Binary grasshopper optimisation algorithm approaches for feature selection problems

•Three binary versions of Grasshopper Optimization Algorithm (BGOA) are proposed.•Wrapper-based feature selection techniques are proposed using the BGOA algorithms.•The proposed algorithms are benchmarked on 18 standard UCI datasets.•The results are compared with 10 algorithms.•The results show the...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 117; pp. 267 - 286
Main Authors: Mafarja, Majdi, Aljarah, Ibrahim, Faris, Hossam, Hammouri, Abdelaziz I., Al-Zoubi, Ala’ M., Mirjalili, Seyedali
Format: Journal Article
Language:English
Published: New York Elsevier Ltd 01.03.2019
Elsevier BV
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Three binary versions of Grasshopper Optimization Algorithm (BGOA) are proposed.•Wrapper-based feature selection techniques are proposed using the BGOA algorithms.•The proposed algorithms are benchmarked on 18 standard UCI datasets.•The results are compared with 10 algorithms.•The results show the merits of the proposed algorithms and feature selection methods. Feature Selection (FS) is a challenging machine learning-related task that aims at reducing the number of features by removing irrelevant, redundant and noisy data while maintaining an acceptable level of classification accuracy. FS can be considered as an optimisation problem. Due to the difficulty of this problem and having a large number of local solutions, stochastic optimisation algorithms are promising techniques to solve this problem. As a seminal attempt, binary variants of the recent Grasshopper Optimisation Algorithm (GOA) are proposed in this work and employed to select the optimal feature subset for classification purposes within a wrapper-based framework. Two mechanisms are employed to design a binary GOA, the first one is based on Sigmoid and V-shaped transfer functions, and will be indicated by BGOA-S and BGOA-V, respectively. While the second mechanism uses a novel technique that combines the best solution obtained so far. In addition, a mutation operator is employed to enhance the exploration phase in BGOA algorithm (BGOA-M). The proposed methods are evaluated using 25 standard UCI datasets and compared with 8 well-regarded metaheuristic wrapper-based approaches, and six well known filter-based (e.g., correlation FS) approaches. The comparative results show the superior performance of the BGOA and BGOA-M methods compared to other similar techniques in the literature.
AbstractList Feature Selection (FS) is a challenging machine learning-related task that aims at reducing the number of features by removing irrelevant, redundant and noisy data while maintaining an acceptable level of classification accuracy. FS can be considered as an optimisation problem. Due to the difficulty of this problem and having a large number of local solutions, stochastic optimisation algorithms are promising techniques to solve this problem. As a seminal attempt, binary variants of the recent Grasshopper Optimisation Algorithm (GOA) are proposed in this work and employed to select the optimal feature subset for classification purposes within a wrapper-based framework. Two mechanisms are employed to design a binary GOA, the first one is based on Sigmoid and V-shaped transfer functions, and will be indicated by BGOA-S and BGOA-V, respectively. While the second mechanism uses a novel technique that combines the best solution obtained so far. In addition, a mutation operator is employed to enhance the exploration phase in BGOA algorithm (BGOA-M). The proposed methods are evaluated using 25 standard UCI datasets and compared with 8 well-regarded metaheuristic wrapper-based approaches, and six well known filter-based (e.g., correlation FS) approaches. The comparative results show the superior performance of the BGOA and BGOA-M methods compared to other similar techniques in the literature.
•Three binary versions of Grasshopper Optimization Algorithm (BGOA) are proposed.•Wrapper-based feature selection techniques are proposed using the BGOA algorithms.•The proposed algorithms are benchmarked on 18 standard UCI datasets.•The results are compared with 10 algorithms.•The results show the merits of the proposed algorithms and feature selection methods. Feature Selection (FS) is a challenging machine learning-related task that aims at reducing the number of features by removing irrelevant, redundant and noisy data while maintaining an acceptable level of classification accuracy. FS can be considered as an optimisation problem. Due to the difficulty of this problem and having a large number of local solutions, stochastic optimisation algorithms are promising techniques to solve this problem. As a seminal attempt, binary variants of the recent Grasshopper Optimisation Algorithm (GOA) are proposed in this work and employed to select the optimal feature subset for classification purposes within a wrapper-based framework. Two mechanisms are employed to design a binary GOA, the first one is based on Sigmoid and V-shaped transfer functions, and will be indicated by BGOA-S and BGOA-V, respectively. While the second mechanism uses a novel technique that combines the best solution obtained so far. In addition, a mutation operator is employed to enhance the exploration phase in BGOA algorithm (BGOA-M). The proposed methods are evaluated using 25 standard UCI datasets and compared with 8 well-regarded metaheuristic wrapper-based approaches, and six well known filter-based (e.g., correlation FS) approaches. The comparative results show the superior performance of the BGOA and BGOA-M methods compared to other similar techniques in the literature.
Author Mafarja, Majdi
Faris, Hossam
Aljarah, Ibrahim
Al-Zoubi, Ala’ M.
Hammouri, Abdelaziz I.
Mirjalili, Seyedali
Author_xml – sequence: 1
  givenname: Majdi
  orcidid: 0000-0002-0387-8252
  surname: Mafarja
  fullname: Mafarja, Majdi
  email: mmafarja@birzeit.edu, mmafarjeh@gmail.com
  organization: Department of Computer Science, Birzeit University, Birzeit, Palestine
– sequence: 2
  givenname: Ibrahim
  orcidid: 0000-0002-9265-9819
  surname: Aljarah
  fullname: Aljarah, Ibrahim
  email: i.aljarah@ju.edu.jo
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 3
  givenname: Hossam
  orcidid: 0000-0003-4261-8127
  surname: Faris
  fullname: Faris, Hossam
  email: hossam.faris@ju.edu.jo
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 4
  givenname: Abdelaziz I.
  orcidid: 0000-0002-0612-8246
  surname: Hammouri
  fullname: Hammouri, Abdelaziz I.
  email: Aziz@bau.edu.jo
  organization: Department of Computer Information Systems, Al-Balqa Applied University, Al-Salt, Jordan
– sequence: 5
  givenname: Ala’ M.
  orcidid: 0000-0003-0414-3570
  surname: Al-Zoubi
  fullname: Al-Zoubi, Ala’ M.
  email: alaah14@gmail.com
  organization: King Abdullah II School for Information Technology, The University of Jordan, Amman, Jordan
– sequence: 6
  givenname: Seyedali
  orcidid: 0000-0002-1443-9458
  surname: Mirjalili
  fullname: Mirjalili, Seyedali
  email: seyedali.mirjalili@griffithuni.edu.au
  organization: Institute for Integrated and Intelligent Systems, Griffith University, Nathan, Brisbane, QLD 4111, Australia
BookMark eNp9kD1PwzAQhi0EEqXwB5giMSf47CSOJRZAfEmVGIDZcpwzdZXGwU5B_HtcysRQ3XDDvc-d7jkhh4MfkJBzoAVQqC9XBcYvXTAKTUFlQaE6IDNoBM9rIfkhmVFZibwEUR6TkxhXlIKgVMzIy40bdPjO3oOOcenHEUPmx8mtXdST80Om-3cf3LRcZ3ocg9dmiTGzPmQW9bQJmEXs0fxG07jtcR1PyZHVfcSzvz4nb_d3r7eP-eL54en2epEbLtiUtxpFVQOgbbsWWCklZ9qAlm3JBdfQ2C6VYMykPJU1kw3vjLFN1Whrasvn5GK3Nx3-2GCc1MpvwpBOKga8rgCkaFKq2aVM8DEGtMq46fe3KWjXK6Bqq1Ct1Fah2ipUVKqkMKHsHzoGt0669kNXOwjT658Og4rG4WCwcyGJUp13-_AfqUKPTw
CitedBy_id crossref_primary_10_1007_s00366_020_01028_5
crossref_primary_10_1016_j_eswa_2021_115828
crossref_primary_10_1016_j_asoc_2018_12_037
crossref_primary_10_1007_s13369_021_06026_3
crossref_primary_10_1109_ACCESS_2022_3221194
crossref_primary_10_1016_j_engappai_2021_104506
crossref_primary_10_1016_j_inffus_2023_102190
crossref_primary_10_1109_ACCESS_2023_3341395
crossref_primary_10_1089_big_2022_0287
crossref_primary_10_3233_JIFS_191765
crossref_primary_10_1007_s11227_021_03626_6
crossref_primary_10_1016_j_eswa_2020_113364
crossref_primary_10_1016_j_eswa_2019_112824
crossref_primary_10_1109_ACCESS_2023_3312022
crossref_primary_10_1007_s40747_020_00189_6
crossref_primary_10_1016_j_eswa_2021_116368
crossref_primary_10_1016_j_heliyon_2024_e24192
crossref_primary_10_1080_21681163_2022_2157748
crossref_primary_10_1155_2022_4807428
crossref_primary_10_1016_j_eswa_2020_113917
crossref_primary_10_1016_j_eswa_2024_124262
crossref_primary_10_1109_ACCESS_2022_3203400
crossref_primary_10_1007_s42235_022_00253_6
crossref_primary_10_1109_TEVC_2021_3134804
crossref_primary_10_1007_s10586_020_03229_5
crossref_primary_10_1007_s11042_023_16236_6
crossref_primary_10_1080_09540091_2020_1741515
crossref_primary_10_1007_s10462_020_09860_3
crossref_primary_10_1016_j_jestch_2023_101453
crossref_primary_10_1007_s00521_019_04008_z
crossref_primary_10_1007_s00521_021_06751_8
crossref_primary_10_1007_s12652_019_01330_1
crossref_primary_10_1109_ACCESS_2020_2967399
crossref_primary_10_7717_peerj_cs_1816
crossref_primary_10_1109_ACCESS_2021_3064976
crossref_primary_10_3390_en14051331
crossref_primary_10_1016_j_eswa_2023_120639
crossref_primary_10_3390_app112110237
crossref_primary_10_1007_s00521_022_07203_7
crossref_primary_10_1007_s11277_021_08368_5
crossref_primary_10_1016_j_asoc_2019_105482
crossref_primary_10_1109_ACCESS_2022_3204046
crossref_primary_10_1007_s00521_020_05560_9
crossref_primary_10_1007_s10489_020_01981_0
crossref_primary_10_1016_j_eswa_2025_126503
crossref_primary_10_1038_s41598_024_78758_9
crossref_primary_10_1080_1062936X_2020_1818616
crossref_primary_10_1007_s11030_022_10410_y
crossref_primary_10_1002_jnm_3005
crossref_primary_10_1007_s12652_021_03136_6
crossref_primary_10_1007_s13042_024_02222_3
crossref_primary_10_1007_s13369_020_04741_x
crossref_primary_10_1038_s41598_023_38252_0
crossref_primary_10_1007_s10115_024_02067_w
crossref_primary_10_1007_s12065_021_00590_1
crossref_primary_10_1016_j_eswa_2024_123985
crossref_primary_10_1007_s11042_023_16969_4
crossref_primary_10_1007_s10706_022_02178_7
crossref_primary_10_1007_s13042_023_01788_8
crossref_primary_10_1016_j_patcog_2020_107470
crossref_primary_10_1007_s13042_019_00931_8
crossref_primary_10_1016_j_eswa_2019_113103
crossref_primary_10_1016_j_asoc_2023_110583
crossref_primary_10_1007_s00366_021_01448_x
crossref_primary_10_1007_s00521_020_05500_7
crossref_primary_10_1109_TCYB_2020_3042243
crossref_primary_10_1016_j_chemolab_2020_104196
crossref_primary_10_1016_j_cie_2021_107481
crossref_primary_10_1002_cpe_6453
crossref_primary_10_1016_j_asoc_2021_107745
crossref_primary_10_1007_s00500_022_07234_1
crossref_primary_10_1016_j_eswa_2021_114778
crossref_primary_10_3233_JIFS_230459
crossref_primary_10_1007_s00521_020_04917_4
crossref_primary_10_3390_app122211787
crossref_primary_10_1016_j_cie_2021_107904
crossref_primary_10_3233_JIFS_191685
crossref_primary_10_1016_j_eswa_2022_118864
crossref_primary_10_1007_s12652_021_03362_y
crossref_primary_10_1109_ACCESS_2021_3067597
crossref_primary_10_1007_s12652_020_02484_z
crossref_primary_10_1007_s10462_021_10075_3
crossref_primary_10_3390_math9182302
crossref_primary_10_1007_s12652_022_04103_5
crossref_primary_10_1109_JIOT_2023_3317089
crossref_primary_10_1080_13682199_2023_2207277
crossref_primary_10_1007_s11063_024_11514_2
crossref_primary_10_1016_j_jpdc_2022_12_009
crossref_primary_10_1002_cpe_7771
crossref_primary_10_1007_s10489_022_03971_w
crossref_primary_10_1016_j_eswa_2022_118293
crossref_primary_10_1007_s12652_021_03226_5
crossref_primary_10_1016_j_eswa_2021_114887
crossref_primary_10_1016_j_eswa_2022_116550
crossref_primary_10_1109_ACCESS_2019_2953800
crossref_primary_10_1016_j_compbiomed_2022_105615
crossref_primary_10_1016_j_cosrev_2025_100733
crossref_primary_10_1016_j_eswa_2019_112878
crossref_primary_10_1016_j_eswa_2021_115290
crossref_primary_10_1016_j_neucom_2020_07_113
crossref_primary_10_1016_j_asoc_2019_105605
crossref_primary_10_1109_ACCESS_2020_2996611
crossref_primary_10_3233_JIFS_200258
crossref_primary_10_1007_s11227_020_03378_9
crossref_primary_10_1109_ACCESS_2021_3108097
crossref_primary_10_3390_s23031096
crossref_primary_10_1016_j_knosys_2020_106131
crossref_primary_10_1155_2020_4873501
crossref_primary_10_1016_j_bdr_2025_100556
crossref_primary_10_3390_biomimetics9030187
crossref_primary_10_3390_electronics8101130
crossref_primary_10_1109_ACCESS_2022_3140287
crossref_primary_10_3390_math10142396
crossref_primary_10_3390_math11010129
crossref_primary_10_1109_ACCESS_2020_3035081
crossref_primary_10_1016_j_knosys_2021_106894
crossref_primary_10_1007_s11227_022_04763_2
crossref_primary_10_1016_j_swevo_2021_100962
crossref_primary_10_3390_app13106138
crossref_primary_10_1109_ACCESS_2021_3098642
crossref_primary_10_1007_s00366_021_01342_6
crossref_primary_10_1109_TPWRS_2023_3260871
crossref_primary_10_1007_s00366_019_00882_2
crossref_primary_10_1109_ACCESS_2020_3013617
crossref_primary_10_1002_mmce_23048
crossref_primary_10_3233_JIFS_202647
crossref_primary_10_1007_s00500_023_08414_3
crossref_primary_10_1007_s10489_022_03554_9
crossref_primary_10_1016_j_chemolab_2023_104880
crossref_primary_10_3233_JIFS_220741
crossref_primary_10_1080_0952813X_2020_1735532
crossref_primary_10_1007_s41870_023_01481_7
crossref_primary_10_1007_s11042_022_11949_6
crossref_primary_10_1111_exsy_12674
crossref_primary_10_1109_ACCESS_2021_3064799
crossref_primary_10_1007_s00500_020_05349_x
crossref_primary_10_1007_s10489_022_03478_4
crossref_primary_10_1007_s11053_021_09826_4
crossref_primary_10_1016_j_compbiomed_2024_108817
crossref_primary_10_1016_j_jocs_2021_101374
crossref_primary_10_1016_j_jestch_2025_102031
crossref_primary_10_1109_ACCESS_2020_3031718
crossref_primary_10_1016_j_ygeno_2024_110906
crossref_primary_10_1007_s00500_023_08449_6
crossref_primary_10_1109_ACCESS_2021_3070428
crossref_primary_10_1177_1748006X221102992
crossref_primary_10_1016_j_asoc_2019_105866
crossref_primary_10_1007_s00500_020_04877_w
crossref_primary_10_3390_computers10110136
crossref_primary_10_1016_j_chemolab_2022_104574
crossref_primary_10_1016_j_apm_2021_04_018
crossref_primary_10_3390_s20154065
crossref_primary_10_1007_s11042_023_15467_x
crossref_primary_10_3390_computation11030056
crossref_primary_10_1109_ACCESS_2021_3124710
crossref_primary_10_3390_math10030464
crossref_primary_10_1016_j_eswa_2021_114576
crossref_primary_10_1109_ACCESS_2024_3367440
crossref_primary_10_1016_j_knosys_2020_106553
crossref_primary_10_1016_j_treng_2025_100323
crossref_primary_10_1007_s00366_020_01231_4
crossref_primary_10_1007_s00521_025_11387_z
crossref_primary_10_1007_s10796_024_10559_x
crossref_primary_10_3390_app11031286
crossref_primary_10_1016_j_bbe_2022_09_001
crossref_primary_10_1007_s12053_020_09897_x
crossref_primary_10_3390_a14090260
crossref_primary_10_7717_peerj_cs_2084
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_1016_j_compeleceng_2022_107689
crossref_primary_10_1371_journal_pone_0290117
crossref_primary_10_1016_j_asoc_2023_111141
crossref_primary_10_1007_s13748_023_00298_6
crossref_primary_10_1080_0952813X_2023_2183267
crossref_primary_10_3390_computation7020031
crossref_primary_10_1007_s10462_023_10482_8
crossref_primary_10_1007_s11227_020_03161_w
crossref_primary_10_3390_math10152770
crossref_primary_10_1007_s00521_022_07852_8
crossref_primary_10_1007_s10489_020_02038_y
crossref_primary_10_1016_j_eswa_2019_03_039
crossref_primary_10_1016_j_compbiomed_2021_105152
crossref_primary_10_1007_s10462_022_10328_9
crossref_primary_10_1016_j_asoc_2020_107026
crossref_primary_10_1109_ACCESS_2019_2900078
crossref_primary_10_1007_s10044_021_00985_x
crossref_primary_10_1007_s12652_021_03155_3
crossref_primary_10_1007_s00521_022_07755_8
crossref_primary_10_1016_j_eswa_2020_113544
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_32604_cmc_2022_021522
crossref_primary_10_1007_s10462_023_10431_5
crossref_primary_10_2166_wh_2024_249
crossref_primary_10_3233_JIFS_236577
crossref_primary_10_3390_s24247879
crossref_primary_10_3390_math9182321
crossref_primary_10_1016_j_chemolab_2020_104104
crossref_primary_10_1080_15397734_2023_2229913
crossref_primary_10_3390_safety8020028
crossref_primary_10_1016_j_knosys_2024_111578
crossref_primary_10_1016_j_cogsys_2021_04_003
crossref_primary_10_1016_j_epsr_2021_107049
crossref_primary_10_1016_j_knosys_2020_106560
crossref_primary_10_1016_j_knosys_2022_108701
crossref_primary_10_1108_IDD_11_2022_0118
crossref_primary_10_1109_ACCESS_2020_3040740
crossref_primary_10_1002_oca_3065
crossref_primary_10_1109_TEVC_2020_2968743
crossref_primary_10_1016_j_eswa_2020_114402
crossref_primary_10_1109_ACCESS_2020_2985986
crossref_primary_10_1016_j_compbiomed_2021_104968
crossref_primary_10_1016_j_neucom_2019_04_061
crossref_primary_10_2516_stet_2024057
crossref_primary_10_1016_j_compbiomed_2022_105675
crossref_primary_10_1016_j_engappai_2024_108560
crossref_primary_10_1177_1088467X251370595
crossref_primary_10_1002_cnm_3371
crossref_primary_10_1007_s42979_024_03396_x
crossref_primary_10_3390_math9182335
crossref_primary_10_1080_08839514_2021_1966882
crossref_primary_10_1109_ACCESS_2024_3362228
crossref_primary_10_1007_s11042_022_12987_w
crossref_primary_10_1080_15623599_2021_1927363
crossref_primary_10_1016_j_enbuild_2022_112503
crossref_primary_10_1371_journal_pone_0301521
crossref_primary_10_3390_math10060999
crossref_primary_10_1007_s00521_022_07522_9
crossref_primary_10_1007_s12652_020_02701_9
crossref_primary_10_1016_j_eswa_2022_117493
crossref_primary_10_1007_s13369_021_05478_x
crossref_primary_10_1088_1742_6596_2998_1_012024
crossref_primary_10_1016_j_knosys_2022_108771
crossref_primary_10_1080_08839514_2020_1861407
crossref_primary_10_1109_TCSS_2020_2966910
crossref_primary_10_1016_j_eswa_2022_118107
crossref_primary_10_3390_rs11091134
crossref_primary_10_3390_math13132175
crossref_primary_10_1109_ACCESS_2021_3052149
crossref_primary_10_1016_j_knosys_2023_110462
crossref_primary_10_1016_j_measurement_2019_107389
crossref_primary_10_1016_j_precisioneng_2021_08_021
crossref_primary_10_1016_j_jestch_2024_101935
crossref_primary_10_1109_ACCESS_2020_3006473
crossref_primary_10_1002_dac_4434
crossref_primary_10_1049_el_2020_2517
crossref_primary_10_17093_alphanumeric_757769
crossref_primary_10_1016_j_knosys_2021_107219
crossref_primary_10_3390_su12104023
crossref_primary_10_1016_j_jksuci_2019_11_007
crossref_primary_10_1109_ACCESS_2020_2988157
crossref_primary_10_3390_en14061649
crossref_primary_10_1016_j_eswa_2022_117246
crossref_primary_10_1007_s11227_024_06790_7
crossref_primary_10_3389_fgene_2021_793629
crossref_primary_10_3390_diagnostics13142417
crossref_primary_10_1016_j_eswa_2023_121128
crossref_primary_10_1016_j_istruc_2023_105280
crossref_primary_10_1016_j_ins_2021_02_061
crossref_primary_10_3390_app11146516
crossref_primary_10_3390_biomimetics10080526
crossref_primary_10_1007_s12652_020_02662_z
crossref_primary_10_1016_j_chemolab_2022_104635
crossref_primary_10_1080_15325008_2023_2240800
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_1155_2022_7414419
crossref_primary_10_1155_2022_3984082
crossref_primary_10_1371_journal_pone_0275727
crossref_primary_10_1007_s00521_020_04789_8
crossref_primary_10_1088_1361_6501_abb892
crossref_primary_10_1016_j_asoc_2019_105570
crossref_primary_10_1007_s00521_019_04633_8
crossref_primary_10_1109_ACCESS_2021_3056407
crossref_primary_10_1371_journal_pone_0282812
crossref_primary_10_3390_s22041396
crossref_primary_10_3390_sym11111423
crossref_primary_10_1186_s12986_023_00746_z
crossref_primary_10_3233_JIFS_190782
crossref_primary_10_3390_electronics12143123
crossref_primary_10_1016_j_eswa_2020_114288
crossref_primary_10_3390_e24060777
crossref_primary_10_1007_s11831_020_09412_6
crossref_primary_10_1109_ACCESS_2021_3100638
crossref_primary_10_1016_j_cose_2022_102957
crossref_primary_10_1007_s11042_021_10678_6
crossref_primary_10_1007_s10706_023_02487_5
crossref_primary_10_1109_ACCESS_2020_2992752
crossref_primary_10_1109_ACCESS_2019_2909945
crossref_primary_10_32604_cmc_2022_029835
crossref_primary_10_1016_j_iswa_2022_200114
Cites_doi 10.1016/j.eswa.2008.08.022
10.1109/TKDE.2004.96
10.1016/j.neucom.2017.04.053
10.1109/TKDE.2005.66
10.1016/j.neucom.2014.06.067
10.1016/j.eswa.2011.11.011
10.1016/j.neucom.2011.03.034
10.1007/s10115-017-1059-8
10.1007/s11047-009-9175-3
10.1016/j.eswa.2017.06.030
10.1016/j.patrec.2006.09.003
10.1016/j.knosys.2016.07.026
10.1016/j.eswa.2017.02.049
10.1109/TPAMI.2004.105
10.1016/j.eswa.2017.01.048
10.1016/j.asoc.2013.09.018
10.1017/S000632319900540X
10.4236/jilsa.2017.94006
10.1080/00031305.1992.10475879
10.1016/j.neucom.2015.06.083
10.1109/4235.585893
10.1016/j.ejor.2004.08.010
10.5120/ijca2016908317
10.1155/2013/524017
10.1016/j.asoc.2016.01.044
10.1016/j.eswa.2015.12.004
10.1016/S0004-3702(97)00043-X
10.1242/jeb.00648
10.1016/j.neucom.2016.03.101
10.1016/j.advengsoft.2017.01.004
10.3233/IDA-1997-1302
10.1371/journal.pone.0150652
10.1016/j.eswa.2011.09.073
10.1016/j.eswa.2016.01.021
10.1016/j.swevo.2012.09.002
10.1016/j.eswa.2016.06.004
10.3390/rs6042912
10.1016/j.asoc.2016.08.011
10.1016/j.eswa.2017.07.033
10.1109/5254.671091
10.1023/A:1008280620621
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2018.09.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 286
ExternalDocumentID 10_1016_j_eswa_2018_09_015
S0957417418305864
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c372t-bae75611efbdb1249932ac1a9b4373a18fdfdf722cc370962983dccf858afc6f3
ISICitedReferencesCount 334
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000449892000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 30 05:07:06 EST 2025
Sat Nov 29 06:14:29 EST 2025
Tue Nov 18 19:58:27 EST 2025
Fri Feb 23 02:24:30 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GOA
Feature selection
Binary grasshopper optimisation algorithm
Optimisation
Classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-bae75611efbdb1249932ac1a9b4373a18fdfdf722cc370962983dccf858afc6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4261-8127
0000-0002-1443-9458
0000-0002-9265-9819
0000-0003-0414-3570
0000-0002-0387-8252
0000-0002-0612-8246
OpenAccessLink http://hdl.handle.net/10072/383231
PQID 2136511978
PQPubID 2045477
PageCount 20
ParticipantIDs proquest_journals_2136511978
crossref_citationtrail_10_1016_j_eswa_2018_09_015
crossref_primary_10_1016_j_eswa_2018_09_015
elsevier_sciencedirect_doi_10_1016_j_eswa_2018_09_015
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Cover, Thomas (bib0009) 2012
Zhao, Morstatter, Sharma, Alelyani, Anand, Liu (bib0067) 2010
Holland (bib0021) 1992
Zorarpacı, Özel (bib0069) 2016; 62
Emary, Zawbaa, Hassanien (bib0013) 2016; 213
López, Torres, Pérez, Vega (bib0040) 2004
Baig, Aslam, Shum, Zhang (bib0006) 2017; 90
Oh, Lee, Moon (bib0046) 2004; 26
Karaboga (bib0026) 2005
Kohavi, John (bib0032) 1997; 97
Liu, Motoda (bib0038) 1998; 453
Lu, Chen, Yan, Jin, Xue, Gao (bib0042) 2017
Asir, Appavu, Jebamalar (bib0005) 2016; 136
Kashef, Nezamabadi-pour (bib0027) 2015; 147
Li, Li, Liu (bib0036) 2017; 53
Hall, Smith (bib0018) 1999; 1999
Guyon, Elisseeff (bib0017) 2003; 3
Dadaneh, Markid, Zakerolhosseini (bib0010) 2016; 53
Dua, Karra Taniskidou (bib0037) 2017
Yang, Honavar (bib0062) 1998; 13
Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., Liu, H., 2016. Advancing feature selection research-asu feature selection repository. Arizona State University. 2016.
Mirjalili, Lewis (bib0044) 2013; 9
López, Torres, Batista, Pérez, Moreno-Vega (bib0041) 2006; 169
Xue, Zhang, Browne (bib0061) 2014; 18
Wang, Ci, YAO (bib0055) 2005; 12
Wan, Wang, Ye, Lai (bib0054) 2016; 49
Altman (bib0004) 1992; 46
Hedar, Wang, Fukushima (bib0020) 2008; 12
Kabir, Shahjahan, Murase (bib0025) 2012; 39
Kennedy (bib0030) 1995; 1000
Wang, Li, Ren (bib0057) 2010
Rogers, Matheson, Despland, Dodgson, Burrows, Simpson (bib0048) 2003; 206
Wolpert, Macready (bib0060) 1997; 1
Wang, Yang, Teng, Xia, Jensen (bib0058) 2007; 28
Rashedi, Nezamabadi-Pour, Saryazdi (bib0047) 2010; 9
Duda, Hart, Stork (bib0012) 2012
Kira, Rendell (bib0031) 1992; 2
Ghareb, Bakar, Hamdan (bib0015) 2016; 49
Han, Pei, Kamber (bib0019) 2011
Zawbaa, Emary, Grosan (bib0065) 2016; 11
Katrutsa, Strijov (bib0028) 2017; 76
Liu, Yu (bib0039) 2005; 17
Alsaafin, Elnagar (bib0003) 2017; 9
Mafarja, Mirjalili (bib0043) 2017
Kennedy, Eberhart (bib0029) 1997; 5
Wang, Hedar, Wang, Ma (bib0056) 2012; 39
Shokouhifar, Sabet (bib0050) 2010
Saremi, Mirjalili, Lewis (bib0049) 2017; 105
Zarshenas, Suzuki (bib0064) 2016; 110
Zhao, Liu (bib0066) 2007
Kulkarni, Durugkar, Kumar (bib0034) 2013
Aladeemy, Tutun, Khasawneh (bib0002) 2017; 88
Yu, Liu (bib0063) 2003
Kononenko, Šimec, Robnik-Šikonja (bib0033) 1997; 7
Jensen, Shen (bib0022) 2004; 16
Emary, Zawbaa, Hassanien (bib0014) 2016; 172
Li, Shrivastava, Moore, König (bib0035) 2011
Glover, Kochenberger (bib0016) 2006; 57
Kabir, Shahjahan, Murase (bib0023) 2009
Song, Jiang, Liu (bib0052) 2017; 81
Dash, Liu (bib0011) 1997; 1
Moradi, Gholampour (bib0045) 2016; 43
Kabir, Shahjahan, Murase (bib0024) 2011; 74
Aghdam, Ghasem-Aghaee, Basiri (bib0001) 2009; 36
Chakraborty (bib0007) 2008; 1
Chen, Jiang, Li, Li (bib0008) 2013; 2013
Wieland, Pittore (bib0059) 2014; 6
Simpson, McCAFFERY, HAeGELE (bib0051) 1999; 74
Talbi (bib0053) 2009; 74
Xue (10.1016/j.eswa.2018.09.015_bib0061) 2014; 18
Zawbaa (10.1016/j.eswa.2018.09.015_bib0065) 2016; 11
Kabir (10.1016/j.eswa.2018.09.015_bib0023) 2009
10.1016/j.eswa.2018.09.015_bib0068
Wang (10.1016/j.eswa.2018.09.015_bib0058) 2007; 28
Wang (10.1016/j.eswa.2018.09.015_bib0057) 2010
Emary (10.1016/j.eswa.2018.09.015_bib0014) 2016; 172
Dadaneh (10.1016/j.eswa.2018.09.015_bib0010) 2016; 53
Shokouhifar (10.1016/j.eswa.2018.09.015_bib0050) 2010
Oh (10.1016/j.eswa.2018.09.015_bib0046) 2004; 26
Alsaafin (10.1016/j.eswa.2018.09.015_bib0003) 2017; 9
Mirjalili (10.1016/j.eswa.2018.09.015_bib0044) 2013; 9
Simpson (10.1016/j.eswa.2018.09.015_bib0051) 1999; 74
Zarshenas (10.1016/j.eswa.2018.09.015_bib0064) 2016; 110
Duda (10.1016/j.eswa.2018.09.015_bib0012) 2012
Karaboga (10.1016/j.eswa.2018.09.015_bib0026) 2005
Kononenko (10.1016/j.eswa.2018.09.015_bib0033) 1997; 7
Zhao (10.1016/j.eswa.2018.09.015_bib0066) 2007
Kashef (10.1016/j.eswa.2018.09.015_bib0027) 2015; 147
Katrutsa (10.1016/j.eswa.2018.09.015_bib0028) 2017; 76
Kabir (10.1016/j.eswa.2018.09.015_bib0025) 2012; 39
Saremi (10.1016/j.eswa.2018.09.015_bib0049) 2017; 105
Wang (10.1016/j.eswa.2018.09.015_bib0055) 2005; 12
Asir (10.1016/j.eswa.2018.09.015_bib0005) 2016; 136
Rogers (10.1016/j.eswa.2018.09.015_bib0048) 2003; 206
Talbi (10.1016/j.eswa.2018.09.015_bib0053) 2009; 74
Kennedy (10.1016/j.eswa.2018.09.015_bib0030) 1995; 1000
Yang (10.1016/j.eswa.2018.09.015_bib0062) 1998; 13
Baig (10.1016/j.eswa.2018.09.015_bib0006) 2017; 90
Cover (10.1016/j.eswa.2018.09.015_bib0009) 2012
López (10.1016/j.eswa.2018.09.015_bib0040) 2004
Aghdam (10.1016/j.eswa.2018.09.015_bib0001) 2009; 36
Kohavi (10.1016/j.eswa.2018.09.015_bib0032) 1997; 97
Rashedi (10.1016/j.eswa.2018.09.015_bib0047) 2010; 9
Wang (10.1016/j.eswa.2018.09.015_bib0056) 2012; 39
Aladeemy (10.1016/j.eswa.2018.09.015_bib0002) 2017; 88
Wan (10.1016/j.eswa.2018.09.015_bib0054) 2016; 49
Zorarpacı (10.1016/j.eswa.2018.09.015_bib0069) 2016; 62
Kira (10.1016/j.eswa.2018.09.015_bib0031) 1992; 2
Wolpert (10.1016/j.eswa.2018.09.015_bib0060) 1997; 1
Hall (10.1016/j.eswa.2018.09.015_bib0018) 1999; 1999
Emary (10.1016/j.eswa.2018.09.015_bib0013) 2016; 213
Li (10.1016/j.eswa.2018.09.015_bib0035) 2011
Yu (10.1016/j.eswa.2018.09.015_bib0063) 2003
Liu (10.1016/j.eswa.2018.09.015_bib0039) 2005; 17
Dash (10.1016/j.eswa.2018.09.015_bib0011) 1997; 1
Liu (10.1016/j.eswa.2018.09.015_bib0038) 1998; 453
Zhao (10.1016/j.eswa.2018.09.015_bib0067) 2010
Chen (10.1016/j.eswa.2018.09.015_bib0008) 2013; 2013
Hedar (10.1016/j.eswa.2018.09.015_bib0020) 2008; 12
Lu (10.1016/j.eswa.2018.09.015_bib0042) 2017
Kabir (10.1016/j.eswa.2018.09.015_bib0024) 2011; 74
Moradi (10.1016/j.eswa.2018.09.015_bib0045) 2016; 43
Song (10.1016/j.eswa.2018.09.015_bib0052) 2017; 81
Li (10.1016/j.eswa.2018.09.015_bib0036) 2017; 53
Kulkarni (10.1016/j.eswa.2018.09.015_bib0034) 2013
Wieland (10.1016/j.eswa.2018.09.015_bib0059) 2014; 6
Holland (10.1016/j.eswa.2018.09.015_bib0021) 1992
Jensen (10.1016/j.eswa.2018.09.015_bib0022) 2004; 16
Guyon (10.1016/j.eswa.2018.09.015_bib0017) 2003; 3
López (10.1016/j.eswa.2018.09.015_bib0041) 2006; 169
Han (10.1016/j.eswa.2018.09.015_bib0019) 2011
Mafarja (10.1016/j.eswa.2018.09.015_bib0043) 2017
Dua (10.1016/j.eswa.2018.09.015_bib0037) 2017
Glover (10.1016/j.eswa.2018.09.015_bib0016) 2006; 57
Altman (10.1016/j.eswa.2018.09.015_bib0004) 1992; 46
Chakraborty (10.1016/j.eswa.2018.09.015_bib0007) 2008; 1
Ghareb (10.1016/j.eswa.2018.09.015_bib0015) 2016; 49
Kennedy (10.1016/j.eswa.2018.09.015_bib0029) 1997; 5
References_xml – start-page: 1
  year: 2010
  end-page: 28
  ident: bib0067
  article-title: Advancing feature selection research
  publication-title: ASU Feature Selection Repository
– year: 1992
  ident: bib0021
  article-title: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence
– volume: 36
  start-page: 6843
  year: 2009
  end-page: 6853
  ident: bib0001
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
– volume: 74
  year: 2009
  ident: bib0053
  article-title: Metaheuristics: From design to implementation
– volume: 88
  start-page: 118
  year: 2017
  end-page: 131
  ident: bib0002
  article-title: A new hybrid approach for feature selection and support vector machine model selection based on self-adaptive cohort intelligence
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 31
  year: 2016
  end-page: 47
  ident: bib0015
  article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization
  publication-title: Expert Systems with Applications
– start-page: 1151
  year: 2007
  end-page: 1157
  ident: bib0066
  article-title: Spectral feature selection for supervised and unsupervised learning
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 74
  start-page: 2914
  year: 2011
  end-page: 2928
  ident: bib0024
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
– volume: 1
  start-page: 1038
  year: 2008
  end-page: 1042
  ident: bib0007
  article-title: Feature subset selection by particle swarm optimization with fuzzy fitness function
  publication-title: Proceedings of the 3rd international conference on intelligent system and knowledge engineering, 2008. ISKE 2008.
– volume: 16
  start-page: 1457
  year: 2004
  end-page: 1471
  ident: bib0022
  article-title: Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 9
  start-page: 1
  year: 2013
  end-page: 14
  ident: bib0044
  article-title: S-Shaped
  publication-title: Swarm and Evolutionary Computation
– volume: 206
  start-page: 3991
  year: 2003
  end-page: 4002
  ident: bib0048
  article-title: Mechanosensory-induced behavioural gregarization in the desert locust schistocerca gregaria
  publication-title: Journal of Experimental Biology
– start-page: 1396
  year: 2013
  end-page: 1400
  ident: bib0034
  article-title: Cohort intelligence: a self supervised learning behavior
  publication-title: Proceedings of the 2013 IEEE international conference on systems, man, and cybernetics (SMC)
– start-page: 856
  year: 2003
  end-page: 863
  ident: bib0063
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
  publication-title: Proceedings of the 20th international conference on machine learning (ICML-03)
– volume: 2
  start-page: 129
  year: 1992
  end-page: 134
  ident: bib0031
  article-title: The feature selection problem: Traditional methods and a new algorithm
  publication-title: Proceedings of the Aaai
– volume: 81
  start-page: 22
  year: 2017
  end-page: 27
  ident: bib0052
  article-title: Feature selection based on fda and f-score for multi-class classification
  publication-title: Expert Systems with Applications
– volume: 76
  start-page: 1
  year: 2017
  end-page: 11
  ident: bib0028
  article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria
  publication-title: Expert Systems with Applications
– volume: 169
  start-page: 477
  year: 2006
  end-page: 489
  ident: bib0041
  article-title: Solving feature subset selection problem by a parallel scatter search
  publication-title: European Journal of Operational Research
– volume: 57
  year: 2006
  ident: bib0016
  article-title: Handbook of metaheuristics
– volume: 147
  start-page: 271
  year: 2015
  end-page: 279
  ident: bib0027
  article-title: An advanced ACO algorithm for feature subset selection
  publication-title: Neurocomputing
– start-page: 2672
  year: 2011
  end-page: 2680
  ident: bib0035
  article-title: Hashing algorithms for large-scale learning
  publication-title: Advances in neural information processing systems
– start-page: 517
  year: 2004
  end-page: 525
  ident: bib0040
  article-title: Scatter search for the feature selection problem
  publication-title: Current topics in artificial intelligence
– volume: 53
  start-page: 551
  year: 2017
  end-page: 577
  ident: bib0036
  article-title: Recent advances in feature selection and its applications
  publication-title: Knowledge and Information Systems
– volume: 453
  year: 1998
  ident: bib0038
  article-title: Feature extraction, construction and selection: A data mining perspective
– volume: 9
  start-page: 727
  year: 2010
  end-page: 745
  ident: bib0047
  article-title: Bgsa: binary gravitational search algorithm
  publication-title: Natural Computing
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0049
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
– start-page: 242
  year: 2009
  end-page: 252
  ident: bib0023
  article-title: An efficient feature selection using ant colony optimization algorithm
  publication-title: Proceedings of the international conference on neural information processing
– volume: 2013
  start-page: 6
  year: 2013
  ident: bib0008
  article-title: A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm
  publication-title: Mathematical problems in Engineering
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: bib0046
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 39
  start-page: 6123
  year: 2012
  end-page: 6128
  ident: bib0056
  article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring
  publication-title: Expert Systems with Applications
– volume: 1
  start-page: 131
  year: 1997
  end-page: 156
  ident: bib0011
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
– volume: 39
  start-page: 3747
  year: 2012
  end-page: 3763
  ident: bib0025
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Systems with Applications
– year: 2017
  ident: bib0037
  article-title: UCI Machine Learning Repository
– volume: 13
  start-page: 44
  year: 1998
  end-page: 49
  ident: bib0062
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE Intelligent Systems and their Applications
– start-page: 91
  year: 2010
  end-page: 96
  ident: bib0057
  article-title: A real time idss based on artificial bee colony-support vector machine algorithm
  publication-title: Proceedings of the 2010 third international workshop on advanced computational intelligence (IWACI)
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: bib0014
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– volume: 7
  start-page: 39
  year: 1997
  end-page: 55
  ident: bib0033
  article-title: Overcoming the myopia of inductive learning algorithms with relieff
  publication-title: Applied Intelligence
– volume: 1000
  year: 1995
  ident: bib0030
  article-title: J. and eberhart, particle swarm optimization
  publication-title: Proceedings of IEEE international conference on neural networks IV, pages
– volume: 5
  start-page: 4104
  year: 1997
  end-page: 4108
  ident: bib0029
  article-title: A discrete binary version of the particle swarm algorithm
  publication-title: Proceedings of the 1997 IEEE international conference on systems, man, and cybernetics, 1997. Computational cybernetics and simulation.
– volume: 74
  start-page: 461
  year: 1999
  end-page: 480
  ident: bib0051
  article-title: A behavioural analysis of phase change in the desert locust
  publication-title: Biological Reviews
– year: 2005
  ident: bib0026
  article-title: An idea based on honey bee swarm for numerical optimization
  publication-title: Technical Report
– year: 2017
  ident: bib0042
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
– volume: 12
  start-page: 023
  year: 2005
  ident: bib0055
  article-title: A survey of feature selection
  publication-title: Computer Engineering & Science
– year: 2012
  ident: bib0009
  article-title: Elements of information theory
– volume: 1999
  start-page: 235
  year: 1999
  end-page: 239
  ident: bib0018
  article-title: Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper.
  publication-title: Proceedings of the FLAIRS conference
– volume: 136
  start-page: 9
  year: 2016
  end-page: 17
  ident: bib0005
  article-title: Literature review on feature selection methods for high-dimensional data
  publication-title: International Journal of Computer Applications
– volume: 6
  start-page: 2912
  year: 2014
  end-page: 2939
  ident: bib0059
  article-title: Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images
  publication-title: Remote Sensing
– volume: 90
  start-page: 184
  year: 2017
  end-page: 195
  ident: bib0006
  article-title: Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery eeg
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib0004
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
– volume: 11
  start-page: e0150652
  year: 2016
  ident: bib0065
  article-title: Feature selection via chaotic antlion optimization
  publication-title: PloS One
– volume: 17
  start-page: 491
  year: 2005
  end-page: 502
  ident: bib0039
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Transactions on knowledge and data engineering
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0060
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 502
  year: 2010
  end-page: 506
  ident: bib0050
  article-title: A hybrid approach for effective feature selection using neural networks and artificial bee colony optimization
  publication-title: Proceedings of the 3rd international conference on machine vision (ICMV 2010)
– volume: 110
  start-page: 191
  year: 2016
  end-page: 201
  ident: bib0064
  article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning
  publication-title: Knowledge-Based Systems
– volume: 28
  start-page: 459
  year: 2007
  end-page: 471
  ident: bib0058
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern recognition letters
– volume: 62
  start-page: 91
  year: 2016
  end-page: 103
  ident: bib0069
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
– volume: 49
  start-page: 248
  year: 2016
  end-page: 258
  ident: bib0054
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0017
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: bib0045
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
– volume: 213
  start-page: 54
  year: 2016
  end-page: 65
  ident: bib0013
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
– volume: 9
  start-page: 55
  year: 2017
  ident: bib0003
  article-title: A minimal subset of features using feature selection for handwritten digit recognition
  publication-title: Journal of Intelligent Learning Systems and Applications
– year: 2012
  ident: bib0012
  article-title: Pattern classification
– year: 2017
  ident: bib0043
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: bib0032
  article-title: Wrappers for feature subset selection
  publication-title: Artificial intelligence
– reference: Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand, A., Liu, H., 2016. Advancing feature selection research-asu feature selection repository. Arizona State University. 2016.
– volume: 12
  start-page: 909
  year: 2008
  end-page: 918
  ident: bib0020
  article-title: Tabu search for attribute reduction in rough set theory
  publication-title: Soft Computing-A Fusion of Foundations, Methodologies and Applications
– volume: 53
  start-page: 27
  year: 2016
  end-page: 42
  ident: bib0010
  article-title: Unsupervised probabilistic feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib0061
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
– year: 2011
  ident: bib0019
  article-title: Data mining: Concepts and techniques
– volume: 36
  start-page: 6843
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2018.09.015_bib0001
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.022
– volume: 16
  start-page: 1457
  issue: 12
  year: 2004
  ident: 10.1016/j.eswa.2018.09.015_bib0022
  article-title: Semantics-preserving dimensionality reduction: Rough and fuzzy-rough-based approaches
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2004.96
– year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0043
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 17
  start-page: 491
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2018.09.015_bib0039
  article-title: Toward integrating feature selection algorithms for classification and clustering
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2005.66
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.eswa.2018.09.015_bib0017
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 147
  start-page: 271
  year: 2015
  ident: 10.1016/j.eswa.2018.09.015_bib0027
  article-title: An advanced ACO algorithm for feature subset selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.067
– start-page: 1396
  year: 2013
  ident: 10.1016/j.eswa.2018.09.015_bib0034
  article-title: Cohort intelligence: a self supervised learning behavior
– volume: 1
  start-page: 1038
  year: 2008
  ident: 10.1016/j.eswa.2018.09.015_bib0007
  article-title: Feature subset selection by particle swarm optimization with fuzzy fitness function
– year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0042
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
– volume: 39
  start-page: 6123
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2018.09.015_bib0056
  article-title: Rough set and scatter search metaheuristic based feature selection for credit scoring
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.11.011
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2018.09.015_bib0067
  article-title: Advancing feature selection research
  publication-title: ASU Feature Selection Repository
– volume: 74
  start-page: 2914
  issue: 17
  year: 2011
  ident: 10.1016/j.eswa.2018.09.015_bib0024
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– volume: 53
  start-page: 551
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0036
  article-title: Recent advances in feature selection and its applications
  publication-title: Knowledge and Information Systems
  doi: 10.1007/s10115-017-1059-8
– volume: 9
  start-page: 727
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2018.09.015_bib0047
  article-title: Bgsa: binary gravitational search algorithm
  publication-title: Natural Computing
  doi: 10.1007/s11047-009-9175-3
– volume: 88
  start-page: 118
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0002
  article-title: A new hybrid approach for feature selection and support vector machine model selection based on self-adaptive cohort intelligence
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.06.030
– volume: 28
  start-page: 459
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2018.09.015_bib0058
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern recognition letters
  doi: 10.1016/j.patrec.2006.09.003
– start-page: 517
  year: 2004
  ident: 10.1016/j.eswa.2018.09.015_bib0040
  article-title: Scatter search for the feature selection problem
– year: 2012
  ident: 10.1016/j.eswa.2018.09.015_bib0009
– volume: 110
  start-page: 191
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0064
  article-title: Binary coordinate ascent: An efficient optimization technique for feature subset selection for machine learning
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.07.026
– volume: 81
  start-page: 22
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0052
  article-title: Feature selection based on fda and f-score for multi-class classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.02.049
– volume: 2
  start-page: 129
  year: 1992
  ident: 10.1016/j.eswa.2018.09.015_bib0031
  article-title: The feature selection problem: Traditional methods and a new algorithm
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10.1016/j.eswa.2018.09.015_bib0046
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.105
– ident: 10.1016/j.eswa.2018.09.015_bib0068
– year: 1992
  ident: 10.1016/j.eswa.2018.09.015_bib0021
– volume: 76
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0028
  article-title: Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.048
– volume: 1999
  start-page: 235
  year: 1999
  ident: 10.1016/j.eswa.2018.09.015_bib0018
  article-title: Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper.
– volume: 5
  start-page: 4104
  year: 1997
  ident: 10.1016/j.eswa.2018.09.015_bib0029
  article-title: A discrete binary version of the particle swarm algorithm
– start-page: 91
  year: 2010
  ident: 10.1016/j.eswa.2018.09.015_bib0057
  article-title: A real time idss based on artificial bee colony-support vector machine algorithm
– start-page: 242
  year: 2009
  ident: 10.1016/j.eswa.2018.09.015_bib0023
  article-title: An efficient feature selection using ant colony optimization algorithm
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.eswa.2018.09.015_bib0061
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2013.09.018
– volume: 74
  start-page: 461
  issue: 4
  year: 1999
  ident: 10.1016/j.eswa.2018.09.015_bib0051
  article-title: A behavioural analysis of phase change in the desert locust
  publication-title: Biological Reviews
  doi: 10.1017/S000632319900540X
– volume: 9
  start-page: 55
  issue: 04
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0003
  article-title: A minimal subset of features using feature selection for handwritten digit recognition
  publication-title: Journal of Intelligent Learning Systems and Applications
  doi: 10.4236/jilsa.2017.94006
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.eswa.2018.09.015_bib0004
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
  doi: 10.1080/00031305.1992.10475879
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0014
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2018.09.015_bib0060
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 169
  start-page: 477
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2018.09.015_bib0041
  article-title: Solving feature subset selection problem by a parallel scatter search
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.08.010
– volume: 136
  start-page: 9
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0005
  article-title: Literature review on feature selection methods for high-dimensional data
  publication-title: International Journal of Computer Applications
  doi: 10.5120/ijca2016908317
– start-page: 2672
  year: 2011
  ident: 10.1016/j.eswa.2018.09.015_bib0035
  article-title: Hashing algorithms for large-scale learning
– volume: 74
  year: 2009
  ident: 10.1016/j.eswa.2018.09.015_bib0053
– volume: 2013
  start-page: 6
  year: 2013
  ident: 10.1016/j.eswa.2018.09.015_bib0008
  article-title: A heuristic feature selection approach for text categorization by using chaos optimization and genetic algorithm
  publication-title: Mathematical problems in Engineering
  doi: 10.1155/2013/524017
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0045
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.01.044
– start-page: 856
  year: 2003
  ident: 10.1016/j.eswa.2018.09.015_bib0063
  article-title: Feature selection for high-dimensional data: A fast correlation-based filter solution
– volume: 49
  start-page: 31
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0015
  article-title: Hybrid feature selection based on enhanced genetic algorithm for text categorization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.12.004
– year: 2012
  ident: 10.1016/j.eswa.2018.09.015_bib0012
– year: 2005
  ident: 10.1016/j.eswa.2018.09.015_bib0026
  article-title: An idea based on honey bee swarm for numerical optimization
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.eswa.2018.09.015_bib0032
  article-title: Wrappers for feature subset selection
  publication-title: Artificial intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 1151
  year: 2007
  ident: 10.1016/j.eswa.2018.09.015_bib0066
  article-title: Spectral feature selection for supervised and unsupervised learning
– volume: 206
  start-page: 3991
  issue: 22
  year: 2003
  ident: 10.1016/j.eswa.2018.09.015_bib0048
  article-title: Mechanosensory-induced behavioural gregarization in the desert locust schistocerca gregaria
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.00648
– start-page: 502
  year: 2010
  ident: 10.1016/j.eswa.2018.09.015_bib0050
  article-title: A hybrid approach for effective feature selection using neural networks and artificial bee colony optimization
– volume: 213
  start-page: 54
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0013
  article-title: Binary ant lion approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.03.101
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0049
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 1
  start-page: 131
  issue: 1–4
  year: 1997
  ident: 10.1016/j.eswa.2018.09.015_bib0011
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1997-1302
– volume: 11
  start-page: e0150652
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0065
  article-title: Feature selection via chaotic antlion optimization
  publication-title: PloS One
  doi: 10.1371/journal.pone.0150652
– year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0037
– volume: 39
  start-page: 3747
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2018.09.015_bib0025
  article-title: A new hybrid ant colony optimization algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.073
– year: 2011
  ident: 10.1016/j.eswa.2018.09.015_bib0019
– volume: 53
  start-page: 27
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0010
  article-title: Unsupervised probabilistic feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.01.021
– volume: 1000
  year: 1995
  ident: 10.1016/j.eswa.2018.09.015_bib0030
  article-title: J. and eberhart, particle swarm optimization
– volume: 9
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2018.09.015_bib0044
  article-title: S-Shaped versus v-shaped transfer functions for binary particle swarm optimization
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2012.09.002
– volume: 12
  start-page: 909
  issue: 9
  year: 2008
  ident: 10.1016/j.eswa.2018.09.015_bib0020
  article-title: Tabu search for attribute reduction in rough set theory
  publication-title: Soft Computing-A Fusion of Foundations, Methodologies and Applications
– volume: 62
  start-page: 91
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0069
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.06.004
– volume: 12
  start-page: 023
  year: 2005
  ident: 10.1016/j.eswa.2018.09.015_bib0055
  article-title: A survey of feature selection
  publication-title: Computer Engineering & Science
– volume: 6
  start-page: 2912
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2018.09.015_bib0059
  article-title: Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images
  publication-title: Remote Sensing
  doi: 10.3390/rs6042912
– volume: 49
  start-page: 248
  year: 2016
  ident: 10.1016/j.eswa.2018.09.015_bib0054
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.08.011
– volume: 90
  start-page: 184
  year: 2017
  ident: 10.1016/j.eswa.2018.09.015_bib0006
  article-title: Differential evolution algorithm as a tool for optimal feature subset selection in motor imagery eeg
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.07.033
– volume: 57
  year: 2006
  ident: 10.1016/j.eswa.2018.09.015_bib0016
– volume: 13
  start-page: 44
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2018.09.015_bib0062
  article-title: Feature subset selection using a genetic algorithm
  publication-title: IEEE Intelligent Systems and their Applications
  doi: 10.1109/5254.671091
– volume: 7
  start-page: 39
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2018.09.015_bib0033
  article-title: Overcoming the myopia of inductive learning algorithms with relieff
  publication-title: Applied Intelligence
  doi: 10.1023/A:1008280620621
– volume: 453
  year: 1998
  ident: 10.1016/j.eswa.2018.09.015_bib0038
SSID ssj0017007
Score 2.677176
Snippet •Three binary versions of Grasshopper Optimization Algorithm (BGOA) are proposed.•Wrapper-based feature selection techniques are proposed using the BGOA...
Feature Selection (FS) is a challenging machine learning-related task that aims at reducing the number of features by removing irrelevant, redundant and noisy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Algorithms
Binary grasshopper optimisation algorithm
Classification
Feature selection
GOA
Heuristic methods
Machine learning
Optimisation
Optimization
Optimization algorithms
Transfer functions
Title Binary grasshopper optimisation algorithm approaches for feature selection problems
URI https://dx.doi.org/10.1016/j.eswa.2018.09.015
https://www.proquest.com/docview/2136511978
Volume 117
WOSCitedRecordID wos000449892000019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMvfCMGA_kB8RJlaj7tPBbUCdBUkOhQ3yzHcdZEbRqSbEz7H_xfrmMnaYeo4AFViqrEaSPfk-vra597EHoTxn7gc-LYQiYwQYl9z6ZuEtkB9wKRjD0au0krNkFmM7pYRF9Go58dF-ZqRYqCXl9H5X81NZwDYyvq7D-Yu_9ROAHfwehwBLPD8a8M_04zbC8qCIuXm7KUlbUBv7A2-3YsvrrYVFmzXPf1xGVbk8FKZVvk06pbaRzV1KjN1Dvpe1UbuTEVoDtu3NYq-JDiTnmVc80HypOsR9YqV0no1jfBTH2ZrXsIKT3EdiiEgZuvB98IfXepCfGTWBW1vMluTLLXpCsUQ8rbTlcMPJpvO7lIYvuOlus5kdoTU-LZIdHyib2r1jzPztlqIY_fBgGdj8hPZP1DVZZyaFvJVrNGdytuzz6z0_OzMzafLuZvy--2EiNTi_ZGmeUOOnRJEIGzPJx8nC4-9ctTZKx5-N1zGzaW3jh4-2__FPHcGvvbgGb-EN03MxE80Qh6hEayeIwedCof2Dj9J-irBhTeAhTeBhTuAYUHQGEAFDaAwj2gcAeop-j8dDp__8E2Uhy28Ijb2DGXBCJtR6ZxEiu9cgj7uXB4FKvSWNyhaQIf4roC2sOs2I2olwiR0oDyVISp9wwdFJtCPkc4Bl_AISySUQKzUx5FKcTo3PGT0INBOxRHyOm6iwlTp17JpaxYtyExZ6qLmepiNo4YdPERsvp7Sl2lZW_roLMCM3Gmjh8ZIGjvfcedyZh54Wvmqn2iai2evth_-SW6N7wPx-igqS7lK3RXXDVZXb02CPsFiAer0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+grasshopper+optimisation+algorithm+approaches+for+feature+selection+problems&rft.jtitle=Expert+systems+with+applications&rft.au=Mafarja%2C+Majdi&rft.au=Aljarah%2C+Ibrahim&rft.au=Faris%2C+Hossam&rft.au=Hammouri%2C+Abdelaziz+I&rft.date=2019-03-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=117&rft.spage=267&rft_id=info:doi/10.1016%2Fj.eswa.2018.09.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon