High Cooperativity in Negative Feedback can Amplify Noisy Gene Expression

Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology Jg. 80; H. 7; S. 1871 - 1899
Hauptverfasser: Bokes, Pavol, Lin, Yen Ting, Singh, Abhyudai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2018
Springer Nature B.V
Schlagworte:
ISSN:0092-8240, 1522-9602, 1522-9602
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Burst-like synthesis of protein is a significant source of cell-to-cell variability in protein levels. Negative feedback is a common example of a regulatory mechanism by which such stochasticity can be controlled. Here we consider a specific kind of negative feedback, which makes bursts smaller in the excess of protein. Increasing the strength of the feedback may lead to dramatically different outcomes depending on a key parameter, the noise load, which is defined as the squared coefficient of variation the protein exhibits in the absence of feedback. Combining stochastic simulation with asymptotic analysis, we identify a critical value of noise load: for noise loads smaller than critical, the coefficient of variation remains bounded with increasing feedback strength; contrastingly, if the noise load is larger than critical, the coefficient of variation diverges to infinity in the limit of ever greater feedback strengths. Interestingly, feedbacks with lower cooperativities have higher critical noise loads, suggesting that they can be preferable for controlling noisy proteins.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0092-8240
1522-9602
1522-9602
DOI:10.1007/s11538-018-0438-y