Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study

The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Reliability engineering & system safety Ročník 216; s. 107897
Hlavní autori: Wang, Zhijie, Zhai, Qingqing, Chen, Piao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Barking Elsevier Ltd 01.12.2021
Elsevier BV
Predmet:
ISSN:0951-8320, 1879-0836
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of the degradation paths of units in a population. The degradation rate of products can be unit-specific and often treated as random effects. This paper develops a novel random-effects Wiener process model to account for the unit-to-unit heterogeneity in the degradation, where the generalized inverse Gaussian (GIG) distribution is used to model the unit-specific degradation rate. The GIG distribution is a very general distribution with broad applications, which includes the inverse Gaussian (IG) distribution and the Gamma distribution as special cases. We investigate the model properties and develop an expectation maximization (EM) algorithm for parameter estimation. By comparing the proposed model with existing models on two real degradation datasets of the infrared LEDs and the GaAs lasers, we show that the proposed model is quite effective for degradation modeling with heterogeneous rates.
AbstractList The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the manufacturing process. For products suffering performance degradation in their use, such heterogeneity often results in an increase in the dispersion of the degradation paths of units in a population. The degradation rate of products can be unit-specific and often treated as random effects. This paper develops a novel random-effects Wiener process model to account for the unit-to-unit heterogeneity in the degradation, where the generalized inverse Gaussian (GIG) distribution is used to model the unit-specific degradation rate. The GIG distribution is a very general distribution with broad applications, which includes the inverse Gaussian (IG) distribution and the Gamma distribution as special cases. We investigate the model properties and develop an expectation maximization (EM) algorithm for parameter estimation. By comparing the proposed model with existing models on two real degradation datasets of the infrared LEDs and the GaAs lasers, we show that the proposed model is quite effective for degradation modeling with heterogeneous rates.
ArticleNumber 107897
Author Zhai, Qingqing
Wang, Zhijie
Chen, Piao
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Wang
  fullname: Wang, Zhijie
  organization: School of Management, Shanghai University, Shanghai, China
– sequence: 2
  givenname: Qingqing
  surname: Zhai
  fullname: Zhai, Qingqing
  email: zhaiq@shu.edu.cn
  organization: School of Management, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Piao
  surname: Chen
  fullname: Chen, Piao
  organization: Delft Institute of Applied Mathematics, Delft University of Technology, Netherlands
BookMark eNp9kE9LAzEQxYNUsK1-AU8Lnrcm2c0mAS-l_oWCFz2HNJmtKW1Sk7TQb--u68lDT_MY3u8N8yZo5IMHhG4JnhFMmvvNLEJKM4op6RZcSH6BxkRwWWJRNSM0xpKRUlQUX6FJShuMcS0ZHyP9COuorc4u-GIXLGydXxcm-OQsxF4fvMtlDmU_iy_IEMMaPLh8KudFr6LeDmShve3Q3V7HLu8IRcoHe7pGl63eJrj5m1P0-fz0sXgtl-8vb4v5sjQVp7lcWVYzAL1iTdVWjNRSgyDMGGkqLVrOmV41gLkl1LKmBsKblagJr6nBVdvwaoruhtx9DN8HSFltwiH67qSiTEpZY0JF5xKDy8SQUoRWGZd_v89Ru60iWPWFqo3qC1V9oWootEPpP3Qf3U7H03noYYCge_3oIKpkHHgD1kUwWdngzuE_PE-SzA
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113156
crossref_primary_10_1016_j_probengmech_2024_103698
crossref_primary_10_1016_j_cie_2022_108478
crossref_primary_10_1016_j_ress_2024_110289
crossref_primary_10_1016_j_aei_2025_103376
crossref_primary_10_1016_j_ress_2022_108913
crossref_primary_10_1177_1748006X241227300
crossref_primary_10_1002_qre_3615
crossref_primary_10_1016_j_ress_2023_109906
crossref_primary_10_1109_TR_2024_3471796
crossref_primary_10_1080_01605682_2024_2346610
crossref_primary_10_1080_16843703_2021_2015826
crossref_primary_10_1007_s12206_024_0310_y
crossref_primary_10_3390_fractalfract8100556
crossref_primary_10_1016_j_ress_2025_111286
crossref_primary_10_1002_qre_3622
crossref_primary_10_1007_s40430_024_05297_9
crossref_primary_10_1016_j_ress_2022_108704
crossref_primary_10_1016_j_cie_2025_111036
crossref_primary_10_1002_nav_22226
crossref_primary_10_1109_TASE_2024_3516049
crossref_primary_10_1002_qre_3394
crossref_primary_10_1080_16843703_2023_2187011
crossref_primary_10_1016_j_apm_2023_10_003
crossref_primary_10_1109_ACCESS_2025_3543391
Cites_doi 10.1109/TR.2019.2895352
10.1109/TR.2013.2284733
10.1109/TASE.2018.2844204
10.1109/TII.2017.2684821
10.1080/00401706.2017.1375994
10.1016/j.ress.2021.107671
10.1016/j.ress.2018.07.003
10.1016/j.ress.2018.02.003
10.1016/j.ress.2021.107675
10.1109/TMECH.2020.3009449
10.1109/TR.2019.2896230
10.1016/j.ress.2019.106707
10.1016/j.ejor.2020.11.041
10.1109/TII.2018.2869429
10.1016/j.jmva.2008.12.007
10.1080/00401706.2015.1096827
10.1016/j.ress.2020.107168
10.1109/TIE.2019.2907440
10.1016/j.ress.2015.02.005
10.1109/TR.2013.2257055
10.1109/ACCESS.2018.2789518
10.1109/TR.2016.2575442
10.1109/TR.2016.2635149
10.3390/en7020520
10.1080/24725854.2019.1567958
10.1016/j.apm.2019.10.044
10.1109/TR.2017.2710319
10.1016/j.ress.2018.04.005
10.1016/j.ress.2020.107138
10.1016/j.apm.2019.12.017
10.1080/00401706.2019.1668855
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2021.107897
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2021_107897
S0951832021004154
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c372t-bd545eeab563f35149ae815cc9c3a8f775ab6e07d12d564e176b841742c03f673
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702351700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0951-8320
IngestDate Wed Aug 13 09:30:55 EDT 2025
Tue Nov 18 22:12:43 EST 2025
Sat Nov 29 07:06:01 EST 2025
Fri Feb 23 02:42:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Heterogeneous degradation
Wiener process model
Generalized inverse Gaussian distribution
EM algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-bd545eeab563f35149ae815cc9c3a8f775ab6e07d12d564e176b841742c03f673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0951832021004154
PQID 2599940128
PQPubID 2045406
ParticipantIDs proquest_journals_2599940128
crossref_citationtrail_10_1016_j_ress_2021_107897
crossref_primary_10_1016_j_ress_2021_107897
elsevier_sciencedirect_doi_10_1016_j_ress_2021_107897
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhai, Ye (bib0009) 2017; 13
Zhao, He, Kuo (bib0013) 2020; 52
Peng, Li, Yang (bib0015) 2017; 66
Yang (bib0034) 2007
Zhou, Xu (bib0007) 2019; 68
Xu, Tang, Yu (bib0025) 2021
Zhao, Chen, Gaudoin (bib0020) 2021; 292
Meeker, Escobar (bib0035) 1998; New York
Xu, Hu, Wang (bib0016) 2020; 81
Sun, Fu, Liao (bib0024) 2020; 204
Wang, Zhao, Ma (bib0019) 2018; 6
Ye, Wang, Tsui (bib0022) 2013; 62
Peng, Ye, Chen (bib0006) 2020; 67
Zhai, Chen, Hong (bib0029) 2018; 180
Sun, Balakrishnan, Zhao (bib0023) 2020
Wen, Wu, Das (bib0011) 2018; 176
Sun, Ye, Hong (bib0012) 2020; 62
Wen, Wu, Yuan (bib0004) 2017; 66
Chatenet, Remy, Gagnon (bib0014) 2021; 213
Tang, Yu, Wang (bib0028) 2014; 7
Jorgensen (bib0031) 1982
Wang (bib0026) 2010; 101
Ahmad, Khan, Islam (bib0002) 2019; 184
Yan, Ma, Yang (bib0030) 2020; 204
Zhai, Ye (bib0001) 2018; 60
Zhang, Mo, Wang (bib0018) 2020; 69
Ye, Chen, Shen (bib0027) 2015; 139
Hu, Chen (bib0003) 2020; 196
Xiao, Ye (bib0010) 2016; 65
Chen, Ye (bib0032) 2017; 59
Wen, Wu, Zhou (bib0033) 2019; 16
Peng, Tseng (bib0036) 2013; 62
Dong, Cui, Si (bib0017) 2020; 79
Li, Pan, Chen (bib0021) 2015; 45
Wu, Guo, Cheng (bib0005) 2020; 25
Peng, Ye, Chen (bib0008) 2019; 15
Jorgensen (10.1016/j.ress.2021.107897_bib0031) 1982
Xu (10.1016/j.ress.2021.107897_bib0025) 2021
Peng (10.1016/j.ress.2021.107897_bib0015) 2017; 66
Sun (10.1016/j.ress.2021.107897_bib0023) 2020
Ye (10.1016/j.ress.2021.107897_bib0022) 2013; 62
Ahmad (10.1016/j.ress.2021.107897_bib0002) 2019; 184
Dong (10.1016/j.ress.2021.107897_bib0017) 2020; 79
Zhang (10.1016/j.ress.2021.107897_bib0018) 2020; 69
Xu (10.1016/j.ress.2021.107897_bib0016) 2020; 81
Peng (10.1016/j.ress.2021.107897_bib0006) 2020; 67
Chatenet (10.1016/j.ress.2021.107897_bib0014) 2021; 213
Wang (10.1016/j.ress.2021.107897_bib0019) 2018; 6
Sun (10.1016/j.ress.2021.107897_bib0012) 2020; 62
Yan (10.1016/j.ress.2021.107897_bib0030) 2020; 204
Wang (10.1016/j.ress.2021.107897_bib0026) 2010; 101
Peng (10.1016/j.ress.2021.107897_bib0036) 2013; 62
Ye (10.1016/j.ress.2021.107897_bib0027) 2015; 139
Zhou (10.1016/j.ress.2021.107897_bib0007) 2019; 68
Hu (10.1016/j.ress.2021.107897_bib0003) 2020; 196
Wen (10.1016/j.ress.2021.107897_bib0011) 2018; 176
Zhai (10.1016/j.ress.2021.107897_bib0009) 2017; 13
Wu (10.1016/j.ress.2021.107897_bib0005) 2020; 25
Zhai (10.1016/j.ress.2021.107897_bib0029) 2018; 180
Peng (10.1016/j.ress.2021.107897_bib0008) 2019; 15
Wen (10.1016/j.ress.2021.107897_bib0033) 2019; 16
Zhao (10.1016/j.ress.2021.107897_bib0020) 2021; 292
Chen (10.1016/j.ress.2021.107897_bib0032) 2017; 59
Zhao (10.1016/j.ress.2021.107897_bib0013) 2020; 52
Tang (10.1016/j.ress.2021.107897_bib0028) 2014; 7
Xiao (10.1016/j.ress.2021.107897_bib0010) 2016; 65
Zhai (10.1016/j.ress.2021.107897_bib0001) 2018; 60
Yang (10.1016/j.ress.2021.107897_bib0034) 2007
Li (10.1016/j.ress.2021.107897_bib0021) 2015; 45
Sun (10.1016/j.ress.2021.107897_bib0024) 2020; 204
Wen (10.1016/j.ress.2021.107897_bib0004) 2017; 66
Meeker (10.1016/j.ress.2021.107897_bib0035) 1998; New York
References_xml – volume: 67
  start-page: 2283
  year: 2020
  end-page: 2293
  ident: bib0006
  article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty
  publication-title: IEEE Trans Ind Electron
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: bib0009
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans Ind Inf
– volume: 62
  start-page: 338
  year: 2013
  end-page: 350
  ident: bib0036
  article-title: Statistical lifetime inference with skew-Wiener linear degradation models
  publication-title: IEEE Trans Reliab
– volume: 52
  start-page: 91
  year: 2020
  end-page: 103
  ident: bib0013
  article-title: Planning accelerated reliability tests for mission-oriented systems subject to degradation and shocks
  publication-title: IISE Trans
– volume: 65
  start-page: 1327
  year: 2016
  end-page: 1342
  ident: bib0010
  article-title: Optimal design for destructive degradation tests with random initial degradation values using the Wiener process
  publication-title: IEEE Trans Reliab
– volume: 62
  start-page: 536
  year: 2020
  end-page: 548
  ident: bib0012
  article-title: Statistical modeling of multivariate destructive degradation tests with blocking
  publication-title: Technometrics
– volume: 81
  start-page: 177
  year: 2020
  end-page: 193
  ident: bib0016
  article-title: Degradation modeling with subpopulation heterogeneities based on the inverse Gaussian process
  publication-title: Appl Math Modell
– volume: 25
  start-page: 2230
  year: 2020
  end-page: 2240
  ident: bib0005
  article-title: Ensemble generalized multiclass support-vector-machine-based health evaluation of complex degradation systems
  publication-title: IEEE-Asme Trans Mechatron
– volume: 180
  start-page: 94
  year: 2018
  end-page: 103
  ident: bib0029
  article-title: A random-effects Wiener degradation model based on accelerated failure time
  publication-title: Reliab Eng Syst Saf
– volume: 79
  start-page: 414
  year: 2020
  end-page: 433
  ident: bib0017
  article-title: Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes
  publication-title: Appl Math Modell
– volume: 45
  start-page: 955
  year: 2015
  ident: bib0021
  article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels
  publication-title: IEEE Transactions on Cybernetics
– volume: 7
  start-page: 520
  year: 2014
  end-page: 547
  ident: bib0028
  article-title: Remaining useful life prediction of Lithium-ion batteries based on the Wiener process with measurement error
  publication-title: Energies
– volume: 68
  start-page: 398
  year: 2019
  end-page: 409
  ident: bib0007
  article-title: Exponential dispersion process for degradation analysis
  publication-title: IEEE Trans Reliab
– volume: 15
  start-page: 2870
  year: 2019
  end-page: 2878
  ident: bib0008
  article-title: Joint online RUL prediction for multivariate deteriorating systems
  publication-title: IEEE Trans Ind Inf
– volume: 62
  start-page: 772
  year: 2013
  end-page: 780
  ident: bib0022
  article-title: Degradation data analysis using Wiener processes with measurement errors
  publication-title: IEEE Trans Reliab
– volume: 101
  start-page: 340
  year: 2010
  end-page: 351
  ident: bib0026
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
– volume: 60
  start-page: 461
  year: 2018
  end-page: 471
  ident: bib0001
  article-title: Degradation in common dynamic environments
  publication-title: Technometrics
– volume: 66
  start-page: 84
  year: 2017
  end-page: 96
  ident: bib0015
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
– volume: 184
  start-page: 67
  year: 2019
  end-page: 76
  ident: bib0002
  article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models
  publication-title: Reliab Eng Syst Saf
– volume: 213
  year: 2021
  ident: bib0014
  article-title: Modeling cavitation erosion using non-homogeneous gamma process
  publication-title: Reliab Eng Syst Saf
– volume: 176
  start-page: 113
  year: 2018
  end-page: 124
  ident: bib0011
  article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
  publication-title: Reliab Eng Syst Saf
– volume: New York
  year: 1998
  ident: bib0035
  publication-title: Statistical
– volume: 139
  start-page: 58
  year: 2015
  end-page: 67
  ident: bib0027
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
– volume: 69
  start-page: 768
  year: 2020
  end-page: 780
  ident: bib0018
  article-title: Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of Lithium-ion batteries
  publication-title: IEEE Trans Reliab
– volume: 196
  year: 2020
  ident: bib0003
  article-title: Predictive maintenance of systems subject to hard failure based on proportional hazards model
  publication-title: Reliab Eng Syst Saf
– volume: 16
  start-page: 613
  year: 2019
  end-page: 628
  ident: bib0033
  article-title: Multiple-change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement
  publication-title: IEEE Trans Autom Sci Eng
– year: 2007
  ident: bib0034
  article-title: Life cycle reliability engineering
– volume: 66
  start-page: 924
  year: 2017
  end-page: 938
  ident: bib0004
  article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
  publication-title: IEEE Trans Reliab
– year: 1982
  ident: bib0031
  article-title: Statistical properties of the generalized inverse Gaussian distribution
– volume: 6
  start-page: 4440
  year: 2018
  end-page: 4451
  ident: bib0019
  article-title: Mechanism equivalence in designing optimum step-stress accelerated degradation test plan under Wiener process
  publication-title: IEEE Access
– volume: 59
  start-page: 115
  year: 2017
  end-page: 125
  ident: bib0032
  article-title: Estimation of field reliability based on aggregate lifetime data
  publication-title: Technometrics
– volume: 292
  start-page: 1099
  year: 2021
  end-page: 1114
  ident: bib0020
  article-title: Accelerated degradation tests with inspection effects
  publication-title: Eur J Oper Res
– start-page: 1
  year: 2020
  end-page: 19
  ident: bib0023
  article-title: Mis-specification analysis of the impact of covariates on the diffusion coefficient in Wiener degradation process
  publication-title: Commun Stat - Simul Comput
– year: 2021
  ident: bib0025
  article-title: Remaining useful life prediction of Lithium-ion batteries based on Wiener process under time-varying temperature condition
  publication-title: Reliab Eng Syst Saf
– volume: 204
  year: 2020
  ident: bib0024
  article-title: Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula
  publication-title: Reliab Eng Syst Saf
– volume: 204
  year: 2020
  ident: bib0030
  article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis
  publication-title: Reliab Eng Syst Saf
– volume: 68
  start-page: 398
  issue: 2
  year: 2019
  ident: 10.1016/j.ress.2021.107897_bib0007
  article-title: Exponential dispersion process for degradation analysis
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2895352
– volume: 62
  start-page: 772
  issue: 4
  year: 2013
  ident: 10.1016/j.ress.2021.107897_bib0022
  article-title: Degradation data analysis using Wiener processes with measurement errors
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2284733
– volume: 16
  start-page: 613
  issue: 2
  year: 2019
  ident: 10.1016/j.ress.2021.107897_bib0033
  article-title: Multiple-change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2018.2844204
– volume: 13
  start-page: 2911
  issue: 6
  year: 2017
  ident: 10.1016/j.ress.2021.107897_bib0009
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2684821
– volume: 60
  start-page: 461
  issue: 4
  year: 2018
  ident: 10.1016/j.ress.2021.107897_bib0001
  article-title: Degradation in common dynamic environments
  publication-title: Technometrics
  doi: 10.1080/00401706.2017.1375994
– volume: 213
  year: 2021
  ident: 10.1016/j.ress.2021.107897_bib0014
  article-title: Modeling cavitation erosion using non-homogeneous gamma process
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107671
– volume: 180
  start-page: 94
  year: 2018
  ident: 10.1016/j.ress.2021.107897_bib0029
  article-title: A random-effects Wiener degradation model based on accelerated failure time
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.07.003
– start-page: 1
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0023
  article-title: Mis-specification analysis of the impact of covariates on the diffusion coefficient in Wiener degradation process
  publication-title: Commun Stat - Simul Comput
– volume: 184
  start-page: 67
  year: 2019
  ident: 10.1016/j.ress.2021.107897_bib0002
  article-title: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.02.003
– year: 2021
  ident: 10.1016/j.ress.2021.107897_bib0025
  article-title: Remaining useful life prediction of Lithium-ion batteries based on Wiener process under time-varying temperature condition
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107675
– volume: 25
  start-page: 2230
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0005
  article-title: Ensemble generalized multiclass support-vector-machine-based health evaluation of complex degradation systems
  publication-title: IEEE-Asme Trans Mechatron
  doi: 10.1109/TMECH.2020.3009449
– volume: 69
  start-page: 768
  issue: 2
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0018
  article-title: Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of Lithium-ion batteries
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2019.2896230
– volume: 196
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0003
  article-title: Predictive maintenance of systems subject to hard failure based on proportional hazards model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106707
– volume: 292
  start-page: 1099
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2021.107897_bib0020
  article-title: Accelerated degradation tests with inspection effects
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2020.11.041
– volume: 15
  start-page: 2870
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2021.107897_bib0008
  article-title: Joint online RUL prediction for multivariate deteriorating systems
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2869429
– volume: 101
  start-page: 340
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2021.107897_bib0026
  article-title: Wiener processes with random effects for degradation data
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2008.12.007
– year: 1982
  ident: 10.1016/j.ress.2021.107897_bib0031
– volume: 59
  start-page: 115
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2021.107897_bib0032
  article-title: Estimation of field reliability based on aggregate lifetime data
  publication-title: Technometrics
  doi: 10.1080/00401706.2015.1096827
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0024
  article-title: Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107168
– volume: 67
  start-page: 2283
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0006
  article-title: Bayesian deep-learning-based health prognostics toward prognostics uncertainty
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2019.2907440
– year: 2007
  ident: 10.1016/j.ress.2021.107897_bib0034
– volume: 139
  start-page: 58
  year: 2015
  ident: 10.1016/j.ress.2021.107897_bib0027
  article-title: A new class of Wiener process models for degradation analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.02.005
– volume: 62
  start-page: 338
  issue: 2
  year: 2013
  ident: 10.1016/j.ress.2021.107897_bib0036
  article-title: Statistical lifetime inference with skew-Wiener linear degradation models
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2013.2257055
– volume: 6
  start-page: 4440
  year: 2018
  ident: 10.1016/j.ress.2021.107897_bib0019
  article-title: Mechanism equivalence in designing optimum step-stress accelerated degradation test plan under Wiener process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789518
– volume: 65
  start-page: 1327
  issue: 3
  year: 2016
  ident: 10.1016/j.ress.2021.107897_bib0010
  article-title: Optimal design for destructive degradation tests with random initial degradation values using the Wiener process
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2575442
– volume: 66
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.ress.2021.107897_bib0015
  article-title: Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2016.2635149
– volume: 7
  start-page: 520
  issue: 2
  year: 2014
  ident: 10.1016/j.ress.2021.107897_bib0028
  article-title: Remaining useful life prediction of Lithium-ion batteries based on the Wiener process with measurement error
  publication-title: Energies
  doi: 10.3390/en7020520
– volume: 45
  start-page: 955
  issue: 5
  year: 2015
  ident: 10.1016/j.ress.2021.107897_bib0021
  article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels
  publication-title: IEEE Transactions on Cybernetics
– volume: 52
  start-page: 91
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0013
  article-title: Planning accelerated reliability tests for mission-oriented systems subject to degradation and shocks
  publication-title: IISE Trans
  doi: 10.1080/24725854.2019.1567958
– volume: 79
  start-page: 414
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0017
  article-title: Reliability and availability analysis of stochastic degradation systems based on bivariate Wiener processes
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2019.10.044
– volume: 66
  start-page: 924
  issue: 3
  year: 2017
  ident: 10.1016/j.ress.2021.107897_bib0004
  article-title: Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction
  publication-title: IEEE Trans Reliab
  doi: 10.1109/TR.2017.2710319
– volume: 176
  start-page: 113
  year: 2018
  ident: 10.1016/j.ress.2021.107897_bib0011
  article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.04.005
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0030
  article-title: A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107138
– volume: 81
  start-page: 177
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0016
  article-title: Degradation modeling with subpopulation heterogeneities based on the inverse Gaussian process
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2019.12.017
– volume: 62
  start-page: 536
  issue: 4
  year: 2020
  ident: 10.1016/j.ress.2021.107897_bib0012
  article-title: Statistical modeling of multivariate destructive degradation tests with blocking
  publication-title: Technometrics
  doi: 10.1080/00401706.2019.1668855
– volume: New York
  year: 1998
  ident: 10.1016/j.ress.2021.107897_bib0035
SSID ssj0004957
Score 2.4730916
Snippet The performance of units in the same batch can exhibit considerable heterogeneity due to the variation in the raw materials and fluctuation in the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107897
SubjectTerms Algorithms
Comparative studies
EM algorithm
Gallium arsenide lasers
Generalized inverse
Generalized inverse Gaussian distribution
Heterogeneity
Heterogeneous degradation
Immunoglobulins
Inverse Gaussian probability distribution
Lasers
Manufacturing industry
Modelling
Parameter estimation
Performance degradation
Probability distribution functions
Raw materials
Reliability engineering
Wiener process model
Title Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study
URI https://dx.doi.org/10.1016/j.ress.2021.107897
https://www.proquest.com/docview/2599940128
Volume 216
WOSCitedRecordID wos000702351700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKxgM8IH6KwUB-YE-VpyVO4uSxYq0AVWVIHar2YjmOrbWa2m7rpvEf8GdzztlNVkEFD7wkkRM7ke_z5XK5-46QDyJWZSyikpmyUCwxXLCS84rFwlhldakqJHEditEon0yKk07nZ8iFub0Q83l-d1cs_6uooQ2E7VJn_0Hc60GhAY5B6LAFscP2rwR_7OgfsFIS1rnBtFqsy-mOb2AVs9WCuT0YijCxCxjMgDnOeq6isvNSYc-Q9LbmB2_IaAOnNwyPTN8_uqahNqwBhSTR3WtlPdcIOu5RuZydT2fTNajOfFXsb9D3MrxM66AD1IonU7Vo-yfiaCPWo0mc-X7P-Rgx0CX4R8ag6s1FUXNlt3VzHLW1a_RbnY_uh9mhc08cuieAJpFj1O99gu3RVzk4HQ7luD8ZH_DB8pK56mPuL_0BP0YkPCC7sUgL0I-7vc_9yZcmx7ZA1tjw5D4BC2MFN2_9JyNn43Vf2zDjp-SJ__igPQTNM9Ix8-fkcYuS8gVRLfjQAB_agg9tw4duwId6-GBPCvChLfjQGj4vyemgP_74ifkyHExzEa9YWYGVbYwq04xbl_hRKJNHqdaF5iq3QqSqzMyRqKK4SrPERCIr8wS-dGN9xG0m-CuyM1_MzWtCIytsIoxWrrqLyW2ZcK6y3FWls7zSao9EYd6k9hz1rlTKhQzBiDPp5lq6uZY413uku-6zRIaWrVenQRzS25hoO0qA09Z--0F20i92OA9AKRJn4r3ZfvotedQsjX2ys7q6Me_IQ327ml5fvfdQ-wXQhamN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+modeling+considering+unit-to-unit+heterogeneity-A+general+model+and+comparative+study&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wang%2C+Zhijie&rft.au=Zhai%2C+Qingqing&rft.au=Chen%2C+Piao&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=216&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2021.107897&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon