Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study
The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of...
Uložené v:
| Vydané v: | Reliability engineering & system safety Ročník 216; s. 107897 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
01.12.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of the degradation paths of units in a population. The degradation rate of products can be unit-specific and often treated as random effects. This paper develops a novel random-effects Wiener process model to account for the unit-to-unit heterogeneity in the degradation, where the generalized inverse Gaussian (GIG) distribution is used to model the unit-specific degradation rate. The GIG distribution is a very general distribution with broad applications, which includes the inverse Gaussian (IG) distribution and the Gamma distribution as special cases. We investigate the model properties and develop an expectation maximization (EM) algorithm for parameter estimation. By comparing the proposed model with existing models on two real degradation datasets of the infrared LEDs and the GaAs lasers, we show that the proposed model is quite effective for degradation modeling with heterogeneous rates. |
|---|---|
| AbstractList | The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of the degradation paths of units in a population. The degradation rate of products can be unit-specific and often treated as random effects. This paper develops a novel random-effects Wiener process model to account for the unit-to-unit heterogeneity in the degradation, where the generalized inverse Gaussian (GIG) distribution is used to model the unit-specific degradation rate. The GIG distribution is a very general distribution with broad applications, which includes the inverse Gaussian (IG) distribution and the Gamma distribution as special cases. We investigate the model properties and develop an expectation maximization (EM) algorithm for parameter estimation. By comparing the proposed model with existing models on two real degradation datasets of the infrared LEDs and the GaAs lasers, we show that the proposed model is quite effective for degradation modeling with heterogeneous rates. |
| ArticleNumber | 107897 |
| Author | Zhai, Qingqing Wang, Zhijie Chen, Piao |
| Author_xml | – sequence: 1 givenname: Zhijie surname: Wang fullname: Wang, Zhijie organization: School of Management, Shanghai University, Shanghai, China – sequence: 2 givenname: Qingqing surname: Zhai fullname: Zhai, Qingqing email: zhaiq@shu.edu.cn organization: School of Management, Shanghai University, Shanghai, China – sequence: 3 givenname: Piao surname: Chen fullname: Chen, Piao organization: Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands |
| BookMark | eNp9kE9LAzEQxYNUsK1-AU8Lnrcm2c0mAS-l_oWCFz2HNJmtKW1Sk7TQb--u68lDT_MY3u8N8yZo5IMHhG4JnhFMmvvNLEJKM4op6RZcSH6BxkRwWWJRNSM0xpKRUlQUX6FJShuMcS0ZHyP9COuorc4u-GIXLGydXxcm-OQsxF4fvMtlDmU_iy_IEMMaPLh8KudFr6LeDmShve3Q3V7HLu8IRcoHe7pGl63eJrj5m1P0-fz0sXgtl-8vb4v5sjQVp7lcWVYzAL1iTdVWjNRSgyDMGGkqLVrOmV41gLkl1LKmBsKblagJr6nBVdvwaoruhtx9DN8HSFltwiH67qSiTEpZY0JF5xKDy8SQUoRWGZd_v89Ru60iWPWFqo3qC1V9oWootEPpP3Qf3U7H03noYYCge_3oIKpkHHgD1kUwWdngzuE_PE-SzA |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113156 crossref_primary_10_1016_j_probengmech_2024_103698 crossref_primary_10_1016_j_cie_2022_108478 crossref_primary_10_1016_j_ress_2024_110289 crossref_primary_10_1016_j_aei_2025_103376 crossref_primary_10_1016_j_ress_2022_108913 crossref_primary_10_1177_1748006X241227300 crossref_primary_10_1002_qre_3615 crossref_primary_10_1016_j_ress_2023_109906 crossref_primary_10_1109_TR_2024_3471796 crossref_primary_10_1080_01605682_2024_2346610 crossref_primary_10_1080_16843703_2021_2015826 crossref_primary_10_1007_s12206_024_0310_y crossref_primary_10_3390_fractalfract8100556 crossref_primary_10_1016_j_ress_2025_111286 crossref_primary_10_1002_qre_3622 crossref_primary_10_1007_s40430_024_05297_9 crossref_primary_10_1016_j_ress_2022_108704 crossref_primary_10_1016_j_cie_2025_111036 crossref_primary_10_1002_nav_22226 crossref_primary_10_1109_TASE_2024_3516049 crossref_primary_10_1002_qre_3394 crossref_primary_10_1080_16843703_2023_2187011 crossref_primary_10_1016_j_apm_2023_10_003 crossref_primary_10_1109_ACCESS_2025_3543391 |
| Cites_doi | 10.1109/TR.2019.2895352 10.1109/TR.2013.2284733 10.1109/TASE.2018.2844204 10.1109/TII.2017.2684821 10.1080/00401706.2017.1375994 10.1016/j.ress.2021.107671 10.1016/j.ress.2018.07.003 10.1016/j.ress.2018.02.003 10.1016/j.ress.2021.107675 10.1109/TMECH.2020.3009449 10.1109/TR.2019.2896230 10.1016/j.ress.2019.106707 10.1016/j.ejor.2020.11.041 10.1109/TII.2018.2869429 10.1016/j.jmva.2008.12.007 10.1080/00401706.2015.1096827 10.1016/j.ress.2020.107168 10.1109/TIE.2019.2907440 10.1016/j.ress.2015.02.005 10.1109/TR.2013.2257055 10.1109/ACCESS.2018.2789518 10.1109/TR.2016.2575442 10.1109/TR.2016.2635149 10.3390/en7020520 10.1080/24725854.2019.1567958 10.1016/j.apm.2019.10.044 10.1109/TR.2017.2710319 10.1016/j.ress.2018.04.005 10.1016/j.ress.2020.107138 10.1016/j.apm.2019.12.017 10.1080/00401706.2019.1668855 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 2021 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2021.107897 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2021_107897 S0951832021004154 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c372t-bd545eeab563f35149ae815cc9c3a8f775ab6e07d12d564e176b841742c03f673 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702351700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 09:30:55 EDT 2025 Tue Nov 18 22:12:43 EST 2025 Sat Nov 29 07:06:01 EST 2025 Fri Feb 23 02:42:22 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Heterogeneous degradation Wiener process model Generalized inverse Gaussian distribution EM algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c372t-bd545eeab563f35149ae815cc9c3a8f775ab6e07d12d564e176b841742c03f673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0951832021004154 |
| PQID | 2599940128 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2599940128 crossref_citationtrail_10_1016_j_ress_2021_107897 crossref_primary_10_1016_j_ress_2021_107897 elsevier_sciencedirect_doi_10_1016_j_ress_2021_107897 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Zhai, Ye (bib0009) 2017; 13 Zhao, He, Kuo (bib0013) 2020; 52 Peng, Li, Yang (bib0015) 2017; 66 Yang (bib0034) 2007 Zhou, Xu (bib0007) 2019; 68 Xu, Tang, Yu (bib0025) 2021 Zhao, Chen, Gaudoin (bib0020) 2021; 292 Meeker, Escobar (bib0035) 1998; New York Xu, Hu, Wang (bib0016) 2020; 81 Sun, Fu, Liao (bib0024) 2020; 204 Wang, Zhao, Ma (bib0019) 2018; 6 Ye, Wang, Tsui (bib0022) 2013; 62 Peng, Ye, Chen (bib0006) 2020; 67 Zhai, Chen, Hong (bib0029) 2018; 180 Sun, Balakrishnan, Zhao (bib0023) 2020 Wen, Wu, Das (bib0011) 2018; 176 Sun, Ye, Hong (bib0012) 2020; 62 Wen, Wu, Yuan (bib0004) 2017; 66 Chatenet, Remy, Gagnon (bib0014) 2021; 213 Tang, Yu, Wang (bib0028) 2014; 7 Jorgensen (bib0031) 1982 Wang (bib0026) 2010; 101 Ahmad, Khan, Islam (bib0002) 2019; 184 Yan, Ma, Yang (bib0030) 2020; 204 Zhai, Ye (bib0001) 2018; 60 Zhang, Mo, Wang (bib0018) 2020; 69 Ye, Chen, Shen (bib0027) 2015; 139 Hu, Chen (bib0003) 2020; 196 Xiao, Ye (bib0010) 2016; 65 Chen, Ye (bib0032) 2017; 59 Wen, Wu, Zhou (bib0033) 2019; 16 Peng, Tseng (bib0036) 2013; 62 Dong, Cui, Si (bib0017) 2020; 79 Li, Pan, Chen (bib0021) 2015; 45 Wu, Guo, Cheng (bib0005) 2020; 25 Peng, Ye, Chen (bib0008) 2019; 15 Jorgensen (10.1016/j.ress.2021.107897_bib0031) 1982 Xu (10.1016/j.ress.2021.107897_bib0025) 2021 Peng (10.1016/j.ress.2021.107897_bib0015) 2017; 66 Sun (10.1016/j.ress.2021.107897_bib0023) 2020 Ye (10.1016/j.ress.2021.107897_bib0022) 2013; 62 Ahmad (10.1016/j.ress.2021.107897_bib0002) 2019; 184 Dong (10.1016/j.ress.2021.107897_bib0017) 2020; 79 Zhang (10.1016/j.ress.2021.107897_bib0018) 2020; 69 Xu (10.1016/j.ress.2021.107897_bib0016) 2020; 81 Peng (10.1016/j.ress.2021.107897_bib0006) 2020; 67 Chatenet (10.1016/j.ress.2021.107897_bib0014) 2021; 213 Wang (10.1016/j.ress.2021.107897_bib0019) 2018; 6 Sun (10.1016/j.ress.2021.107897_bib0012) 2020; 62 Yan (10.1016/j.ress.2021.107897_bib0030) 2020; 204 Wang (10.1016/j.ress.2021.107897_bib0026) 2010; 101 Peng (10.1016/j.ress.2021.107897_bib0036) 2013; 62 Ye (10.1016/j.ress.2021.107897_bib0027) 2015; 139 Zhou (10.1016/j.ress.2021.107897_bib0007) 2019; 68 Hu (10.1016/j.ress.2021.107897_bib0003) 2020; 196 Wen (10.1016/j.ress.2021.107897_bib0011) 2018; 176 Zhai (10.1016/j.ress.2021.107897_bib0009) 2017; 13 Wu (10.1016/j.ress.2021.107897_bib0005) 2020; 25 Zhai (10.1016/j.ress.2021.107897_bib0029) 2018; 180 Peng (10.1016/j.ress.2021.107897_bib0008) 2019; 15 Wen (10.1016/j.ress.2021.107897_bib0033) 2019; 16 Zhao (10.1016/j.ress.2021.107897_bib0020) 2021; 292 Chen (10.1016/j.ress.2021.107897_bib0032) 2017; 59 Zhao (10.1016/j.ress.2021.107897_bib0013) 2020; 52 Tang (10.1016/j.ress.2021.107897_bib0028) 2014; 7 Xiao (10.1016/j.ress.2021.107897_bib0010) 2016; 65 Zhai (10.1016/j.ress.2021.107897_bib0001) 2018; 60 Yang (10.1016/j.ress.2021.107897_bib0034) 2007 Li (10.1016/j.ress.2021.107897_bib0021) 2015; 45 Sun (10.1016/j.ress.2021.107897_bib0024) 2020; 204 Wen (10.1016/j.ress.2021.107897_bib0004) 2017; 66 Meeker (10.1016/j.ress.2021.107897_bib0035) 1998; New York |
| References_xml | – volume: 67 start-page: 2283 year: 2020 end-page: 2293 ident: bib0006 article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty publication-title: IEEE Trans Ind Electron – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: bib0009 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans Ind Inf – volume: 62 start-page: 338 year: 2013 end-page: 350 ident: bib0036 article-title: Statistical lifetime inference with skew-Wiener linear degradation models publication-title: IEEE Trans Reliab – volume: 52 start-page: 91 year: 2020 end-page: 103 ident: bib0013 article-title: Planning accelerated reliability tests for mission-oriented systems subject to degradation and shocks publication-title: IISE Trans – volume: 65 start-page: 1327 year: 2016 end-page: 1342 ident: bib0010 article-title: Optimal design for destructive degradation tests with random initial degradation values using the Wiener process publication-title: IEEE Trans Reliab – volume: 62 start-page: 536 year: 2020 end-page: 548 ident: bib0012 article-title: Statistical modeling of multivariate destructive degradation tests with blocking publication-title: Technometrics – volume: 81 start-page: 177 year: 2020 end-page: 193 ident: bib0016 article-title: Degradation modeling with subpopulation heterogeneities based on the inverse Gaussian process publication-title: Appl Math Modell – volume: 25 start-page: 2230 year: 2020 end-page: 2240 ident: bib0005 article-title: Ensemble generalized multiclass support-vector-machine-based health evaluation of complex degradation systems publication-title: IEEE-Asme Trans Mechatron – volume: 180 start-page: 94 year: 2018 end-page: 103 ident: bib0029 article-title: A random-effects Wiener degradation model based on accelerated failure time publication-title: Reliab Eng Syst Saf – volume: 79 start-page: 414 year: 2020 end-page: 433 ident: bib0017 article-title: Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes publication-title: Appl Math Modell – volume: 45 start-page: 955 year: 2015 ident: bib0021 article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels publication-title: IEEE Transactions on Cybernetics – volume: 7 start-page: 520 year: 2014 end-page: 547 ident: bib0028 article-title: Remaining useful life prediction of Lithium-ion batteries based on the Wiener process with measurement error publication-title: Energies – volume: 68 start-page: 398 year: 2019 end-page: 409 ident: bib0007 article-title: Exponential dispersion process for degradation analysis publication-title: IEEE Trans Reliab – volume: 15 start-page: 2870 year: 2019 end-page: 2878 ident: bib0008 article-title: Joint online RUL prediction for multivariate deteriorating systems publication-title: IEEE Trans Ind Inf – volume: 62 start-page: 772 year: 2013 end-page: 780 ident: bib0022 article-title: Degradation data analysis using Wiener processes with measurement errors publication-title: IEEE Trans Reliab – volume: 101 start-page: 340 year: 2010 end-page: 351 ident: bib0026 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal – volume: 60 start-page: 461 year: 2018 end-page: 471 ident: bib0001 article-title: Degradation in common dynamic environments publication-title: Technometrics – volume: 66 start-page: 84 year: 2017 end-page: 96 ident: bib0015 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab – volume: 184 start-page: 67 year: 2019 end-page: 76 ident: bib0002 article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models publication-title: Reliab Eng Syst Saf – volume: 213 year: 2021 ident: bib0014 article-title: Modeling cavitation erosion using non-homogeneous gamma process publication-title: Reliab Eng Syst Saf – volume: 176 start-page: 113 year: 2018 end-page: 124 ident: bib0011 article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity publication-title: Reliab Eng Syst Saf – volume: New York year: 1998 ident: bib0035 publication-title: Statistical – volume: 139 start-page: 58 year: 2015 end-page: 67 ident: bib0027 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf – volume: 69 start-page: 768 year: 2020 end-page: 780 ident: bib0018 article-title: Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of Lithium-ion batteries publication-title: IEEE Trans Reliab – volume: 196 year: 2020 ident: bib0003 article-title: Predictive maintenance of systems subject to hard failure based on proportional hazards model publication-title: Reliab Eng Syst Saf – volume: 16 start-page: 613 year: 2019 end-page: 628 ident: bib0033 article-title: Multiple-change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement publication-title: IEEE Trans Autom Sci Eng – year: 2007 ident: bib0034 article-title: Life cycle reliability engineering – volume: 66 start-page: 924 year: 2017 end-page: 938 ident: bib0004 article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction publication-title: IEEE Trans Reliab – year: 1982 ident: bib0031 article-title: Statistical properties of the generalized inverse Gaussian distribution – volume: 6 start-page: 4440 year: 2018 end-page: 4451 ident: bib0019 article-title: Mechanism equivalence in designing optimum step-stress accelerated degradation test plan under Wiener process publication-title: IEEE Access – volume: 59 start-page: 115 year: 2017 end-page: 125 ident: bib0032 article-title: Estimation of field reliability based on aggregate lifetime data publication-title: Technometrics – volume: 292 start-page: 1099 year: 2021 end-page: 1114 ident: bib0020 article-title: Accelerated degradation tests with inspection effects publication-title: Eur J Oper Res – start-page: 1 year: 2020 end-page: 19 ident: bib0023 article-title: Mis-specification analysis of the impact of covariates on the diffusion coefficient in Wiener degradation process publication-title: Commun Stat - Simul Comput – year: 2021 ident: bib0025 article-title: Remaining useful life prediction of Lithium-ion batteries based on Wiener process under time-varying temperature condition publication-title: Reliab Eng Syst Saf – volume: 204 year: 2020 ident: bib0024 article-title: Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula publication-title: Reliab Eng Syst Saf – volume: 204 year: 2020 ident: bib0030 article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis publication-title: Reliab Eng Syst Saf – volume: 68 start-page: 398 issue: 2 year: 2019 ident: 10.1016/j.ress.2021.107897_bib0007 article-title: Exponential dispersion process for degradation analysis publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2895352 – volume: 62 start-page: 772 issue: 4 year: 2013 ident: 10.1016/j.ress.2021.107897_bib0022 article-title: Degradation data analysis using Wiener processes with measurement errors publication-title: IEEE Trans Reliab doi: 10.1109/TR.2013.2284733 – volume: 16 start-page: 613 issue: 2 year: 2019 ident: 10.1016/j.ress.2021.107897_bib0033 article-title: Multiple-change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2018.2844204 – volume: 13 start-page: 2911 issue: 6 year: 2017 ident: 10.1016/j.ress.2021.107897_bib0009 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2017.2684821 – volume: 60 start-page: 461 issue: 4 year: 2018 ident: 10.1016/j.ress.2021.107897_bib0001 article-title: Degradation in common dynamic environments publication-title: Technometrics doi: 10.1080/00401706.2017.1375994 – volume: 213 year: 2021 ident: 10.1016/j.ress.2021.107897_bib0014 article-title: Modeling cavitation erosion using non-homogeneous gamma process publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107671 – volume: 180 start-page: 94 year: 2018 ident: 10.1016/j.ress.2021.107897_bib0029 article-title: A random-effects Wiener degradation model based on accelerated failure time publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.07.003 – start-page: 1 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0023 article-title: Mis-specification analysis of the impact of covariates on the diffusion coefficient in Wiener degradation process publication-title: Commun Stat - Simul Comput – volume: 184 start-page: 67 year: 2019 ident: 10.1016/j.ress.2021.107897_bib0002 article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.02.003 – year: 2021 ident: 10.1016/j.ress.2021.107897_bib0025 article-title: Remaining useful life prediction of Lithium-ion batteries based on Wiener process under time-varying temperature condition publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107675 – volume: 25 start-page: 2230 issue: 5 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0005 article-title: Ensemble generalized multiclass support-vector-machine-based health evaluation of complex degradation systems publication-title: IEEE-Asme Trans Mechatron doi: 10.1109/TMECH.2020.3009449 – volume: 69 start-page: 768 issue: 2 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0018 article-title: Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of Lithium-ion batteries publication-title: IEEE Trans Reliab doi: 10.1109/TR.2019.2896230 – volume: 196 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0003 article-title: Predictive maintenance of systems subject to hard failure based on proportional hazards model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106707 – volume: 292 start-page: 1099 issue: 3 year: 2021 ident: 10.1016/j.ress.2021.107897_bib0020 article-title: Accelerated degradation tests with inspection effects publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2020.11.041 – volume: 15 start-page: 2870 issue: 5 year: 2019 ident: 10.1016/j.ress.2021.107897_bib0008 article-title: Joint online RUL prediction for multivariate deteriorating systems publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2869429 – volume: 101 start-page: 340 issue: 2 year: 2010 ident: 10.1016/j.ress.2021.107897_bib0026 article-title: Wiener processes with random effects for degradation data publication-title: J Multivar Anal doi: 10.1016/j.jmva.2008.12.007 – year: 1982 ident: 10.1016/j.ress.2021.107897_bib0031 – volume: 59 start-page: 115 issue: 1 year: 2017 ident: 10.1016/j.ress.2021.107897_bib0032 article-title: Estimation of field reliability based on aggregate lifetime data publication-title: Technometrics doi: 10.1080/00401706.2015.1096827 – volume: 204 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0024 article-title: Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107168 – volume: 67 start-page: 2283 issue: 3 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0006 article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2019.2907440 – year: 2007 ident: 10.1016/j.ress.2021.107897_bib0034 – volume: 139 start-page: 58 year: 2015 ident: 10.1016/j.ress.2021.107897_bib0027 article-title: A new class of Wiener process models for degradation analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.02.005 – volume: 62 start-page: 338 issue: 2 year: 2013 ident: 10.1016/j.ress.2021.107897_bib0036 article-title: Statistical lifetime inference with skew-Wiener linear degradation models publication-title: IEEE Trans Reliab doi: 10.1109/TR.2013.2257055 – volume: 6 start-page: 4440 year: 2018 ident: 10.1016/j.ress.2021.107897_bib0019 article-title: Mechanism equivalence in designing optimum step-stress accelerated degradation test plan under Wiener process publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789518 – volume: 65 start-page: 1327 issue: 3 year: 2016 ident: 10.1016/j.ress.2021.107897_bib0010 article-title: Optimal design for destructive degradation tests with random initial degradation values using the Wiener process publication-title: IEEE Trans Reliab doi: 10.1109/TR.2016.2575442 – volume: 66 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.ress.2021.107897_bib0015 article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates publication-title: IEEE Trans Reliab doi: 10.1109/TR.2016.2635149 – volume: 7 start-page: 520 issue: 2 year: 2014 ident: 10.1016/j.ress.2021.107897_bib0028 article-title: Remaining useful life prediction of Lithium-ion batteries based on the Wiener process with measurement error publication-title: Energies doi: 10.3390/en7020520 – volume: 45 start-page: 955 issue: 5 year: 2015 ident: 10.1016/j.ress.2021.107897_bib0021 article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels publication-title: IEEE Transactions on Cybernetics – volume: 52 start-page: 91 issue: 1 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0013 article-title: Planning accelerated reliability tests for mission-oriented systems subject to degradation and shocks publication-title: IISE Trans doi: 10.1080/24725854.2019.1567958 – volume: 79 start-page: 414 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0017 article-title: Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes publication-title: Appl Math Modell doi: 10.1016/j.apm.2019.10.044 – volume: 66 start-page: 924 issue: 3 year: 2017 ident: 10.1016/j.ress.2021.107897_bib0004 article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction publication-title: IEEE Trans Reliab doi: 10.1109/TR.2017.2710319 – volume: 176 start-page: 113 year: 2018 ident: 10.1016/j.ress.2021.107897_bib0011 article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.04.005 – volume: 204 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0030 article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107138 – volume: 81 start-page: 177 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0016 article-title: Degradation modeling with subpopulation heterogeneities based on the inverse Gaussian process publication-title: Appl Math Modell doi: 10.1016/j.apm.2019.12.017 – volume: 62 start-page: 536 issue: 4 year: 2020 ident: 10.1016/j.ress.2021.107897_bib0012 article-title: Statistical modeling of multivariate destructive degradation tests with blocking publication-title: Technometrics doi: 10.1080/00401706.2019.1668855 – volume: New York year: 1998 ident: 10.1016/j.ress.2021.107897_bib0035 |
| SSID | ssj0004957 |
| Score | 2.4730916 |
| Snippet | The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107897 |
| SubjectTerms | Algorithms Comparative studies EM algorithm Gallium arsenide lasers Generalized inverse Generalized inverse Gaussian distribution Heterogeneity Heterogeneous degradation Immunoglobulins Inverse Gaussian probability distribution Lasers Manufacturing industry Modelling Parameter estimation Performance degradation Probability distribution functions Raw materials Reliability engineering Wiener process model |
| Title | Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study |
| URI | https://dx.doi.org/10.1016/j.ress.2021.107897 https://www.proquest.com/docview/2599940128 |
| Volume | 216 |
| WOSCitedRecordID | wos000702351700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM8IH6KwUB-YE-VpyVO4uSxYq0AVWVIHar2YjmOrbWa2m7rpvEf8GdzztlNVkEFD7wkkRM7ke_z5XK5-46QDyJWZSyikpmyUCwxXLCS84rFwlhldakqJHEditEon0yKk07nZ8iFub0Q83l-d1cs_6uooQ2E7VJn_0Hc60GhAY5B6LAFscP2rwR_7OgfsFIS1rnBtFqsy-mOb2AVs9WCuT0YijCxCxjMgDnOeq6isvNSYc-Q9LbmB2_IaAOnNwyPTN8_uqahNqwBhSTR3WtlPdcIOu5RuZydT2fTNajOfFXsb9D3MrxM66AD1IonU7Vo-yfiaCPWo0mc-X7P-Rgx0CX4R8ag6s1FUXNlt3VzHLW1a_RbnY_uh9mhc08cuieAJpFj1O99gu3RVzk4HQ7luD8ZH_DB8pK56mPuL_0BP0YkPCC7sUgL0I-7vc_9yZcmx7ZA1tjw5D4BC2MFN2_9JyNn43Vf2zDjp-SJ__igPQTNM9Ix8-fkcYuS8gVRLfjQAB_agg9tw4duwId6-GBPCvChLfjQGj4vyemgP_74ifkyHExzEa9YWYGVbYwq04xbl_hRKJNHqdaF5iq3QqSqzMyRqKK4SrPERCIr8wS-dGN9xG0m-CuyM1_MzWtCIytsIoxWrrqLyW2ZcK6y3FWls7zSao9EYd6k9hz1rlTKhQzBiDPp5lq6uZY413uku-6zRIaWrVenQRzS25hoO0qA09Z--0F20i92OA9AKRJn4r3ZfvotedQsjX2ys7q6Me_IQ327ml5fvfdQ-wXQhamN |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+modeling+considering+unit-to-unit+heterogeneity-A+general+model+and+comparative+study&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wang%2C+Zhijie&rft.au=Zhai%2C+Qingqing&rft.au=Chen%2C+Piao&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=216&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2021.107897&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |