Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network

The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, exis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 44; číslo 1; s. 15 - 7
Hlavní autoři: Liu, Jian, Wang, Jian, Ruan, Weiwei, Lin, Chengshan, Chen, Daguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.01.2020
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods.
AbstractList The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods.
The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods.The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods.
ArticleNumber 15
Author Lin, Chengshan
Liu, Jian
Chen, Daguo
Wang, Jian
Ruan, Weiwei
Author_xml – sequence: 1
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province
– sequence: 2
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province
– sequence: 3
  givenname: Weiwei
  surname: Ruan
  fullname: Ruan, Weiwei
  organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province
– sequence: 4
  givenname: Chengshan
  surname: Lin
  fullname: Lin, Chengshan
  organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province
– sequence: 5
  givenname: Daguo
  surname: Chen
  fullname: Chen, Daguo
  email: chendg@zjlantone.com
  organization: Hangzhou Lantone Information Technology Co., LTD
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31811448$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtPGzEUha2KiiSUH9ANstRNN279GI_tJSTlIdGyKEjsLI99JxqYjIM9acW_xyGgSkh0YdmSv3N17jkztDfEARD6zOg3Rqn6nhk1rCaUGcIk5UR8QFMmlSC1Nrd7aEpZpYmURk_QLOc7Sqmpa7WPJoJpxqpKT9HvReeWQ8xj57EbAj5LLrixiwP-GQP0OLb4Ko8Q1zHF3GV84jIEXL4vVusU_5T3AmCNb8gvGHE5f2O6_4Q-tq7PcPhyH6Cb0x_X83NyeXV2MT--JF4oPpKmrXnlqYHQOOGbYLwzUCkjBJXOmyArHRRUTDjRGlm3OviytQxt1WinnBcH6OtubnHysIE82lWXPfS9GyBusuWCcyVqTXlBv7xB7-ImDcXdMyW4MlIU6uiF2jQrCHadupVLj_Y1rgKoHeBLGjlBa303Psc1Jtf1llG7LcbuirGlGLstxm5HszfK1-H_0_CdJhd2WEL6Z_p90RMc3p5C
CitedBy_id crossref_primary_10_1186_s12891_024_08120_7
crossref_primary_10_1016_j_jdent_2025_105650
crossref_primary_10_1186_s12880_022_00868_5
crossref_primary_10_1007_s10489_022_03682_2
crossref_primary_10_1007_s11657_021_00985_8
crossref_primary_10_1007_s13369_021_05339_7
crossref_primary_10_1088_1755_1315_632_4_042008
crossref_primary_10_1016_j_artmed_2023_102639
crossref_primary_10_1007_s10462_023_10638_6
crossref_primary_10_1155_2021_4196241
crossref_primary_10_1016_j_bspc_2023_104828
crossref_primary_10_1007_s11042_022_13911_y
crossref_primary_10_1007_s11517_020_02171_3
crossref_primary_10_3390_s20174979
crossref_primary_10_1177_03000605241244754
crossref_primary_10_2196_40179
crossref_primary_10_3233_MGS_230123
crossref_primary_10_1002_jbmr_4292
crossref_primary_10_1016_j_bone_2024_117317
crossref_primary_10_3390_app13158758
Cites_doi 10.1507/endocrj.EJ17-0331
10.1186/s12891-017-1718-7
10.1016/j.mcm.2008.12.024
10.1109/TCYB.2014.2330853
10.1111/1756-185X.12590
10.1109/TCYB.2014.2334595
10.1109/TNSRE.2017.2748388
10.1016/j.bone.2017.02.013
10.1109/TCYB.2015.2399351
10.1109/ACCESS.2018.2825352
10.1109/TFUZZ.2016.2637405
10.3349/ymj.2013.54.6.1321
10.1007/s10916-018-1116-1
10.1007/s10334-016-0532-9
10.1109/TNNLS.2015.2511179
10.1016/j.knosys.2017.05.018
10.1109/ACCESS.2019.2929270
10.5603/EP.2017.0062
10.3813/AAA.919072
10.1109/TMI.2019.2935916
10.1109/ATSIP.2017.8075537
10.1016/j.rbre.2017.07.001
10.1145/2975167.2975208
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1502-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 7
ExternalDocumentID 31811448
10_1007_s10916_019_1502_3
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-bf624c09edba3cbd9ca9e4793305ac9d548d7e413a3f956f8dc1005df4b8a7ac3
IEDL.DBID M2P
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501311600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 13:43:55 EDT 2025
Wed Nov 05 02:14:11 EST 2025
Wed Feb 19 02:31:33 EST 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 22:26:37 EST 2025
Fri Feb 21 02:37:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Osteoporosis
X-ray image
Bone mineral density
Medical diagnosis
U-net model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-bf624c09edba3cbd9ca9e4793305ac9d548d7e413a3f956f8dc1005df4b8a7ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31811448
PQID 2322327953
PQPubID 54050
PageCount 7
ParticipantIDs proquest_miscellaneous_2322736802
proquest_journals_2322327953
pubmed_primary_31811448
crossref_citationtrail_10_1007_s10916_019_1502_3
crossref_primary_10_1007_s10916_019_1502_3
springer_journals_10_1007_s10916_019_1502_3
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Qian, Zhao, Jiang, Kuan-Hao, Deng, Wang, Muzic (CR3) 2017; 130
Keun, Kean, Won (CR28) 2013; 54
Abid, Pereira, Fernandes (CR18) 2017; 103
CR15
CR14
Mcclung, Baron, Bouxsein (CR12) 2017; 98
Nakamoto, Taguchi, Verdonschot (CR17) 2018; 24
Xia, Yin, Qian, Jiang, Wang (CR9) 2019; 7
Qian, Zhou, Jiang, Liang, Zhao, Wang, Kuan-Hao, Muzic (CR4) 2018; 6
Chou, Leboff (CR16) 2017; 12
Peng, Yi, Deng (CR1) 2016; 46
Ordóñez, Matías, de Cos Juez (CR26) 2009; 50
Jiang, Chung, Wang, Deng, Wang, Qian (CR7) 2015; 45
Xia, Yin, Zhang (CR10) 2019; 43
Grover, Bachrach (CR13) 2017; 23
Malochet-Guinamand, Pereira, Tatar (CR19) 2017; 18
Jiang, Wu, Deng, Qian, Wang, Wang, Chung, Choi, Wang (CR5) 2017; 25
Kulkarni, Gaonkar, Vijayarajan (CR24) 2017; 12
CR29
CR25
Salehi-Abari (CR21) 2017; 20
CR23
Qian, Jiang, Wang, Kuan-Hao, Wang, Hu, Muzic, Jr. (CR2) 2017; 28
Oka, Ohira, Suzuki (CR22) 2017; 65
CR20
Lorenc, Głuszko, Franek, Jabłoński, Jaworski, Kalinka-Warzocha, Karczmarewicz, Kostka, Księzopolska-Orłowska, Marcinowska-Suchowierska, Misiorowski, Więcek (CR11) 2017; 68
Jiang, Chung, Ishibuchi (CR8) 2015; 45
Jiang, Deng, Chung, Wang, Qian, Choi, Wang (CR6) 2017; 25
Pedoia, Majumdar, Link (CR27) 2016; 29
M Mcclung (1502_CR12) 2017; 98
1502_CR15
1502_CR14
P Qian (1502_CR4) 2018; 6
YT Keun (1502_CR28) 2013; 54
SH Chou (1502_CR16) 2017; 12
Y Jiang (1502_CR7) 2015; 45
M Grover (1502_CR13) 2017; 23
S Malochet-Guinamand (1502_CR19) 2017; 18
A Abid (1502_CR18) 2017; 103
I Salehi-Abari (1502_CR21) 2017; 20
C Ordóñez (1502_CR26) 2009; 50
Y Jiang (1502_CR5) 2017; 25
Q Peng (1502_CR1) 2016; 46
T Nakamoto (1502_CR17) 2018; 24
1502_CR29
R Lorenc (1502_CR11) 2017; 68
1502_CR25
1502_CR23
1502_CR20
Y Jiang (1502_CR8) 2015; 45
K Xia (1502_CR10) 2019; 43
R Oka (1502_CR22) 2017; 65
KR Kulkarni (1502_CR24) 2017; 12
Y Jiang (1502_CR6) 2017; 25
K Xia (1502_CR9) 2019; 7
P Qian (1502_CR3) 2017; 130
P Qian (1502_CR2) 2017; 28
V Pedoia (1502_CR27) 2016; 29
References_xml – volume: 65
  start-page: 193
  issue: 2
  year: 2017
  end-page: 202
  ident: CR22
  article-title: Fracture risk assessment tool (FRAX) and for the diagnosis of osteoporosis in Japanese middle-aged and elderly women: Chiba bone survey[J]
  publication-title: Endocrine Journal
  doi: 10.1507/endocrj.EJ17-0331
– volume: 23
  start-page: 98
  issue: 08
  year: 2017
  end-page: 107
  ident: CR13
  article-title: Osteoporosis in children with chronic illnesses: Diagnosis, monitoring, and treatment[J]
  publication-title: Current Osteoporosis Reports
– volume: 18
  start-page: 357
  issue: 1
  year: 2017
  end-page: 369
  ident: CR19
  article-title: Prevalence and risk factors of low bone mineral density in spondyloarthritis and prevalence of vertebral fractures[J]
  publication-title: BMC Musculoskeletal Disorders
  doi: 10.1186/s12891-017-1718-7
– volume: 50
  start-page: 673
  issue: 5–6
  year: 2009
  end-page: 679
  ident: CR26
  article-title: Machine learning techniques applied to the determination of osteoporosis incidence in post-menopausal women[J]
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2008.12.024
– volume: 45
  start-page: 548
  issue: 3
  year: 2015
  end-page: 561
  ident: CR8
  article-title: Multitask TSK fuzzy system modeling by mining intertask common hidden structure
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2330853
– ident: CR14
– volume: 20
  start-page: 122
  issue: 1
  year: 2017
  end-page: 125
  ident: CR21
  article-title: Early diagnosis of osteopenia/osteoporosis by bone mineral density test using DXA method in early adulthood-a pre-emptive step towards future bone health[J]
  publication-title: International Journal of Rheumatic Diseases
  doi: 10.1111/1756-185X.12590
– volume: 12
  start-page: 263
  issue: 1
  year: 2017
  end-page: 277
  ident: CR24
  article-title: Analysis of lower back pain disorder using deep learning[J]
  publication-title: IOP Conference Series Materials Science and Engineering
– volume: 45
  start-page: 688
  issue: 4
  year: 2015
  end-page: 701
  ident: CR7
  article-title: Collaborative fuzzy clustering from multiple weighted views
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2334595
– ident: CR29
– volume: 25
  start-page: 2270
  issue: 12
  year: 2017
  end-page: 2284
  ident: CR5
  article-title: Seizure Classification from EEG Signals using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System
  publication-title: IEEE Trans. Neural Systems & Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2748388
– ident: CR25
– ident: CR23
– volume: 98
  start-page: 37
  year: 2017
  ident: CR12
  article-title: An update on osteoporosis pathogenesis, diagnosis, and treatment[J]
  publication-title: Bone
  doi: 10.1016/j.bone.2017.02.013
– volume: 46
  start-page: 181
  issue: 1
  year: 2016
  end-page: 193
  ident: CR1
  article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– volume: 6
  start-page: 28594
  year: 2018
  end-page: 28610
  ident: CR4
  article-title: Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825352
– volume: 25
  start-page: 3
  issue: 1
  year: 2017
  end-page: 20
  ident: CR6
  article-title: Recognition of epileptic EEG signals using a novel multi-view TSK fuzzy system
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2637405
– volume: 54
  start-page: 1321
  issue: 6
  year: 2013
  end-page: 1332
  ident: CR28
  article-title: Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning[J]
  publication-title: Yonsei Medical Journal
  doi: 10.3349/ymj.2013.54.6.1321
– volume: 43
  start-page: 2:1
  issue: 1
  year: 2019
  end-page: 2:12
  ident: CR10
  article-title: Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm
  publication-title: J. Medical Systems
  doi: 10.1007/s10916-018-1116-1
– ident: CR15
– volume: 29
  start-page: 207
  issue: 2
  year: 2016
  end-page: 221
  ident: CR27
  article-title: Segmentation of joint and musculoskeletal tissue in the study of arthritis[J]
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
  doi: 10.1007/s10334-016-0532-9
– volume: 28
  start-page: 1123
  issue: 5
  year: 2017
  end-page: 1138
  ident: CR2
  article-title: Affinity and penalty jointly constrained spectral clustering with all-compatibility, flexibility, and robustness
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2511179
– volume: 130
  start-page: 33
  year: 2017
  end-page: 50
  ident: CR3
  article-title: Knowledge-leveraged transfer fuzzy c-means for texture image segmentation with self-adaptive cluster prototype matching
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.018
– volume: 7
  start-page: 96349
  year: 2019
  end-page: 96358
  ident: CR9
  article-title: Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929270
– volume: 68
  start-page: 604
  issue: 5
  year: 2017
  end-page: 614
  ident: CR11
  article-title: Guidelines for the diagnosis and management of osteoporosis in Poland : Update 2017[J]
  publication-title: Endokrynologia Polska
  doi: 10.5603/EP.2017.0062
– volume: 103
  start-page: 421
  issue: 3
  year: 2017
  end-page: 429
  ident: CR18
  article-title: Sensitivity study of ultrasonic guided waves to cortical bone mechanical properties with axial and circumferential propagation[J]
  publication-title: Acta Acustica united with Acustica
  doi: 10.3813/AAA.919072
– volume: 24
  start-page: 2108
  issue: 22
  year: 2018
  end-page: 2117
  ident: CR17
  article-title: Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs[J]
  publication-title: Oral Radiology
– volume: 12
  start-page: 108
  issue: 2
  year: 2017
  end-page: 117
  ident: CR16
  article-title: Vertebral imaging in the diagnosis of osteoporosis: A Clinician’s perspective[J]
  publication-title: Current Osteoporosis Reports
– ident: CR20
– ident: 1502_CR14
– volume: 23
  start-page: 98
  issue: 08
  year: 2017
  ident: 1502_CR13
  publication-title: Current Osteoporosis Reports
– ident: 1502_CR25
  doi: 10.1109/TMI.2019.2935916
– volume: 98
  start-page: 37
  year: 2017
  ident: 1502_CR12
  publication-title: Bone
  doi: 10.1016/j.bone.2017.02.013
– volume: 46
  start-page: 181
  issue: 1
  year: 2016
  ident: 1502_CR1
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2015.2399351
– volume: 20
  start-page: 122
  issue: 1
  year: 2017
  ident: 1502_CR21
  publication-title: International Journal of Rheumatic Diseases
  doi: 10.1111/1756-185X.12590
– ident: 1502_CR15
  doi: 10.1109/ATSIP.2017.8075537
– volume: 65
  start-page: 193
  issue: 2
  year: 2017
  ident: 1502_CR22
  publication-title: Endocrine Journal
  doi: 10.1507/endocrj.EJ17-0331
– volume: 130
  start-page: 33
  year: 2017
  ident: 1502_CR3
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.05.018
– volume: 68
  start-page: 604
  issue: 5
  year: 2017
  ident: 1502_CR11
  publication-title: Endokrynologia Polska
  doi: 10.5603/EP.2017.0062
– volume: 25
  start-page: 2270
  issue: 12
  year: 2017
  ident: 1502_CR5
  publication-title: IEEE Trans. Neural Systems & Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2748388
– volume: 12
  start-page: 108
  issue: 2
  year: 2017
  ident: 1502_CR16
  publication-title: Current Osteoporosis Reports
– volume: 28
  start-page: 1123
  issue: 5
  year: 2017
  ident: 1502_CR2
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2015.2511179
– volume: 43
  start-page: 2:1
  issue: 1
  year: 2019
  ident: 1502_CR10
  publication-title: J. Medical Systems
  doi: 10.1007/s10916-018-1116-1
– ident: 1502_CR20
  doi: 10.1016/j.rbre.2017.07.001
– volume: 18
  start-page: 357
  issue: 1
  year: 2017
  ident: 1502_CR19
  publication-title: BMC Musculoskeletal Disorders
  doi: 10.1186/s12891-017-1718-7
– volume: 50
  start-page: 673
  issue: 5–6
  year: 2009
  ident: 1502_CR26
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2008.12.024
– ident: 1502_CR23
  doi: 10.1145/2975167.2975208
– volume: 29
  start-page: 207
  issue: 2
  year: 2016
  ident: 1502_CR27
  publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine
  doi: 10.1007/s10334-016-0532-9
– volume: 25
  start-page: 3
  issue: 1
  year: 2017
  ident: 1502_CR6
  publication-title: IEEE Trans. Fuzzy Systems
  doi: 10.1109/TFUZZ.2016.2637405
– volume: 24
  start-page: 2108
  issue: 22
  year: 2018
  ident: 1502_CR17
  publication-title: Oral Radiology
– volume: 103
  start-page: 421
  issue: 3
  year: 2017
  ident: 1502_CR18
  publication-title: Acta Acustica united with Acustica
  doi: 10.3813/AAA.919072
– volume: 45
  start-page: 548
  issue: 3
  year: 2015
  ident: 1502_CR8
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2330853
– volume: 7
  start-page: 96349
  year: 2019
  ident: 1502_CR9
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929270
– volume: 12
  start-page: 263
  issue: 1
  year: 2017
  ident: 1502_CR24
  publication-title: IOP Conference Series Materials Science and Engineering
– volume: 6
  start-page: 28594
  year: 2018
  ident: 1502_CR4
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825352
– volume: 45
  start-page: 688
  issue: 4
  year: 2015
  ident: 1502_CR7
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2334595
– ident: 1502_CR29
– volume: 54
  start-page: 1321
  issue: 6
  year: 2013
  ident: 1502_CR28
  publication-title: Yonsei Medical Journal
  doi: 10.3349/ymj.2013.54.6.1321
SSID ssj0009667
Score 2.387903
Snippet The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15
SubjectTerms Algorithms
Biomedical materials
Bone density
Bone diseases
Bone mineral density
Deep learning
Density measurement
Diagnosis
Diagnostic systems
Distributed Analytics and Deep Learning in Health Care
Entropy (Information theory)
Feature maps
Health Informatics
Health Sciences
Image segmentation
Medical diagnosis
Medical imaging
Medicine
Medicine & Public Health
Normalizing
Object recognition
Osteoporosis
Patient Facing Systems
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZSsQwcPBCBPE-1osIPimBtUk36aPX6oOu4rqybyVNUhCkle3q9ztp2l3FAxT6UMi0TSeTOTMzAAcpl8cqxA2YCGMoN4mkKjSMNrlVIjl2ubtlyfxr0enIfj-6q_K4i_q0ex2SLDn1h2Q3VGXQ9I0oKjEBZZMwjdJOun4N993HcaXdVsvnSHNJXfXxOpT53Ss-C6MvGuaX6GgpdNqL_5ruEixUOiY58USxDBM2W4HZmyqKvgLz3ldHfArSKnTP_Xk7BCcqM-RyoHynJeI6pT2TPCW3SAw5qup58VSQU5R8huCw90jg_bm1L6RHO3ZIOv5c-Rr02hcPZ1e0arZANRPBkCZpK-C6GVmTKKYTE2kVWed2Q4agdGTQsjHCoshTLEWbKpVG43-GJuWJVEJptg5TWZ7ZTSAmQJ6pRKqkMVxIJnmU6lCgGW7L-noNaNZYj3VVidw1xHiOxzWUHfJiRF7skBezBhyOHnnxZTh-A96plzKudmQRo-aIl4hCHN4fDeNecgESldn81cMI1pLNoAEbngRGX0Peh6Yjlw04qtd7_PIfp7L1J-htmAucOV96eHZgajh4tbswo9-GT8VgryTzd6UL9CA
  priority: 102
  providerName: Springer Nature
Title Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network
URI https://link.springer.com/article/10.1007/s10916-019-1502-3
https://www.ncbi.nlm.nih.gov/pubmed/31811448
https://www.proquest.com/docview/2322327953
https://www.proquest.com/docview/2322736802
Volume 44
WOSCitedRecordID wos000501311600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1ra9sw8OhjjMFYu27r3EdQYZ82xBxLjuRPZV3bDdp4IX0Q-sXIkgyFYqdxut-_k2UnlLJ-KZjDRrIsfNK9dQfwpeCyr2LcgLkwhnKTS6piw2jIrRJ5353dbVLmn4s0lZNJMmoNbnUbVtnRxIZQm0o7G_l35Px4iSRmh9N76qpGOe9qW0JjFdZx2L4L6RpGo2XS3cHAH5fmkrpE5J1X0x-dQ8EIFemEokgUUfaYLz0RNp84Shv-c7rx0plvwrtW8iQ__FJ5Dyu23ILXw9a3vgVvvQWP-INJH-Di2EfhYXeiSkN-zZSvv0Rc_bQ7UhXkDy6RCgX4qr6tyRHyQ0Ow2dsp8P7Y2im5oqmdk9RHm3-Eq9OTy5-_aVuCgWomojnNi0HEdZhYkyumc5NolVhnjEMyoXRiUN8xwiIjVKxATauQRuPvjU3Bc6mE0uwTrJVVaT8DMRFSUiUKJY3hQjLJk0LHApVz22TdCyDsEJDpNj-5K5Nxly0zKzucZYizzOEsYwF8Xbwy9ck5nuu816Ena_dpnS1xE8DBohl3mHObqNJWD76PYAMZRgFs-9Ww-BpSRFQouQzgW7c8loP_dyo7z09lF95ETqtvDD17sDafPdh9eKX_zm_rWQ9WxfjawYlooOzB-tFJOhrj05mgCIfhZa_ZCA4KB0fxDcLxxfU_-NcIBA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3ba9UwGP-YU1QYXjYv1akR9EUJ9iQ5J8mDiHqcGzurAzfYW5cmKQxGezw9U_ZP-Tf6pWnPQYZ724PQh0LSNG1--W75LgCvSqEGZogbsJDOUeEKRc3QcZoKb2QxCLG7bcr8icwydXSk91fgdx8LE9wqe5rYEmpX22Ajf4ecHy-ph_zD9AcNVaPC6WpfQiPCYtef_0KVrXm_M8b1fc3Y1peDz9u0qypALZdsTotyxIRNtXeF4bZw2hrtg30JkW-sdijCO-mRthteovJQKmcHCFVXikIZaSzHca_BdREyiwVXQba_TPI7GsXwbKFoSHzen6LGUD0UxFBx1xRFMEb533zwgnB74WC25Xdbd_-3P3UP7nSSNfkYt8J9WPHVOtzc63wH1mEtWihJDLzagO_j6GWI3YmpHPk6M7G-FAn14U5JXZJvuAVqVFDq5qQhn5DfO4LN0Q6D92Pvp-SQZn5OsuhN_wAOr-QTH8JqVVf-MRDHkFMYWRrlnJCKK6FLO5Q6lb7NKphA2i94brv866EMyGm-zBwdMJIjRvKAkZwn8GbxyDQmH7ms82YPh7yjQ02-xEICLxfNSEHCsZCpfH0W-0g-UilL4FFE3-JtSPFRYRYqgbc9HJeD_3MqTy6fygu4tX2wN8knO9nuU7jNggWjNWptwup8duafwQ37c37SzJ6324vA8VWj9A_QWV4-
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqUgVavW1Koj6ItlaDaT7Mw8iKjrammNC1oovsTJXKBQku1mW_Gv-es8k0l2kWLf-iDkITCTye071zkXgBcuFQOVIQGW3BiamlJQlRlG49QqXg587m5bMv-Q57k4PpaTFfjd58L4sMqeJ7aM2tTa-8j3UPLjwWXG9lwXFjEZjd9Mz6jvIOV3Wvt2GgEiB_bXTzTfmtf7I_zXL5Nk_OHb-0-06zBANePJnJZumKQ6ltaUiunSSK2k9b4mpAKlpUF13nCLfF4xh4aEE0YPELbGpaVQXGmG696AmxxtTB9OOMm-Lwv-DochVTsV1BdB73dUQ9oeKmVoxEuK6lhC2d8y8ZKie2mTtpV94zv_81e7Cxudxk3eBhK5Byu22oS1z11MwSbcDp5LEhKy7sPXUYg-xOlEVYZ8nKnQd4r4vnGnpHbkC5JGjYZL3Zw05B3qAYbgcPDP4PnI2ik5ormdkzxE2T-Ao2t5xYewWtWVfQTEJChBFHdKGJNywUQqnc64jLltqw1GEPc_v9BdXXbfHuS0WFaU9ngpEC-Fx0vBIni1uGQaipJcNXmnh0bR8aemWOIigueLYeQsfrtIVbY-D3M4G4o4iWArIHFxN5QEaEinIoLdHprLxf_5KNtXP8ozWENwFof7-cFjWE-8Y6P1de3A6nx2bp_ALX0xP2lmT1tKI_DjukH6B8X8Zyo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+and+Gradation+Model+of+Osteoporosis+Based+on+Improved+Deep+U-Net+Network&rft.jtitle=Journal+of+medical+systems&rft.au=Liu%2C+Jian&rft.au=Wang%2C+Jian&rft.au=Ruan%2C+Weiwei&rft.au=Lin%2C+Chengshan&rft.date=2020-01-01&rft.eissn=1573-689X&rft.volume=44&rft.issue=1&rft.spage=15&rft_id=info:doi/10.1007%2Fs10916-019-1502-3&rft_id=info%3Apmid%2F31811448&rft.externalDocID=31811448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon