Constrained submodular maximization via greedy local search

We present a simple combinatorial 1−e−22-approximation algorithm for maximizing a monotone submodular function subject to a knapsack and a matroid constraint. This classic problem is known to be hard to approximate within factor better than 1−1∕e. We extend the algorithm to yield 1−e−(k+1)k+1 approx...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Operations research letters Ročník 47; číslo 1; s. 1 - 6
Hlavní autoři: Sarpatwar, Kanthi K., Schieber, Baruch, Shachnai, Hadas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2019
Témata:
ISSN:0167-6377, 1872-7468
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a simple combinatorial 1−e−22-approximation algorithm for maximizing a monotone submodular function subject to a knapsack and a matroid constraint. This classic problem is known to be hard to approximate within factor better than 1−1∕e. We extend the algorithm to yield 1−e−(k+1)k+1 approximation for submodular maximization subject to a single knapsack and k matroid constraints, for any fixed k>1. Our algorithms, which combine the greedy algorithm of Khuller et al. (1999) and Sviridenko (2004) with local search, show the power of this natural framework in submodular maximization with combined constraints.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2018.11.002