j_chroma_2025_465830 crossref_primary_10_3389_fenvs_2025_1612658 crossref_primary_10_1016_j_jhazmat_2024_133450 crossref_primary_10_1016_j_jclepro_2024_144362 crossref_primary_10_1016_j_jhydrol_2025_133958 crossref_primary_10_1016_j_ecolind_2024_112091 crossref_primary_10_1080_15715124_2024_2448998 crossref_primary_10_1016_j_jenvman_2022_115925 crossref_primary_10_1007_s00343_024_3206_x crossref_primary_10_1016_j_jhydrol_2025_133032 crossref_primary_10_1016_j_jconhyd_2025_104641 crossref_primary_10_1016_j_ecolind_2025_113100 crossref_primary_10_1016_j_scitotenv_2022_157942 crossref_primary_10_1016_j_chemosphere_2023_139221 crossref_primary_10_1016_j_biortech_2024_131587 crossref_primary_10_1007_s11356_023_29549_8 crossref_primary_10_1016_j_jhazmat_2025_138075 crossref_primary_10_3390_w16233353 crossref_primary_10_1016_j_ecolind_2024_112423 crossref_primary_10_1007_s10750_023_05387_0 crossref_primary_10_1016_j_envsoft_2024_106284 crossref_primary_10_1016_j_gexplo_2025_107736 crossref_primary_10_1016_j_eti_2024_103987 crossref_primary_10_1016_j_watres_2022_119280 crossref_primary_10_1016_j_envres_2025_122747 crossref_primary_10_3390_w14193068 crossref_primary_10_1002_etc_5886 crossref_primary_10_1016_j_envres_2024_118191 crossref_primary_10_1029_2023WR036587 crossref_primary_10_1016_j_resconrec_2022_106537 crossref_primary_10_1016_j_envpol_2023_122219 crossref_primary_10_1016_j_watres_2025_123168 crossref_primary_10_3390_su15075700 crossref_primary_10_3390_s25061850 crossref_primary_10_1007_s11356_023_29140_1 crossref_primary_10_1016_j_scitotenv_2024_172194 crossref_primary_10_1007_s00477_025_02929_x crossref_primary_10_1016_j_cej_2024_157993 crossref_primary_10_1016_j_scitotenv_2024_173040 crossref_primary_10_1007_s11356_023_27962_7 crossref_primary_10_1016_j_jconhyd_2025_104617 crossref_primary_10_1007_s00477_025_03006_z crossref_primary_10_1016_j_jhazmat_2024_136864 crossref_primary_10_3390_hydrology11090135 crossref_primary_10_1016_j_envres_2022_113843 crossref_primary_10_1016_j_scitotenv_2022_156633 crossref_primary_10_1016_j_scitotenv_2022_157843 crossref_primary_10_1016_j_jenvman_2023_117846 crossref_primary_10_3390_su16010185 crossref_primary_10_3390_rs16122246 crossref_primary_10_1016_j_ecolind_2024_111553 crossref_primary_10_1016_j_ecolind_2025_113914 crossref_primary_10_3389_ffgc_2024_1345207 crossref_primary_10_1016_j_envres_2023_117255 crossref_primary_10_1016_j_jhydrol_2022_127582 crossref_primary_10_1016_j_watres_2023_120670 crossref_primary_10_1016_j_jenvman_2024_123688 crossref_primary_10_1016_j_jag_2025_104826 crossref_primary_10_1016_j_watres_2024_122597 crossref_primary_10_3390_w17010111 crossref_primary_10_1038_s41598_023_34184_x crossref_primary_10_3390_rs14194693 crossref_primary_10_1021_acsestwater_5c00044 crossref_primary_10_1038_s44221_023_00039_y crossref_primary_10_1016_j_scitotenv_2024_174260 crossref_primary_10_1016_j_crmicr_2025_100447 crossref_primary_10_3390_w14040610 crossref_primary_10_3390_land11091428 crossref_primary_10_3390_w17131892 crossref_primary_10_1002_rvr2_87 crossref_primary_10_1016_j_watres_2024_121262 crossref_primary_10_1029_2022EA002363 crossref_primary_10_1016_j_ecolind_2023_110961 crossref_primary_10_1038_s41598_024_65837_0 crossref_primary_10_3390_su131910740 crossref_primary_10_1016_j_dwt_2024_100206 crossref_primary_10_1016_j_ecolind_2022_109324 crossref_primary_10_1016_j_chemosphere_2022_136827 crossref_primary_10_1016_j_jenvman_2023_118283 crossref_primary_10_1007_s11769_025_1519_0 crossref_primary_10_1016_j_scitotenv_2023_164317 crossref_primary_10_1016_j_jhydrol_2025_133992 crossref_primary_10_1080_09593330_2025_2464981 crossref_primary_10_1016_j_ecolind_2025_113700 crossref_primary_10_3390_w14050793 crossref_primary_10_1016_j_ecolind_2024_112225 crossref_primary_10_1016_j_jenvman_2024_122137 crossref_primary_10_1016_j_scitotenv_2024_174641 crossref_primary_10_3390_w16243635 crossref_primary_10_1016_j_jhazmat_2025_138156 crossref_primary_10_3390_environments12050158 crossref_primary_10_1109_TGRS_2025_3555791 crossref_primary_10_1016_j_ecoinf_2024_102745 crossref_primary_10_1111_raq_12997 crossref_primary_10_1016_j_scitotenv_2023_165869 crossref_primary_10_1016_j_jenvman_2022_116828 crossref_primary_10_1007_s10661_023_11641_8 crossref_primary_10_1007_s11356_022_20667_3 crossref_primary_10_1016_j_jenvman_2024_122022 crossref_primary_10_1016_j_watres_2023_120492 crossref_primary_10_34133_ehs_0041 crossref_primary_10_1029_2022EF003013 crossref_primary_10_1016_j_ecoinf_2025_103320 crossref_primary_10_1016_j_jhydrol_2022_129037 crossref_primary_10_1088_1572_9494_ad3617 crossref_primary_10_1016_j_watres_2024_122605 crossref_primary_10_1088_1748_9326_ac50d3 crossref_primary_10_1016_j_jenvman_2025_124078 crossref_primary_10_1038_s43247_025_02653_y crossref_primary_10_1016_j_scitotenv_2022_157803 crossref_primary_10_1016_j_jclepro_2024_143448 crossref_primary_10_1016_j_jconhyd_2025_104668 crossref_primary_10_1007_s43832_025_00220_2 crossref_primary_10_1016_j_jag_2024_104209 crossref_primary_10_3390_w14193007 crossref_primary_10_1016_j_envpol_2024_124402 crossref_primary_10_1177_11786221241259949 crossref_primary_10_1016_j_jhydrol_2025_133889 crossref_primary_10_3390_su151411017 crossref_primary_10_1016_j_jwpe_2025_108041 crossref_primary_10_1016_j_jhydrol_2024_132373 crossref_primary_10_1038_s43247_025_02016_7 crossref_primary_10_3390_w15020257 crossref_primary_10_1016_j_watres_2022_118419 crossref_primary_10_1016_j_rse_2024_114147 crossref_primary_10_1016_j_jenvman_2023_118883 crossref_primary_10_1016_j_uclim_2024_102082 crossref_primary_10_1016_j_scitotenv_2024_176733 crossref_primary_10_1016_j_jhydrol_2025_133797 crossref_primary_10_1016_j_watres_2023_120724 crossref_primary_10_1039_D4EW00689E crossref_primary_10_1016_j_psep_2024_05_146 crossref_primary_10_1016_j_jclepro_2022_132415 crossref_primary_10_1038_s41545_025_00481_3 crossref_primary_10_1016_j_jhydrol_2022_127711 crossref_primary_10_1038_s41467_024_46968_4 crossref_primary_10_1016_j_ecolind_2024_112269 crossref_primary_10_1016_j_jclepro_2024_144519 crossref_primary_10_1038_s41598_025_00604_3 crossref_primary_10_1007_s10163_023_01766_w crossref_primary_10_1016_j_jhazmat_2025_139205 crossref_primary_10_1016_j_jwpe_2024_106185 crossref_primary_10_1007_s11270_025_08198_2 crossref_primary_10_1007_s11269_025_04230_6 crossref_primary_10_1016_j_jenvman_2023_118077 crossref_primary_10_1016_j_eiar_2025_108047 crossref_primary_10_3390_ijerph191811818 crossref_primary_10_1007_s11356_023_30409_8 crossref_primary_10_1016_j_psep_2024_08_109 crossref_primary_10_1016_j_jenvman_2025_127138 crossref_primary_10_1016_j_psep_2025_107847 crossref_primary_10_1016_j_ecohyd_2024_01_012 crossref_primary_10_1016_j_watres_2025_123561 crossref_primary_10_3390_rs15205001 crossref_primary_10_3390_su17052182 crossref_primary_10_1007_s44288_025_00158_x crossref_primary_10_1038_s41598_025_02964_2 crossref_primary_10_1016_j_psep_2022_10_079 crossref_primary_10_1016_j_watres_2025_123578 crossref_primary_10_1016_j_ecofro_2025_04_010 crossref_primary_10_1016_j_cbd_2024_101281 crossref_primary_10_1029_2024EF004860 crossref_primary_10_1016_j_fmre_2022_01_035 crossref_primary_10_1016_j_scitotenv_2023_161613 crossref_primary_10_1111_ajae_12510 crossref_primary_10_1016_j_jhydrol_2025_133218 crossref_primary_10_1371_journal_pone_0323134 crossref_primary_10_1016_j_jhydrol_2025_133572 crossref_primary_10_1007_s10652_025_10025_5 crossref_primary_10_1016_j_jes_2025_04_027 crossref_primary_10_1007_s10653_025_02658_8 crossref_primary_10_5814_j_issn_1674_764x_2022_01_010 crossref_primary_10_1016_j_watres_2023_120382 crossref_primary_10_3390_nano14121037 crossref_primary_10_1016_j_ecolind_2022_108582 crossref_primary_10_3390_rs17040731 crossref_primary_10_1016_j_jece_2025_115519 crossref_primary_10_1016_j_envpol_2025_126640 crossref_primary_10_1007_s11053_022_10040_z crossref_primary_10_1016_j_scs_2025_106151 crossref_primary_10_1016_j_jenvman_2024_121308 crossref_primary_10_1016_j_jece_2023_109714 crossref_primary_10_1016_j_jenvman_2022_115638 crossref_primary_10_3390_su15086455 crossref_primary_10_3390_rs15184487 crossref_primary_10_1016_j_jhazmat_2024_134951 crossref_primary_10_1016_j_psep_2025_107706 crossref_primary_10_5194_essd_16_1137_2024 crossref_primary_10_3390_rs15092441 crossref_primary_10_1016_j_ecolind_2025_113995 crossref_primary_10_1016_j_ecolind_2024_112853 crossref_primary_10_1007_s44177_024_00081_9 crossref_primary_10_1088_1755_1315_1041_1_012052 crossref_primary_10_1016_j_ecoinf_2024_102571 crossref_primary_10_1016_j_ecohyd_2025_100678 crossref_primary_10_1016_j_jece_2025_116452 crossref_primary_10_1016_j_jclepro_2023_140360 crossref_primary_10_1016_j_cej_2024_150494 crossref_primary_10_1016_j_scitotenv_2023_164713 crossref_primary_10_1007_s11270_023_06503_5 crossref_primary_10_3390_pr12122922 crossref_primary_10_1007_s10661_024_13228_3 crossref_primary_10_5194_bg_21_2253_2024 crossref_primary_10_1016_j_chemosphere_2021_132354 crossref_primary_10_1007_s10661_025_14069_4 crossref_primary_10_1007_s11356_022_21348_x crossref_primary_10_1002_ldr_70188 crossref_primary_10_1007_s11356_022_19083_4 crossref_primary_10_3389_fenvs_2022_924350 crossref_primary_10_1016_j_jconhyd_2025_104604 crossref_primary_10_1016_j_marpolbul_2024_116825 crossref_primary_10_1016_j_scitotenv_2024_177757 crossref_primary_10_1080_15715124_2023_2165089 crossref_primary_10_1016_j_scitotenv_2024_173036 crossref_primary_10_1016_j_scitotenv_2024_171094 crossref_primary_10_7189_jogh_15_04120 crossref_primary_10_1016_j_watres_2025_124457 crossref_primary_10_1007_s11269_024_04006_4 crossref_primary_10_1016_j_scitotenv_2023_168866 crossref_primary_10_3390_w16050732 crossref_primary_10_1016_j_jenvman_2022_115581 crossref_primary_10_1016_j_scitotenv_2024_172061 crossref_primary_10_1016_j_ecolind_2025_114061 crossref_primary_10_1016_j_jhydrol_2025_133581 crossref_primary_10_1016_j_watres_2021_117406 crossref_primary_10_1016_j_psep_2025_107648 crossref_primary_10_3390_w15112113 crossref_primary_10_1016_j_jece_2024_115196 crossref_primary_10_1016_j_srs_2025_100282 crossref_primary_10_1016_j_scitotenv_2021_152208 crossref_primary_10_3390_ijerph20032431 crossref_primary_10_1007_s11252_023_01441_w crossref_primary_10_1016_j_jenvman_2023_118465 crossref_primary_10_1016_j_watres_2024_121237 crossref_primary_10_1016_j_rse_2023_113848 crossref_primary_10_1016_j_ecolind_2023_111223 crossref_primary_10_1016_j_scitotenv_2024_174212 crossref_primary_10_1016_j_watres_2023_120622 crossref_primary_10_1016_j_ecolind_2024_112396 crossref_primary_10_1016_j_jenvman_2024_123653 crossref_primary_10_3390_ijerph191912367 crossref_primary_10_3390_w15061151 crossref_primary_10_1016_j_jclepro_2025_145995 crossref_primary_10_1016_j_watres_2023_120749 crossref_primary_10_1016_j_agee_2023_108482 crossref_primary_10_3390_su141911811 crossref_primary_10_1016_j_jhydrol_2025_133813 crossref_primary_10_1038_s41396_023_01481_2 crossref_primary_10_1007_s11356_023_29390_z crossref_primary_10_1088_1748_9326_acbc8e crossref_primary_10_1016_j_watres_2023_121049 crossref_primary_10_1016_j_wasman_2025_114832 crossref_primary_10_1016_j_jenvman_2024_123522 crossref_primary_10_3390_w17040467 crossref_primary_10_1016_j_biortech_2021_126056 crossref_primary_10_7498_aps_74_20250930 crossref_primary_10_1007_s11356_023_25558_9 crossref_primary_10_1016_j_jenvman_2022_115684 crossref_primary_10_3389_fmars_2025_1538897 crossref_primary_10_3390_w15122244 crossref_primary_10_1016_j_scitotenv_2024_172285 crossref_primary_10_2166_wcc_2025_838 crossref_primary_10_1007_s12403_025_00730_3 crossref_primary_10_1038_s41545_023_00260_y crossref_primary_10_3389_fenvs_2022_931642 crossref_primary_10_3390_w16121701 crossref_primary_10_1002_ldr_70054 crossref_primary_10_1016_j_jenvman_2025_127191 |
| Cites_doi | 10.1016/j.scitotenv.2009.12.015 10.1016/j.jhydrol.2018.03.053 10.1126/science.1128845 10.1038/ncomms13603 10.1038/s43017-019-0019-0 10.1021/acs.est.5b00729 10.1890/100125 10.1016/j.envint.2018.07.047 10.1073/pnas.1920759117 10.1073/pnas.1519554113 10.1126/science.aaw2087 10.1016/j.jspi.2012.09.006 10.1088/1748-9326/11/2/024014 10.1111/gcb.15033 10.1016/j.watres.2019.02.059 10.1016/j.jglr.2015.04.001 10.1016/j.envsci.2017.11.016 10.1038/548275a 10.1093/nsr/nwz022 10.1073/pnas.2013445117 10.1038/nature09440 10.1038/ngeo2602 10.1073/pnas.1511797112 10.1021/es501670j 10.1016/j.envpol.2020.114292 10.1016/j.scitotenv.2016.01.162 10.1016/j.envint.2018.11.048 10.1038/ncomms15611 10.1021/es4005619 10.1007/s11783-019-1172-x 10.1021/acs.est.8b07352 10.1016/j.envpol.2009.10.047 10.1016/j.landusepol.2013.03.013 10.1038/ngeo2693 10.1016/j.scitotenv.2017.11.128 10.1016/j.jglr.2014.09.017 10.1038/511527a 10.1016/j.seppur.2011.01.018 10.1021/acs.est.6b06278 10.1029/2007JG000403 10.1016/j.envint.2019.05.015 10.1007/s11069-014-1463-2 10.1016/j.scitotenv.2020.141916 10.1038/nature25785 10.1016/j.envpol.2006.01.047 10.1016/j.gloenvcha.2012.11.002 10.1016/j.scitotenv.2017.09.328 10.1214/06-BA122C 10.1038/srep25250 10.1038/s41586-019-1111-9 10.1038/s41597-020-0369-y 10.1016/j.jclepro.2019.06.243 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright © 2021. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2021.117309 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 10_1016_j_watres_2021_117309 S0043135421005078 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HVGLF HZ~ H~9 MVM OHT R2- SEN SEP SEW WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c372t-c41a666645314eb6a0f4bcdbb538fd1eb199acb0eb061d96d62a57099df1f2f43 |
| ISICitedReferencesCount | 298 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684281700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sun Sep 28 05:51:52 EDT 2025 Sat Sep 27 22:38:09 EDT 2025 Sat Nov 29 07:31:04 EST 2025 Tue Nov 18 21:33:03 EST 2025 Fri Feb 23 02:47:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | River water quality Urbanization Watershed management Bayesian modelling Eutrophication |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-c41a666645314eb6a0f4bcdbb538fd1eb199acb0eb061d96d62a57099df1f2f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-5359-8737 0000-0003-4296-5823 |
| PQID | 2540521684 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2986198042 proquest_miscellaneous_2540521684 crossref_primary_10_1016_j_watres_2021_117309 crossref_citationtrail_10_1016_j_watres_2021_117309 elsevier_sciencedirect_doi_10_1016_j_watres_2021_117309 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Water research (Oxford) |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Plummer (bib0036) 2006; 1 Lehner, Liermann, Revenga, Vörösmarty, Fekete, Crouzet, Döll, Endejan, Frenken, Magome, Nilsson, Robertson, Rödel, Sindorf, Wisser (bib0017) 2011; 9 Yang, Yang, Geng, Yin, Chen (bib0058) 2020; 262 He, Yang, Tang, Lu, Qin, Chen, Li (bib0012) 2020; 7 Lin, Xia, Zhang, Zhai, Wang (bib0020) 2021; 752 Grill, Lehner, Thieme, Geenen, Tickner, Antonelli, Babu, Borrelli, Cheng, Crochetiere, Ehalt Macedo, Filgueiras, Goichot, Higgins, Hogan, Lip, McClain, Meng, Mulligan, Nilsson, Olden, Opperman, Petry, Reidy Liermann, Sáenz, Salinas-Rodríguez, Schelle, Schmitt, Snider, Tan, Tockner, Valdujo, van Soesbergen, Zarfl (bib0011) 2019; 569 Palmer, Ruhi (bib0034) 2019; 365 Liu, Sheng, Jiang, Yuan, Zhang, Elser (bib0021) 2016; 113 Liu, Li (bib0025) 2017; 548 Qu, Wang, Wang, Yu, Ke, Yu, Ren, Zheng, Li, Li, Gao, Gong (bib0040) 2019; 13 van Vliet, Franssen, Yearsley, Ludwig, Haddeland, Lettenmaier, Kabat (bib0050) 2013; 23 Strokal, Ma, Bai, Luan, Kroeze, Oenema, Velthof, Zhang (bib0044) 2016; 11 Long, Wellen, Arhonditsis, Boyd, Mohamed, O'Connor (bib0027) 2015; 41 Bouriga, Féron (bib0004) 2013; 143 Maavara, Chen, Van Meter, Brown, Zhang, Ni, Zarfl (bib0028) 2020; 1 Wang, Ni, Yue, Li, Borthwick, Cai, Xue, Li, Wang (bib0054) 2019; 6 The Ministry of Ecology and Environment, P.R.C., 2020a. Annual Bulletin of China's Ecology and Environment. Xiao, Wang, Zhang, Zhang (bib0057) 2016; 6 Huang, Zhang, Arhonditsis, Gao, Chen, Wu, Dong, Shi (bib0013) 2019; 123 Liu, Engel, Flanagan, Gitau, McMillan, Chaubey, Singh (bib0022) 2018; 560 Oki, Kanae (bib0032) 2006; 313 Yi, Chen, Hu, Shi (bib0060) 2017; 51 Ongley, Zhang, Yu (bib0033) 2010; 158 . Shen, Liao, Hong, Gong (bib0041) 2012; 84 Zhou, Li, Zheng, Yan, Li, Odey, Mang, Uddin (bib0062) 2018; 120 Green, Nieber, Johnson, Magner, Schaefer (bib0010) 2007; 112 Li, Xia, Yang, Wang, Voulvoulis (bib0018) 2006; 144 Arhonditsis, Neumann, Shimoda, Kim, Dong, Onandia, Yang, Javed, Brady, Visha, Ni, Cheng (bib0002) 2019; 53 Du, Gu, Wen, Chen, Van Rompaey (bib0008) 2015; 7 Vörösmarty, McIntyre, Gessner, Dudgeon, Prusevich, Green, Glidden, Bunn, Sullivan, Liermann, Davies (bib0052) 2010; 467 Du, Shi, Van Rompaey, Wen (bib0009) 2015; 76 Wang, Fu, Piao, Lu, Ciais, Feng, Wang (bib0053) 2016; 9 Jarvie, Smith, Norton, Edwards, Bowes, King, Scarlett, Davies, Dils, Bachiller-Jareno (bib0014) 2018; 621 Stockwell, Doubek, Adrian, Anneville, Carey, Carvalho, De Senerpont Domis, Dur, Frassl, Grossart, Ibelings, Lajeunesse, Lewandowska, Llames, Matsuzaki, Nodine, Nõges, Patil, Pomati, Rinke, Rudstam, Rusak, Salmaso, Seltmann, Straile, Thackeray, Thiery, Urrutia-Cordero, Venail, Verburg, Woolway, Zohary, Andersen, Bhattacharya, Hejzlar, Janatian, Kpodonu, Williamson, Wilson (bib0043) 2020; 26 Yang, Jomaa, Büttner, Rode (bib0059) 2019; 157 Ding, Jiang, Liu, Hou, Liao, Fu, Peng (bib0007) 2016; 551-552 Maavara, Parsons, Ridenour, Stojanovic, Dürr, Powley, Van Cappellen (bib0029) 2015; 112 Arhonditsis, Neumann, Shimoda, Kim, Dong, Onandia, Yang, Javed, Brady, Visha, Ni, Cheng (bib0003) 2019; 53 Singh, Singh, Kumar, Giri, Kim (bib0042) 2019; 234 Qu, Kroeze (bib0039) 2010; 408 Long, Wellen, Arhonditsis, Boyd (bib0026) 2014; 40 Jiang, Zevenbergen, Ma (bib0015) 2018; 80 Liu, Fang, Li (bib0023) 2014; 40 Xia, Zhang, Li, Zhang, Wang, Zhang, Wang, Li (bib0056) 2018; 20 Messager, Lehner, Grill, Nedeva, Schmitt (bib0031) 2016; 7 Withers, Sylvester-Bradley, Jones, Healey, Talboys (bib0055) 2014; 48 United Nations, 2020. Zhang, Ying, Pan, Liu, Zhao (bib0061) 2015; 49 Vehtari, Gelman, Simpson, Carpenter, Bürknery (bib0051) 2020 Qin, Zhang, Zhu, Gong, Deng, Hamilton, Gao, Shi, Zhou, Shao, Zhu, Zhou, Tang, Li (bib0038) 2020; 117 Tong, Wang, Peñuelas, Liu, Paerl, Elser, Sardans, Couture, Larssen, Hu, Dong, He, Zhang, Wang, Zhang, Liu, Zeng, Kong, Janssen, Lin (bib0048) 2020; 117 Li, Shi, Liu, Li, Zhang, Hu, Ke, Sun, Ni (bib0019) 2018; 615 Liu, Wang (bib0024) 2016; 4 Pan, Krom, Zhang, Zhang, Wang, Dai, Sheng, Mortimer (bib0035) 2013; 47 Cui, Zhang, Chen, Zhang, Ma, Huang, Zhang, Mi, Miao, Li, Gao, Yang, Wang, Ye, Guo, Lu, Huang, Lv, Sun, Liu, Peng, Ren, Li, Deng, Shi, Zhang, Yang, Tang, Wei, Jia, Zhang, He, Tong, Tang, Zhong, Liu, Cao, Kou, Ying, Yin, Jiao, Zhang, Fan, Jiang, Zhang, Dou (bib0006) 2018; 555 Mallows (bib0030) 2000; 42 Tao, Xin (bib0045) 2014; 511 Arhonditsis, Neumann, Shimoda, Javed, Blukacz-Richards, Mugalingam (bib0001) 2019; 130 Powers, Bruulsema, Burt, Chan, Elser, Haygarth, Howden, Jarvie, Lyu, Peterson, Sharpley, Shen, Worrall, Zhang (bib0037) 2016; 9 Chen, Strokal, Van Vliet, Stuiver, Wang, Bai, Ma, Kroeze (bib0005) 2019; 53 Lebreton, Van der Zwet, Damsteeg, Slat, Andrady, Reisser (bib0016) 2017; 8 The Ministry of Ecology and Environment, P.R.C., 2020b. Second National Pollutant Source Census Bulletin. 10.1016/j.watres.2021.117309_bib0049 10.1016/j.watres.2021.117309_bib0046 10.1016/j.watres.2021.117309_bib0047 Tong (10.1016/j.watres.2021.117309_bib0048) 2020; 117 Liu (10.1016/j.watres.2021.117309_bib0023) 2014; 40 Wang (10.1016/j.watres.2021.117309_bib0053) 2016; 9 Tao (10.1016/j.watres.2021.117309_bib0045) 2014; 511 Lebreton (10.1016/j.watres.2021.117309_bib0016) 2017; 8 Wang (10.1016/j.watres.2021.117309_bib0054) 2019; 6 Zhou (10.1016/j.watres.2021.117309_bib0062) 2018; 120 Pan (10.1016/j.watres.2021.117309_bib0035) 2013; 47 Vehtari (10.1016/j.watres.2021.117309_bib0051) 2020 Zhang (10.1016/j.watres.2021.117309_bib0061) 2015; 49 Ding (10.1016/j.watres.2021.117309_bib0007) 2016; 551-552 Xia (10.1016/j.watres.2021.117309_bib0056) 2018; 20 Yang (10.1016/j.watres.2021.117309_bib0058) 2020; 262 Li (10.1016/j.watres.2021.117309_bib0019) 2018; 615 Qin (10.1016/j.watres.2021.117309_bib0038) 2020; 117 Oki (10.1016/j.watres.2021.117309_bib0032) 2006; 313 Ongley (10.1016/j.watres.2021.117309_bib0033) 2010; 158 Long (10.1016/j.watres.2021.117309_bib0027) 2015; 41 Yang (10.1016/j.watres.2021.117309_bib0059) 2019; 157 Withers (10.1016/j.watres.2021.117309_bib0055) 2014; 48 Liu (10.1016/j.watres.2021.117309_bib0022) 2018; 560 Arhonditsis (10.1016/j.watres.2021.117309_bib0003) 2019; 53 Arhonditsis (10.1016/j.watres.2021.117309_bib0001) 2019; 130 Du (10.1016/j.watres.2021.117309_bib0008) 2015; 7 Lin (10.1016/j.watres.2021.117309_bib0020) 2021; 752 Palmer (10.1016/j.watres.2021.117309_bib0034) 2019; 365 Powers (10.1016/j.watres.2021.117309_bib0037) 2016; 9 Chen (10.1016/j.watres.2021.117309_bib0005) 2019; 53 Vörösmarty (10.1016/j.watres.2021.117309_bib0052) 2010; 467 Grill (10.1016/j.watres.2021.117309_bib0011) 2019; 569 Maavara (10.1016/j.watres.2021.117309_bib0029) 2015; 112 He (10.1016/j.watres.2021.117309_bib0012) 2020; 7 Yi (10.1016/j.watres.2021.117309_bib0060) 2017; 51 Messager (10.1016/j.watres.2021.117309_bib0031) 2016; 7 Xiao (10.1016/j.watres.2021.117309_bib0057) 2016; 6 Huang (10.1016/j.watres.2021.117309_bib0013) 2019; 123 Lehner (10.1016/j.watres.2021.117309_bib0017) 2011; 9 Arhonditsis (10.1016/j.watres.2021.117309_bib0002) 2019; 53 Jarvie (10.1016/j.watres.2021.117309_bib0014) 2018; 621 Strokal (10.1016/j.watres.2021.117309_bib0044) 2016; 11 Liu (10.1016/j.watres.2021.117309_bib0021) 2016; 113 Liu (10.1016/j.watres.2021.117309_bib0025) 2017; 548 Qu (10.1016/j.watres.2021.117309_bib0040) 2019; 13 Cui (10.1016/j.watres.2021.117309_bib0006) 2018; 555 Shen (10.1016/j.watres.2021.117309_bib0041) 2012; 84 Mallows (10.1016/j.watres.2021.117309_bib0030) 2000; 42 Liu (10.1016/j.watres.2021.117309_bib0024) 2016; 4 Long (10.1016/j.watres.2021.117309_bib0026) 2014; 40 van Vliet (10.1016/j.watres.2021.117309_bib0050) 2013; 23 Singh (10.1016/j.watres.2021.117309_bib0042) 2019; 234 Plummer (10.1016/j.watres.2021.117309_bib0036) 2006; 1 Stockwell (10.1016/j.watres.2021.117309_bib0043) 2020; 26 Green (10.1016/j.watres.2021.117309_bib0010) 2007; 112 Qu (10.1016/j.watres.2021.117309_bib0039) 2010; 408 Jiang (10.1016/j.watres.2021.117309_bib0015) 2018; 80 Bouriga (10.1016/j.watres.2021.117309_bib0004) 2013; 143 Maavara (10.1016/j.watres.2021.117309_bib0028) 2020; 1 Li (10.1016/j.watres.2021.117309_bib0018) 2006; 144 Du (10.1016/j.watres.2021.117309_bib0009) 2015; 76 |
| References_xml | – volume: 551-552 start-page: 205 year: 2016 end-page: 216 ident: bib0007 article-title: Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: a multi-scale analysis publication-title: Sci. Total Environ. – volume: 9 start-page: 353 year: 2016 ident: bib0037 article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins publication-title: Nat. Geosci. – volume: 120 start-page: 246 year: 2018 end-page: 261 ident: bib0062 article-title: Review of global sanitation development publication-title: Environ. Int. – volume: 130 year: 2019 ident: bib0001 article-title: When can we declare a success? A Bayesian framework to assess the recovery rate of impaired freshwater ecosystems publication-title: Environ. Int. – volume: 51 start-page: 5396 year: 2017 end-page: 5403 ident: bib0060 article-title: Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks publication-title: Environ. Sci. Technol. – volume: 1 start-page: 103 year: 2020 end-page: 116 ident: bib0028 article-title: River dam impacts on biogeochemical cycling publication-title: Nat. Rev. Earth Environ. – volume: 234 start-page: 1484 year: 2019 end-page: 1505 ident: bib0042 article-title: Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies publication-title: J. Clean. Prod. – volume: 6 start-page: 1239 year: 2019 end-page: 1246 ident: bib0054 article-title: Solving the mystery of vanishing rivers in China publication-title: Natl. Sci. Rev. – volume: 42 start-page: 87 year: 2000 end-page: 94 ident: bib0030 article-title: Some comments on C-P publication-title: Technometrics – volume: 53 year: 2019 ident: bib0003 article-title: Castles built on sand or predictive limnology in action? Part B: designing the next monitoring-modelling-assessment cycle of adaptive management in Lake Erie publication-title: Ecol. Inform. – volume: 40 start-page: 6 year: 2014 end-page: 12 ident: bib0023 article-title: Key issues of land use in China and implications for policy making publication-title: Land Use Policy – volume: 6 start-page: 25250 year: 2016 ident: bib0057 article-title: Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons publication-title: Sci Rep – volume: 9 start-page: 494 year: 2011 end-page: 502 ident: bib0017 article-title: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management publication-title: Front. Ecol. Environ. – volume: 752 year: 2021 ident: bib0020 article-title: Can the hydrophobic organic contaminants in the filtrate passing through 0.45μm filter membranes reflect the water quality? publication-title: Sci. Total Environ. – volume: 262 year: 2020 ident: bib0058 article-title: Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication publication-title: Environ. Pollut. – volume: 113 start-page: 2609 year: 2016 end-page: 2614 ident: bib0021 article-title: Intensification of phosphorus cycling in China since the 1600s publication-title: Proc. Natl. Acad. Sci. – volume: 511 start-page: 527 year: 2014 end-page: 529 ident: bib0045 article-title: A sustainable plan for China’s drinking water: tackling pollution and using different grades of water for different tasks is more efficient than making all water potable publication-title: Nature – volume: 143 start-page: 795 year: 2013 end-page: 808 ident: bib0004 article-title: Estimation of covariance matrices based on hierarchical inverse-Wishart priors publication-title: J. Stat. Plan. Inference – volume: 53 start-page: 9614 year: 2019 end-page: 9625 ident: bib0005 article-title: Multi-scale modeling of nutrient pollution in the rivers of China publication-title: Environ. Sci. Technol. – reference: The Ministry of Ecology and Environment, P.R.C., 2020a. Annual Bulletin of China's Ecology and Environment. – volume: 48 start-page: 6523 year: 2014 end-page: 6530 ident: bib0055 article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain publication-title: Environ. Sci. Technol. – volume: 40 start-page: 964 year: 2014 end-page: 979 ident: bib0026 article-title: Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario, Canada publication-title: J. Gt. Lakes Res. – volume: 158 start-page: 1159 year: 2010 end-page: 1168 ident: bib0033 article-title: Current status of agricultural and rural non-point source Pollution assessment in China publication-title: Environ. Pollut. – volume: 7 year: 2015 ident: bib0008 article-title: Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database publication-title: Water (Basel) – volume: 8 start-page: 10 year: 2017 ident: bib0016 article-title: River plastic emissions to the world’s oceans publication-title: Nat. Commun. – volume: 408 start-page: 2075 year: 2010 end-page: 2086 ident: bib0039 article-title: Past and future trends in nutrients export by rivers to the coastal waters of China publication-title: Sci. Total Environ. – volume: 13 start-page: 88 year: 2019 ident: bib0040 article-title: Municipal wastewater treatment in China: development history and future perspectives publication-title: Front. Environ. Sci. Eng. – reference: United Nations, 2020. – volume: 615 start-page: 906 year: 2018 end-page: 917 ident: bib0019 article-title: A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005–2016) publication-title: Sci. Total Environ. – volume: 621 start-page: 849 year: 2018 end-page: 862 ident: bib0014 article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication publication-title: Sci. Total Environ. – volume: 117 start-page: 21000 year: 2020 end-page: 21002 ident: bib0038 article-title: Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? publication-title: Proc. Natl. Acad. Sci. – volume: 555 start-page: 363 year: 2018 end-page: 366 ident: bib0006 article-title: Pursuing sustainable productivity with millions of smallholder farmers publication-title: Nature – volume: 84 start-page: 104 year: 2012 end-page: 111 ident: bib0041 article-title: An overview of research on agricultural non-point source pollution modelling in China publication-title: Sep. Purif. Technol. – volume: 80 start-page: 132 year: 2018 end-page: 143 ident: bib0015 article-title: Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy publication-title: Environ. Sci. Policy – volume: 11 year: 2016 ident: bib0044 article-title: Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions publication-title: Environ. Res. Lett. – volume: 313 start-page: 1068 year: 2006 end-page: 1072 ident: bib0032 article-title: Global hydrological cycles and world water resources publication-title: Science – volume: 41 start-page: 780 year: 2015 end-page: 793 ident: bib0027 article-title: Estimation of tributary total phosphorus loads to Hamilton Harbour, Ontario, Canada, using a series of regression equations publication-title: J. Gt. Lakes Res. – volume: 9 start-page: 38 year: 2016 end-page: 42 ident: bib0053 article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes publication-title: Nat. Geosci. – volume: 112 start-page: G03015 year: 2007 ident: bib0010 article-title: Flow path influence on an N: P ratio in two headwater streams: a paired watershed study publication-title: J. Geophys. Res.-Biogeosci. – volume: 112 start-page: 15603 year: 2015 end-page: 15608 ident: bib0029 article-title: Global phosphorus retention by river damming publication-title: Proc. Natl. Acad. Sci. – volume: 123 start-page: 96 year: 2019 end-page: 103 ident: bib0013 article-title: How successful are the restoration efforts of China's lakes and reservoirs? publication-title: Environ. Int. – volume: 157 start-page: 258 year: 2019 end-page: 268 ident: bib0059 article-title: Autotrophic nitrate uptake in river networks: a modeling approach using continuous high-frequency data publication-title: Water Res. – volume: 365 start-page: eaaw2087 year: 2019 ident: bib0034 article-title: Linkages between flow regime, biota, and ecosystem processes: implications for river restoration publication-title: Science – volume: 47 start-page: 9685 year: 2013 end-page: 9692 ident: bib0035 article-title: Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China) publication-title: Environ. Sci. Technol. – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: bib0061 article-title: Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. – volume: 53 year: 2019 ident: bib0002 article-title: Castles built on sand or predictive limnology in action? Part A: evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie publication-title: Ecol. Inform. – volume: 20 start-page: 863 year: 2018 end-page: 891 ident: bib0056 article-title: The cycle of nitrogen in river systems: sources, transformation, and flux publication-title: Environ. Sci. – volume: 7 start-page: 25 year: 2020 ident: bib0012 article-title: The first high-resolution meteorological forcing dataset for land process studies over China publication-title: Sci. Data – volume: 117 start-page: 11566 year: 2020 end-page: 11572 ident: bib0048 article-title: Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions publication-title: Proc. Natl. Acad. Sci. – reference: . – volume: 467 start-page: 555 year: 2010 end-page: 561 ident: bib0052 article-title: Global threats to human water security and river biodiversity publication-title: Nature – volume: 569 start-page: 215 year: 2019 end-page: 221 ident: bib0011 article-title: Mapping the world’s free-flowing rivers publication-title: Nature – volume: 76 start-page: 1457 year: 2015 end-page: 1471 ident: bib0009 article-title: Quantifying the impact of impervious surface location on flood peak discharge in urban areas publication-title: Nat. Hazards – volume: 26 start-page: 2756 year: 2020 end-page: 2784 ident: bib0043 article-title: Storm impacts on phytoplankton community dynamics in lakes publication-title: Glob. Change Biol. – volume: 144 start-page: 985 year: 2006 end-page: 993 ident: bib0018 article-title: Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River publication-title: China. Environ. Pollut. – reference: The Ministry of Ecology and Environment, P.R.C., 2020b. Second National Pollutant Source Census Bulletin. – volume: 560 start-page: 530 year: 2018 end-page: 545 ident: bib0022 article-title: Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: framework development and demonstration using a Bayesian method publication-title: J. Hydrol. – volume: 4 start-page: 54 year: 2016 end-page: 59 ident: bib0024 article-title: Exploring the integrated planning of city drainage and waterlogging prevention based on Sponge City idea: the case of Badali district in Tianjin (In Chinese) publication-title: City – volume: 548 start-page: 275 year: 2017 end-page: 277 ident: bib0025 article-title: Revitalize the world’s countryside publication-title: Nature – volume: 23 start-page: 450 year: 2013 end-page: 464 ident: bib0050 article-title: Global river discharge and water temperature under climate change publication-title: Glob. Environ. Change-Human Policy Dimens. – year: 2020 ident: bib0051 article-title: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC publication-title: Bayesian Anal. – volume: 7 start-page: 13603 year: 2016 ident: bib0031 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. – volume: 1 start-page: 681 year: 2006 end-page: 686 ident: bib0036 article-title: Comment on article by Celeux et al publication-title: Bayesian Anal. – volume: 408 start-page: 2075 issue: 9 year: 2010 ident: 10.1016/j.watres.2021.117309_bib0039 article-title: Past and future trends in nutrients export by rivers to the coastal waters of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2009.12.015 – volume: 560 start-page: 530 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0022 article-title: Modeling framework for representing long-term effectiveness of best management practices in addressing hydrology and water quality problems: framework development and demonstration using a Bayesian method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.03.053 – volume: 313 start-page: 1068 issue: 5790 year: 2006 ident: 10.1016/j.watres.2021.117309_bib0032 article-title: Global hydrological cycles and world water resources publication-title: Science doi: 10.1126/science.1128845 – volume: 7 start-page: 13603 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0031 article-title: Estimating the volume and age of water stored in global lakes using a geo-statistical approach publication-title: Nat. Commun. doi: 10.1038/ncomms13603 – volume: 1 start-page: 103 issue: 2 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0028 article-title: River dam impacts on biogeochemical cycling publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-019-0019-0 – volume: 49 start-page: 6772 issue: 11 year: 2015 ident: 10.1016/j.watres.2021.117309_bib0061 article-title: Comprehensive evaluation of antibiotics emission and fate in the River Basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 9 start-page: 494 issue: 9 year: 2011 ident: 10.1016/j.watres.2021.117309_bib0017 article-title: High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management publication-title: Front. Ecol. Environ. doi: 10.1890/100125 – volume: 120 start-page: 246 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0062 article-title: Review of global sanitation development publication-title: Environ. Int. doi: 10.1016/j.envint.2018.07.047 – volume: 117 start-page: 11566 issue: 21 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0048 article-title: Improvement in municipal wastewater treatment alters lake nitrogen to phosphorus ratios in populated regions publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1920759117 – volume: 113 start-page: 2609 issue: 10 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0021 article-title: Intensification of phosphorus cycling in China since the 1600s publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1519554113 – volume: 365 start-page: eaaw2087 issue: 6459 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0034 article-title: Linkages between flow regime, biota, and ecosystem processes: implications for river restoration publication-title: Science doi: 10.1126/science.aaw2087 – volume: 143 start-page: 795 issue: 4 year: 2013 ident: 10.1016/j.watres.2021.117309_bib0004 article-title: Estimation of covariance matrices based on hierarchical inverse-Wishart priors publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2012.09.006 – volume: 53 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0003 article-title: Castles built on sand or predictive limnology in action? Part B: designing the next monitoring-modelling-assessment cycle of adaptive management in Lake Erie publication-title: Ecol. Inform. – ident: 10.1016/j.watres.2021.117309_bib0047 – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0044 article-title: Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/11/2/024014 – volume: 26 start-page: 2756 issue: 5 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0043 article-title: Storm impacts on phytoplankton community dynamics in lakes publication-title: Glob. Change Biol. doi: 10.1111/gcb.15033 – volume: 157 start-page: 258 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0059 article-title: Autotrophic nitrate uptake in river networks: a modeling approach using continuous high-frequency data publication-title: Water Res. doi: 10.1016/j.watres.2019.02.059 – volume: 41 start-page: 780 issue: 3 year: 2015 ident: 10.1016/j.watres.2021.117309_bib0027 article-title: Estimation of tributary total phosphorus loads to Hamilton Harbour, Ontario, Canada, using a series of regression equations publication-title: J. Gt. Lakes Res. doi: 10.1016/j.jglr.2015.04.001 – volume: 80 start-page: 132 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0015 article-title: Urban pluvial flooding and stormwater management: a contemporary review of China’s challenges and “sponge cities” strategy publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2017.11.016 – volume: 548 start-page: 275 issue: 7667 year: 2017 ident: 10.1016/j.watres.2021.117309_bib0025 article-title: Revitalize the world’s countryside publication-title: Nature doi: 10.1038/548275a – volume: 7 issue: 5 year: 2015 ident: 10.1016/j.watres.2021.117309_bib0008 article-title: Detecting flood variations in Shanghai over 1949–2009 with Mann-Kendall tests and a newspaper-based database publication-title: Water (Basel) – volume: 42 start-page: 87 issue: 1 year: 2000 ident: 10.1016/j.watres.2021.117309_bib0030 article-title: Some comments on C-P publication-title: Technometrics – volume: 6 start-page: 1239 issue: 6 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0054 article-title: Solving the mystery of vanishing rivers in China publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwz022 – volume: 117 start-page: 21000 issue: 35 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0038 article-title: Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2013445117 – volume: 467 start-page: 555 issue: 7315 year: 2010 ident: 10.1016/j.watres.2021.117309_bib0052 article-title: Global threats to human water security and river biodiversity publication-title: Nature doi: 10.1038/nature09440 – ident: 10.1016/j.watres.2021.117309_bib0046 – volume: 9 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0053 article-title: Reduced sediment transport in the Yellow River due to anthropogenic changes publication-title: Nat. Geosci. doi: 10.1038/ngeo2602 – volume: 112 start-page: 15603 issue: 51 year: 2015 ident: 10.1016/j.watres.2021.117309_bib0029 article-title: Global phosphorus retention by river damming publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1511797112 – volume: 48 start-page: 6523 issue: 12 year: 2014 ident: 10.1016/j.watres.2021.117309_bib0055 article-title: Feed the crop not the soil: rethinking phosphorus management in the food chain publication-title: Environ. Sci. Technol. doi: 10.1021/es501670j – volume: 262 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0058 article-title: Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114292 – volume: 551-552 start-page: 205 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0007 article-title: Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: a multi-scale analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.01.162 – volume: 123 start-page: 96 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0013 article-title: How successful are the restoration efforts of China's lakes and reservoirs? publication-title: Environ. Int. doi: 10.1016/j.envint.2018.11.048 – volume: 8 start-page: 10 year: 2017 ident: 10.1016/j.watres.2021.117309_bib0016 article-title: River plastic emissions to the world’s oceans publication-title: Nat. Commun. doi: 10.1038/ncomms15611 – volume: 53 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0002 article-title: Castles built on sand or predictive limnology in action? Part A: evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie publication-title: Ecol. Inform. – volume: 47 start-page: 9685 issue: 17 year: 2013 ident: 10.1016/j.watres.2021.117309_bib0035 article-title: Impact of suspended inorganic particles on phosphorus cycling in the Yellow River (China) publication-title: Environ. Sci. Technol. doi: 10.1021/es4005619 – volume: 13 start-page: 88 issue: 6 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0040 article-title: Municipal wastewater treatment in China: development history and future perspectives publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-019-1172-x – volume: 53 start-page: 9614 issue: 16 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0005 article-title: Multi-scale modeling of nutrient pollution in the rivers of China publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b07352 – volume: 158 start-page: 1159 issue: 5 year: 2010 ident: 10.1016/j.watres.2021.117309_bib0033 article-title: Current status of agricultural and rural non-point source Pollution assessment in China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2009.10.047 – volume: 40 start-page: 6 year: 2014 ident: 10.1016/j.watres.2021.117309_bib0023 article-title: Key issues of land use in China and implications for policy making publication-title: Land Use Policy doi: 10.1016/j.landusepol.2013.03.013 – volume: 9 start-page: 353 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0037 article-title: Long-term accumulation and transport of anthropogenic phosphorus in three river basins publication-title: Nat. Geosci. doi: 10.1038/ngeo2693 – volume: 621 start-page: 849 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0014 article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.128 – volume: 40 start-page: 964 issue: 4 year: 2014 ident: 10.1016/j.watres.2021.117309_bib0026 article-title: Evaluation of stormwater and snowmelt inputs, land use and seasonality on nutrient dynamics in the watersheds of Hamilton Harbour, Ontario, Canada publication-title: J. Gt. Lakes Res. doi: 10.1016/j.jglr.2014.09.017 – volume: 511 start-page: 527 issue: 7511 year: 2014 ident: 10.1016/j.watres.2021.117309_bib0045 article-title: A sustainable plan for China’s drinking water: tackling pollution and using different grades of water for different tasks is more efficient than making all water potable publication-title: Nature doi: 10.1038/511527a – ident: 10.1016/j.watres.2021.117309_bib0049 – volume: 84 start-page: 104 year: 2012 ident: 10.1016/j.watres.2021.117309_bib0041 article-title: An overview of research on agricultural non-point source pollution modelling in China publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2011.01.018 – volume: 51 start-page: 5396 issue: 10 year: 2017 ident: 10.1016/j.watres.2021.117309_bib0060 article-title: Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06278 – volume: 112 start-page: G03015 issue: G3 year: 2007 ident: 10.1016/j.watres.2021.117309_bib0010 article-title: Flow path influence on an N: P ratio in two headwater streams: a paired watershed study publication-title: J. Geophys. Res.-Biogeosci. doi: 10.1029/2007JG000403 – volume: 130 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0001 article-title: When can we declare a success? A Bayesian framework to assess the recovery rate of impaired freshwater ecosystems publication-title: Environ. Int. doi: 10.1016/j.envint.2019.05.015 – volume: 76 start-page: 1457 issue: 3 year: 2015 ident: 10.1016/j.watres.2021.117309_bib0009 article-title: Quantifying the impact of impervious surface location on flood peak discharge in urban areas publication-title: Nat. Hazards doi: 10.1007/s11069-014-1463-2 – volume: 752 year: 2021 ident: 10.1016/j.watres.2021.117309_bib0020 article-title: Can the hydrophobic organic contaminants in the filtrate passing through 0.45μm filter membranes reflect the water quality? publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141916 – volume: 555 start-page: 363 issue: 7696 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0006 article-title: Pursuing sustainable productivity with millions of smallholder farmers publication-title: Nature doi: 10.1038/nature25785 – volume: 144 start-page: 985 issue: 3 year: 2006 ident: 10.1016/j.watres.2021.117309_bib0018 article-title: Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River publication-title: China. Environ. Pollut. doi: 10.1016/j.envpol.2006.01.047 – volume: 23 start-page: 450 issue: 2 year: 2013 ident: 10.1016/j.watres.2021.117309_bib0050 article-title: Global river discharge and water temperature under climate change publication-title: Glob. Environ. Change-Human Policy Dimens. doi: 10.1016/j.gloenvcha.2012.11.002 – volume: 615 start-page: 906 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0019 article-title: A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005–2016) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.09.328 – volume: 1 start-page: 681 issue: 4 year: 2006 ident: 10.1016/j.watres.2021.117309_bib0036 article-title: Comment on article by Celeux et al publication-title: Bayesian Anal. doi: 10.1214/06-BA122C – volume: 4 start-page: 54 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0024 article-title: Exploring the integrated planning of city drainage and waterlogging prevention based on Sponge City idea: the case of Badali district in Tianjin (In Chinese) publication-title: City – volume: 6 start-page: 25250 year: 2016 ident: 10.1016/j.watres.2021.117309_bib0057 article-title: Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons publication-title: Sci Rep doi: 10.1038/srep25250 – year: 2020 ident: 10.1016/j.watres.2021.117309_bib0051 article-title: Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC publication-title: Bayesian Anal. – volume: 569 start-page: 215 issue: 7755 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0011 article-title: Mapping the world’s free-flowing rivers publication-title: Nature doi: 10.1038/s41586-019-1111-9 – volume: 7 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.watres.2021.117309_bib0012 article-title: The first high-resolution meteorological forcing dataset for land process studies over China publication-title: Sci. Data doi: 10.1038/s41597-020-0369-y – volume: 234 start-page: 1484 year: 2019 ident: 10.1016/j.watres.2021.117309_bib0042 article-title: Antibiotic resistance in major rivers in the world: a systematic review on occurrence, emergence, and management strategies publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.06.243 – volume: 20 start-page: 863 issue: 6 year: 2018 ident: 10.1016/j.watres.2021.117309_bib0056 article-title: The cycle of nitrogen in river systems: sources, transformation, and flux publication-title: Environ. Sci. |
| SSID | ssj0002239 |
| Score | 2.7058883 |
| Snippet | •Patterns and drivers of China's river water quality during 2003–2018 were characterized.•Total phosphorus and ammonia are collectively responsible for >85% of... Food production systems, urbanization, and other anthropogenic activities dramatically alter natural hydrological and nutrient cycles, and are primarily... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 117309 |
| SubjectTerms | ammonium nitrogen Bayesian modelling Bayesian theory China data collection Eutrophication food production heavy metals landscapes light intensity nonpoint source pollution riparian areas river water River water quality rivers surface water total phosphorus Urbanization water quality Watershed management watersheds |
| Title | Characterizing the river water quality in China: Recent progress and on-going challenges |
| URI | https://dx.doi.org/10.1016/j.watres.2021.117309 https://www.proquest.com/docview/2540521684 https://www.proquest.com/docview/2986198042 |
| Volume | 201 |
| WOSCitedRecordID | wos000684281700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELa2LQc4IJ6iPCojcUNZNbbzMLdSFZUKVT0UCKfIdhzIqvJW292ygj_P-JVNC7T0wCWKImfizXz5Zjw7M0bolWbAeETD902zNmGctInQIkvAl28lMCJtXbzj04fi8LCsKn40Gv2MtTDnJ4Ux5XLJT_-rquEaKNuWzt5A3b1QuADnoHQ4gtrh-E-K3-1bMP-IpVAzm3zx-ruwDRF9FaWv9rN7Z_uMOJuj6XO1LPPZYPrUJF-nriI3brdyNnRkPzthoVXQN9e0dOnz5PkKKSEWfdAB7QYLOYxRf-nMZNGD823YXWVfdJMBZo90L8QMQxQk7RPketq1fVCp7xYdaZeEEZ440xSohv-R0314YTKGtwS_amwfMF4Nv9hC-5Jp6xMOYy7bpPZSaiul9lLW0AYpMg6UuLHzfq866A05eE48JijY2cfKS5ce-Pts_ubZXLLxznE5vofuhhUH3vFIuY9G2jxAdwZ9KB-i6iJmMGAGO8xghxkcMIM7gx1m3mCPGBwRgwExOCIGrxDzCH18t3e8u5-ELTcSRQsyTxRLBSxocwbUzLTMxXbLpGqkBLvYNikYds6Fkttagh_Y8LzJicgKWGU0bdqSltHHaN1MjX6CsGI5JYWiqiGKNVqUVEiVaVvtnJW5JJuIxtdVq9CP3m6LclJfpaxNlPR3nfp-LNeML6Im6uBTel-xBnhdc-fLqLgaKNf-jyaMni5gkF3lkDQv2RVjeJmnvAST-PSGM36Gbq--oedofT5b6Bfoljqfd2ezLbRWVOVWQOovk_qy6Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+river+water+quality+in+China%3A+Recent+progress+and+on-going+challenges&rft.jtitle=Water+research+%28Oxford%29&rft.au=Huang%2C+Jiacong&rft.au=Zhang%2C+Yinjun&rft.au=Bing%2C+Haijian&rft.au=Peng%2C+Jian&rft.date=2021-08-01&rft.issn=0043-1354&rft.volume=201&rft.spage=117309&rft_id=info:doi/10.1016%2Fj.watres.2021.117309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_watres_2021_117309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |