Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network
The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, exis...
Gespeichert in:
| Veröffentlicht in: | Journal of medical systems Jg. 44; H. 1; S. 15 - 7 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.01.2020
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods. |
|---|---|
| AbstractList | The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods. The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods.The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis. However, because of X-ray image noise and the large difference between the bone shapes of patients under the condition of low contrast, existing osteoporosis diagnosis algorithms are difficult to obtain satisfactory results. This paper presents an improved osteoporosis diagnosis algorithm based on U-NET network. Firstly, the bone in the original image are marked and used to construct the data set. And then, by normalizing the input of each layer, it can be ensured that the input data distribution of each layer is stable, so that the purpose of accelerated training can be achieved. Finally, the energy function is calculated by combining the value of the softmax prediction class for each pixel on the final feature map with the Cross entropy loss function and all the segmented images are extracted to obtain the diagnostic result. As the experimental results show that the improved U-net can accurately solve the influence of image interference in the process of bone mineral density measurement. The recognition rate of U-net automatic diagnosis method is above 81%, and the diagnosis effect is better than other comparison methods. |
| ArticleNumber | 15 |
| Author | Lin, Chengshan Liu, Jian Chen, Daguo Wang, Jian Ruan, Weiwei |
| Author_xml | – sequence: 1 givenname: Jian surname: Liu fullname: Liu, Jian organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province – sequence: 2 givenname: Jian surname: Wang fullname: Wang, Jian organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province – sequence: 3 givenname: Weiwei surname: Ruan fullname: Ruan, Weiwei organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province – sequence: 4 givenname: Chengshan surname: Lin fullname: Lin, Chengshan organization: Department of Orthopedics, Tongde Hospital of Zhejiang Province – sequence: 5 givenname: Daguo surname: Chen fullname: Chen, Daguo email: chendg@zjlantone.com organization: Hangzhou Lantone Information Technology Co., LTD |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31811448$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtPGzEUha2KiiSUH9ANstRNN279GI_tJSTlIdGyKEjsLI99JxqYjIM9acW_xyGgSkh0YdmSv3N17jkztDfEARD6zOg3Rqn6nhk1rCaUGcIk5UR8QFMmlSC1Nrd7aEpZpYmURk_QLOc7Sqmpa7WPJoJpxqpKT9HvReeWQ8xj57EbAj5LLrixiwP-GQP0OLb4Ko8Q1zHF3GV84jIEXL4vVusU_5T3AmCNb8gvGHE5f2O6_4Q-tq7PcPhyH6Cb0x_X83NyeXV2MT--JF4oPpKmrXnlqYHQOOGbYLwzUCkjBJXOmyArHRRUTDjRGlm3OviytQxt1WinnBcH6OtubnHysIE82lWXPfS9GyBusuWCcyVqTXlBv7xB7-ImDcXdMyW4MlIU6uiF2jQrCHadupVLj_Y1rgKoHeBLGjlBa303Psc1Jtf1llG7LcbuirGlGLstxm5HszfK1-H_0_CdJhd2WEL6Z_p90RMc3p5C |
| CitedBy_id | crossref_primary_10_1186_s12891_024_08120_7 crossref_primary_10_1016_j_jdent_2025_105650 crossref_primary_10_1186_s12880_022_00868_5 crossref_primary_10_1007_s10489_022_03682_2 crossref_primary_10_1007_s11657_021_00985_8 crossref_primary_10_1007_s13369_021_05339_7 crossref_primary_10_1088_1755_1315_632_4_042008 crossref_primary_10_1016_j_artmed_2023_102639 crossref_primary_10_1007_s10462_023_10638_6 crossref_primary_10_1155_2021_4196241 crossref_primary_10_1016_j_bspc_2023_104828 crossref_primary_10_1007_s11042_022_13911_y crossref_primary_10_1007_s11517_020_02171_3 crossref_primary_10_3390_s20174979 crossref_primary_10_1177_03000605241244754 crossref_primary_10_2196_40179 crossref_primary_10_3233_MGS_230123 crossref_primary_10_1002_jbmr_4292 crossref_primary_10_1016_j_bone_2024_117317 crossref_primary_10_3390_app13158758 |
| Cites_doi | 10.1507/endocrj.EJ17-0331 10.1186/s12891-017-1718-7 10.1016/j.mcm.2008.12.024 10.1109/TCYB.2014.2330853 10.1111/1756-185X.12590 10.1109/TCYB.2014.2334595 10.1109/TNSRE.2017.2748388 10.1016/j.bone.2017.02.013 10.1109/TCYB.2015.2399351 10.1109/ACCESS.2018.2825352 10.1109/TFUZZ.2016.2637405 10.3349/ymj.2013.54.6.1321 10.1007/s10916-018-1116-1 10.1007/s10334-016-0532-9 10.1109/TNNLS.2015.2511179 10.1016/j.knosys.2017.05.018 10.1109/ACCESS.2019.2929270 10.5603/EP.2017.0062 10.3813/AAA.919072 10.1109/TMI.2019.2935916 10.1109/ATSIP.2017.8075537 10.1016/j.rbre.2017.07.001 10.1145/2975167.2975208 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1502-3 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database (ProQuest) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 7 |
| ExternalDocumentID | 31811448 10_1007_s10916_019_1502_3 |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-bf624c09edba3cbd9ca9e4793305ac9d548d7e413a3f956f8dc1005df4b8a7ac3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501311600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Fri Sep 05 13:43:55 EDT 2025 Wed Nov 05 02:14:11 EST 2025 Wed Feb 19 02:31:33 EST 2025 Sat Nov 29 05:35:01 EST 2025 Tue Nov 18 22:26:37 EST 2025 Fri Feb 21 02:37:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Osteoporosis X-ray image Bone mineral density Medical diagnosis U-net model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-bf624c09edba3cbd9ca9e4793305ac9d548d7e413a3f956f8dc1005df4b8a7ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31811448 |
| PQID | 2322327953 |
| PQPubID | 54050 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2322736802 proquest_journals_2322327953 pubmed_primary_31811448 crossref_citationtrail_10_1007_s10916_019_1502_3 crossref_primary_10_1007_s10916_019_1502_3 springer_journals_10_1007_s10916_019_1502_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2020 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Qian, Zhao, Jiang, Kuan-Hao, Deng, Wang, Muzic (CR3) 2017; 130 Keun, Kean, Won (CR28) 2013; 54 Abid, Pereira, Fernandes (CR18) 2017; 103 CR15 CR14 Mcclung, Baron, Bouxsein (CR12) 2017; 98 Nakamoto, Taguchi, Verdonschot (CR17) 2018; 24 Xia, Yin, Qian, Jiang, Wang (CR9) 2019; 7 Qian, Zhou, Jiang, Liang, Zhao, Wang, Kuan-Hao, Muzic (CR4) 2018; 6 Chou, Leboff (CR16) 2017; 12 Peng, Yi, Deng (CR1) 2016; 46 Ordóñez, Matías, de Cos Juez (CR26) 2009; 50 Jiang, Chung, Wang, Deng, Wang, Qian (CR7) 2015; 45 Xia, Yin, Zhang (CR10) 2019; 43 Grover, Bachrach (CR13) 2017; 23 Malochet-Guinamand, Pereira, Tatar (CR19) 2017; 18 Jiang, Wu, Deng, Qian, Wang, Wang, Chung, Choi, Wang (CR5) 2017; 25 Kulkarni, Gaonkar, Vijayarajan (CR24) 2017; 12 CR29 CR25 Salehi-Abari (CR21) 2017; 20 CR23 Qian, Jiang, Wang, Kuan-Hao, Wang, Hu, Muzic, Jr. (CR2) 2017; 28 Oka, Ohira, Suzuki (CR22) 2017; 65 CR20 Lorenc, Głuszko, Franek, Jabłoński, Jaworski, Kalinka-Warzocha, Karczmarewicz, Kostka, Księzopolska-Orłowska, Marcinowska-Suchowierska, Misiorowski, Więcek (CR11) 2017; 68 Jiang, Chung, Ishibuchi (CR8) 2015; 45 Jiang, Deng, Chung, Wang, Qian, Choi, Wang (CR6) 2017; 25 Pedoia, Majumdar, Link (CR27) 2016; 29 M Mcclung (1502_CR12) 2017; 98 1502_CR15 1502_CR14 P Qian (1502_CR4) 2018; 6 YT Keun (1502_CR28) 2013; 54 SH Chou (1502_CR16) 2017; 12 Y Jiang (1502_CR7) 2015; 45 M Grover (1502_CR13) 2017; 23 S Malochet-Guinamand (1502_CR19) 2017; 18 A Abid (1502_CR18) 2017; 103 I Salehi-Abari (1502_CR21) 2017; 20 C Ordóñez (1502_CR26) 2009; 50 Y Jiang (1502_CR5) 2017; 25 Q Peng (1502_CR1) 2016; 46 T Nakamoto (1502_CR17) 2018; 24 1502_CR29 R Lorenc (1502_CR11) 2017; 68 1502_CR25 1502_CR23 1502_CR20 Y Jiang (1502_CR8) 2015; 45 K Xia (1502_CR10) 2019; 43 R Oka (1502_CR22) 2017; 65 KR Kulkarni (1502_CR24) 2017; 12 Y Jiang (1502_CR6) 2017; 25 K Xia (1502_CR9) 2019; 7 P Qian (1502_CR3) 2017; 130 P Qian (1502_CR2) 2017; 28 V Pedoia (1502_CR27) 2016; 29 |
| References_xml | – volume: 65 start-page: 193 issue: 2 year: 2017 end-page: 202 ident: CR22 article-title: Fracture risk assessment tool (FRAX) and for the diagnosis of osteoporosis in Japanese middle-aged and elderly women: Chiba bone survey[J] publication-title: Endocrine Journal doi: 10.1507/endocrj.EJ17-0331 – volume: 23 start-page: 98 issue: 08 year: 2017 end-page: 107 ident: CR13 article-title: Osteoporosis in children with chronic illnesses: Diagnosis, monitoring, and treatment[J] publication-title: Current Osteoporosis Reports – volume: 18 start-page: 357 issue: 1 year: 2017 end-page: 369 ident: CR19 article-title: Prevalence and risk factors of low bone mineral density in spondyloarthritis and prevalence of vertebral fractures[J] publication-title: BMC Musculoskeletal Disorders doi: 10.1186/s12891-017-1718-7 – volume: 50 start-page: 673 issue: 5–6 year: 2009 end-page: 679 ident: CR26 article-title: Machine learning techniques applied to the determination of osteoporosis incidence in post-menopausal women[J] publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2008.12.024 – volume: 45 start-page: 548 issue: 3 year: 2015 end-page: 561 ident: CR8 article-title: Multitask TSK fuzzy system modeling by mining intertask common hidden structure publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2330853 – ident: CR14 – volume: 20 start-page: 122 issue: 1 year: 2017 end-page: 125 ident: CR21 article-title: Early diagnosis of osteopenia/osteoporosis by bone mineral density test using DXA method in early adulthood-a pre-emptive step towards future bone health[J] publication-title: International Journal of Rheumatic Diseases doi: 10.1111/1756-185X.12590 – volume: 12 start-page: 263 issue: 1 year: 2017 end-page: 277 ident: CR24 article-title: Analysis of lower back pain disorder using deep learning[J] publication-title: IOP Conference Series Materials Science and Engineering – volume: 45 start-page: 688 issue: 4 year: 2015 end-page: 701 ident: CR7 article-title: Collaborative fuzzy clustering from multiple weighted views publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2334595 – ident: CR29 – volume: 25 start-page: 2270 issue: 12 year: 2017 end-page: 2284 ident: CR5 article-title: Seizure Classification from EEG Signals using Transfer Learning, Semi-Supervised Learning and TSK Fuzzy System publication-title: IEEE Trans. Neural Systems & Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2748388 – ident: CR25 – ident: CR23 – volume: 98 start-page: 37 year: 2017 ident: CR12 article-title: An update on osteoporosis pathogenesis, diagnosis, and treatment[J] publication-title: Bone doi: 10.1016/j.bone.2017.02.013 – volume: 46 start-page: 181 issue: 1 year: 2016 end-page: 193 ident: CR1 article-title: Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – volume: 6 start-page: 28594 year: 2018 end-page: 28610 ident: CR4 article-title: Multi-view maximum entropy clustering by jointly leveraging inter-view collaborations and intra-view-weighted attributes publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825352 – volume: 25 start-page: 3 issue: 1 year: 2017 end-page: 20 ident: CR6 article-title: Recognition of epileptic EEG signals using a novel multi-view TSK fuzzy system publication-title: IEEE Trans. Fuzzy Systems doi: 10.1109/TFUZZ.2016.2637405 – volume: 54 start-page: 1321 issue: 6 year: 2013 end-page: 1332 ident: CR28 article-title: Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning[J] publication-title: Yonsei Medical Journal doi: 10.3349/ymj.2013.54.6.1321 – volume: 43 start-page: 2:1 issue: 1 year: 2019 end-page: 2:12 ident: CR10 article-title: Deep Semantic Segmentation of Kidney and Space-Occupying Lesion Area Based on SCNN and ResNet Models Combined with SIFT-Flow Algorithm publication-title: J. Medical Systems doi: 10.1007/s10916-018-1116-1 – ident: CR15 – volume: 29 start-page: 207 issue: 2 year: 2016 end-page: 221 ident: CR27 article-title: Segmentation of joint and musculoskeletal tissue in the study of arthritis[J] publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine doi: 10.1007/s10334-016-0532-9 – volume: 28 start-page: 1123 issue: 5 year: 2017 end-page: 1138 ident: CR2 article-title: Affinity and penalty jointly constrained spectral clustering with all-compatibility, flexibility, and robustness publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2511179 – volume: 130 start-page: 33 year: 2017 end-page: 50 ident: CR3 article-title: Knowledge-leveraged transfer fuzzy c-means for texture image segmentation with self-adaptive cluster prototype matching publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.018 – volume: 7 start-page: 96349 year: 2019 end-page: 96358 ident: CR9 article-title: Liver semantic segmentation algorithm based on improved deep adversarial networks in combination of weighted loss function on abdominal CT images publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929270 – volume: 68 start-page: 604 issue: 5 year: 2017 end-page: 614 ident: CR11 article-title: Guidelines for the diagnosis and management of osteoporosis in Poland : Update 2017[J] publication-title: Endokrynologia Polska doi: 10.5603/EP.2017.0062 – volume: 103 start-page: 421 issue: 3 year: 2017 end-page: 429 ident: CR18 article-title: Sensitivity study of ultrasonic guided waves to cortical bone mechanical properties with axial and circumferential propagation[J] publication-title: Acta Acustica united with Acustica doi: 10.3813/AAA.919072 – volume: 24 start-page: 2108 issue: 22 year: 2018 end-page: 2117 ident: CR17 article-title: Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs[J] publication-title: Oral Radiology – volume: 12 start-page: 108 issue: 2 year: 2017 end-page: 117 ident: CR16 article-title: Vertebral imaging in the diagnosis of osteoporosis: A Clinician’s perspective[J] publication-title: Current Osteoporosis Reports – ident: CR20 – ident: 1502_CR14 – volume: 23 start-page: 98 issue: 08 year: 2017 ident: 1502_CR13 publication-title: Current Osteoporosis Reports – ident: 1502_CR25 doi: 10.1109/TMI.2019.2935916 – volume: 98 start-page: 37 year: 2017 ident: 1502_CR12 publication-title: Bone doi: 10.1016/j.bone.2017.02.013 – volume: 46 start-page: 181 issue: 1 year: 2016 ident: 1502_CR1 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2015.2399351 – volume: 20 start-page: 122 issue: 1 year: 2017 ident: 1502_CR21 publication-title: International Journal of Rheumatic Diseases doi: 10.1111/1756-185X.12590 – ident: 1502_CR15 doi: 10.1109/ATSIP.2017.8075537 – volume: 65 start-page: 193 issue: 2 year: 2017 ident: 1502_CR22 publication-title: Endocrine Journal doi: 10.1507/endocrj.EJ17-0331 – volume: 130 start-page: 33 year: 2017 ident: 1502_CR3 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.05.018 – volume: 68 start-page: 604 issue: 5 year: 2017 ident: 1502_CR11 publication-title: Endokrynologia Polska doi: 10.5603/EP.2017.0062 – volume: 25 start-page: 2270 issue: 12 year: 2017 ident: 1502_CR5 publication-title: IEEE Trans. Neural Systems & Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2748388 – volume: 12 start-page: 108 issue: 2 year: 2017 ident: 1502_CR16 publication-title: Current Osteoporosis Reports – volume: 28 start-page: 1123 issue: 5 year: 2017 ident: 1502_CR2 publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2015.2511179 – volume: 43 start-page: 2:1 issue: 1 year: 2019 ident: 1502_CR10 publication-title: J. Medical Systems doi: 10.1007/s10916-018-1116-1 – ident: 1502_CR20 doi: 10.1016/j.rbre.2017.07.001 – volume: 18 start-page: 357 issue: 1 year: 2017 ident: 1502_CR19 publication-title: BMC Musculoskeletal Disorders doi: 10.1186/s12891-017-1718-7 – volume: 50 start-page: 673 issue: 5–6 year: 2009 ident: 1502_CR26 publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2008.12.024 – ident: 1502_CR23 doi: 10.1145/2975167.2975208 – volume: 29 start-page: 207 issue: 2 year: 2016 ident: 1502_CR27 publication-title: Magnetic Resonance Materials in Physics, Biology and Medicine doi: 10.1007/s10334-016-0532-9 – volume: 25 start-page: 3 issue: 1 year: 2017 ident: 1502_CR6 publication-title: IEEE Trans. Fuzzy Systems doi: 10.1109/TFUZZ.2016.2637405 – volume: 24 start-page: 2108 issue: 22 year: 2018 ident: 1502_CR17 publication-title: Oral Radiology – volume: 103 start-page: 421 issue: 3 year: 2017 ident: 1502_CR18 publication-title: Acta Acustica united with Acustica doi: 10.3813/AAA.919072 – volume: 45 start-page: 548 issue: 3 year: 2015 ident: 1502_CR8 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2330853 – volume: 7 start-page: 96349 year: 2019 ident: 1502_CR9 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929270 – volume: 12 start-page: 263 issue: 1 year: 2017 ident: 1502_CR24 publication-title: IOP Conference Series Materials Science and Engineering – volume: 6 start-page: 28594 year: 2018 ident: 1502_CR4 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825352 – volume: 45 start-page: 688 issue: 4 year: 2015 ident: 1502_CR7 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2334595 – ident: 1502_CR29 – volume: 54 start-page: 1321 issue: 6 year: 2013 ident: 1502_CR28 publication-title: Yonsei Medical Journal doi: 10.3349/ymj.2013.54.6.1321 |
| SSID | ssj0009667 |
| Score | 2.387903 |
| Snippet | The measurement of bone mineral density for osteoporosis has always been the focus of researchers because it plays an important role in bone disease diagnosis.... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 15 |
| SubjectTerms | Algorithms Biomedical materials Bone density Bone diseases Bone mineral density Deep learning Density measurement Diagnosis Diagnostic systems Distributed Analytics and Deep Learning in Health Care Entropy (Information theory) Feature maps Health Informatics Health Sciences Image segmentation Medical diagnosis Medical imaging Medicine Medicine & Public Health Normalizing Object recognition Osteoporosis Patient Facing Systems Statistics for Life Sciences |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB50FRHE-1gvIvikBLZNj-TR2wddxQvfSpqksCCtbHf9_U6adlfxAIU-FJK2aTKZ-WYmMwOw76Wxlyrfo14QhzRQmUY-yEKK0rAqxyiCqlrD01Xc7fLnZ3Fbx3GXzWn3xiVZceoPwW4IZVD1FRRBjE_ZJEyhtOO2XsPd_dM4024UuRjpgFObfbxxZX73is_C6AvC_OIdrYTO-cK_hrsI8zXGJEeOKJZgwuTLMHNde9GXYc7Z6ogLQVqB-1N33g67E5lrctGXrtISsZXSXkiRkRskhgKhelH2SnKMkk8TbHYWCbw_NeaVPNKuGZCuO1e-Co_nZw8nl7QutkAVi_0BTbPID1RHGJ1KplItlBTGmt2QIUglNGo2OjYo8iTLUKfKuFb4n6HOgpTLWCq2Bq28yM0GEMYjT2plQtORiA9UKlLETdIgWFNG8qgNnWbWE1VnIrcFMV6ScQ5lO3kJTl5iJy9hbTgYPfLq0nD81nm7Wcqk3pFlgsgRr1iE2Lw3asa9ZB0kMjfF0PWJWcQ7fhvWHQmMvoa8D1XHgLfhsFnv8ct_HMrmn3pvwaxv1fnKwrMNrUF_aHZgWr0NemV_tyLzdydb8zU priority: 102 providerName: Springer Nature |
| Title | Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network |
| URI | https://link.springer.com/article/10.1007/s10916-019-1502-3 https://www.ncbi.nlm.nih.gov/pubmed/31811448 https://www.proquest.com/docview/2322327953 https://www.proquest.com/docview/2322736802 |
| Volume | 44 |
| WOSCitedRecordID | wos000501311600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary Journals customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WdozB6Lbuy2sXNNjThpht2Zb0NNq13WCLF9I2hL4YWZKhUOwsTvf372TZCaWsLwNz2Fi2hU-6-92ddAfwISp5VOo4olHCU5royqAcZClFbdiVY5RJV61h9pPnuZjP5aR3uLX9sspBJnaC2jTa-cg_o-bHg8uUfVn8pq5qlIuu9iU0tmAHkU3klnSN48km6W6W-e3SiaAuEfkQ1fRb5xAYoSEtKUKimLLbeukO2LwTKO30z-nT_-35M9jtkSc59EPlOTyw9R48Gvex9T144j14xG9MegFnx34VHjYnqjbk21L5-kvE1U-7Jk1FfuEQaRDAN-1VS45QHxqCt72fAs-PrV2QC5rbFcn9avOXcHF6cv71O-1LMFDNeLyiZZXFiQ6lNaViujRSK2mdMw7FhNLSoL1juEVFqFiFllYljMbfm5oqKYXiSrNXsF03tX0DhIksUkbb1IYKUYMuZYloSlmEcNoqkQUQDgwodJ-f3JXJuC42mZUdzwrkWeF4VrAAPq4fWfjkHPc1PhjYU_TztC02vAng_fo2zjAXNlG1bW58G84yEcYBvPajYf01lIhoUCYigE_D8Ni8_J9deXt_V_bhceys-s7RcwDbq-WNfQcP9Z_VVbscwRafzhyd846KEewcneSTKV794BTpODwfdRPBUe7oJL1EOj2b_QU8mAcZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dS90wFD84N1SQuTk_uqnLYL4owdukt20exth2dYrXKkzFty5NUhCkvd5eN_yn_Bs9adp7GaJvPgz6UEiaps0v5yvnA-Czn0V-pphP_SDq0kDlGukg71LkhnU5RhHU1RrO-1GSxBcX4mQK7tpYGOtW2dLEmlDrUlkb-Q5yfrwi0eVfB9fUVo2yp6ttCQ0Hi0Nz-xdVturLQQ_Xd5Oxvd3TH_u0qSpAFY_YiGZ5yALVEUZnkqtMCyWFsfYlRL5UQqMIryODtF3yHJWHPNbKR6jqPMhiGUnFcdwX8DKwmcWsqyA7mST5DUMXnh3E1CY-b09RXageCmKouAuKIhij_F8--EC4fXAwW_O7vYX_7U-9gdeNZE2-ua3wFqZMsQgzR43vwCLMOwslcYFX7-BXz3kZYnciC01-DqWrL0VsfbgrUubkGLdAiQpKWV1W5Dvye02w2dlh8L5nzICc0cSMSOK86Zfg7Fk-cRmmi7Iwq0B4HPpSK9M1HYlSkcpEhtKiNCiiKiPj0INOu-CpavKv2zIgV-kkc7TFSIoYSS1GUu7B1viRgUs-8lTntRYOaUOHqnSCBQ8-jZuRgthjIVmY8sb1iXgYd5gHKw5947chxUeFOYg92G7hOBn80am8f3oqH2F2__Son_YPksMPMMesBaM2aq3B9Gh4Y9bhlfozuqyGG_X2IvD7uVF6D-O_XVM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4gEEJCRFCgArok-qLZcO223e4DMep5QoB6iWKIL2W7u01ISHteD43_mn-ds932LoTAGw8mfWiy2-2vb2e-mZ2dAXjl59zPVeBTP-QRDVWhUQ6yiKI2bMoxirCp1vD9hKdpcn4uhnPwt9sLY8MqO5nYCGpdKesj30fNjwcXEdsv2rCIYX_wbvST2gpSdqW1K6fhIHJs_vxG860-OOrjv34dBINP3z4e0rbCAFWMBxOaF3EQqp4wOpdM5VooKYz1NeEskEpopPOaG5TzkhVoSBSJVj7CVhdhnkguFcNxH8ECRxvThhMOox-zhL9x7LZqhwm1SdC7FVW3bQ9JGRrxgiIdCyi7qRNvEd1bi7SN7hus_s9f7Qk8bhk3ee-myBrMmXIdlk7bmIJ1WHGeS-I2ZD2Fr30XfYjdiSw1-TyWru4UsXXjrkhVkC84NSo0XKr6siYfkAdogs3OP4PnfWNG5IymZkJSF2X_DM4e5BU3YL6sSrMFhCWxL7UykelJZEsqFzmySGmQuiojk9iDXvfzM9XmZbflQa6yWUZpi5cM8ZJZvGTMgzfTS0YuKcl9nXc6aGStfKqzGS482Js2o2Sxy0WyNNW168NZnPQCDzYdEqd3Q02AhnSYePC2g-Zs8Dsf5fn9j_ISlhCc2clRerwNy4F1bDS-rh2Yn4yvzS4sql-Ty3r8oplpBC4eGqT_AL8dZj8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+and+Gradation+Model+of+Osteoporosis+Based+on+Improved+Deep+U-Net+Network&rft.jtitle=Journal+of+medical+systems&rft.au=Liu%2C+Jian&rft.au=Wang%2C+Jian&rft.au=Ruan%2C+Weiwei&rft.au=Lin%2C+Chengshan&rft.date=2020-01-01&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=44&rft.issue=1&rft_id=info:doi/10.1007%2Fs10916-019-1502-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10916_019_1502_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |