A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning

Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth inc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 43; číslo 11; s. 326
Hlavní autoři: Amin, Javeria, Sharif, Muhammad, Yasmin, Mussarat, Saba, Tanzila, Anjum, Muhammad Almas, Fernandes, Steven Lawrence
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2019
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.
AbstractList Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.
Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain. It affects the brain by squeezing/ damaging healthy tissues. It also amplifies intra cranial pressure and as a result tumor cells growth increases rapidly which may lead to death. It is, therefore desirable to diagnose/ detect brain tumor at an early stage that may increase the patient survival rate. The major objective of this research work is to present a new technique for the detection of tumor. The proposed architecture accurately segments and classifies the benign and malignant tumor cases. Different spatial domain methods are applied to enhance and accurately segment the input images. Moreover Alex and Google networks are utilized for classification in which two score vectors are obtained after the softmax layer. Further, both score vectors are fused and supplied to multiple classifiers along with softmax layer. Evaluation of proposed model is done on top medical image computing and computer-assisted intervention (MICCAI) challenge datasets i.e., multimodal brain tumor segmentation (BRATS) 2013, 2014, 2015, 2016 and ischemic stroke lesion segmentation (ISLES) 2018 respectively.
ArticleNumber 326
Author Fernandes, Steven Lawrence
Saba, Tanzila
Amin, Javeria
Yasmin, Mussarat
Anjum, Muhammad Almas
Sharif, Muhammad
Author_xml – sequence: 1
  givenname: Javeria
  surname: Amin
  fullname: Amin, Javeria
  email: javeria.amin@uow.edu.pk
  organization: Department of Computer Science, University of Wah, Department of Computer Science, COMSATS University Islamabad, Wah Campus Pakistan
– sequence: 2
  givenname: Muhammad
  surname: Sharif
  fullname: Sharif, Muhammad
  organization: Department of Computer Science, COMSATS University Islamabad, Wah Campus Pakistan
– sequence: 3
  givenname: Mussarat
  surname: Yasmin
  fullname: Yasmin, Mussarat
  organization: Department of Computer Science, COMSATS University Islamabad, Wah Campus Pakistan
– sequence: 4
  givenname: Tanzila
  surname: Saba
  fullname: Saba, Tanzila
  organization: College of Computer and Information Sciences, Prince Sultan University
– sequence: 5
  givenname: Muhammad Almas
  surname: Anjum
  fullname: Anjum, Muhammad Almas
  organization: College of EME, NUST Pakistan
– sequence: 6
  givenname: Steven Lawrence
  surname: Fernandes
  fullname: Fernandes, Steven Lawrence
  organization: Department of Electronics and Communication Engineering, Sahyadri College of Engineering & Management
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31643004$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r3DAQxUVJaTZJP0AvRdBLL25H1h9Lx83StIUlOWQDvQlZHm8dbHkr2Sn99tXihEKgOWmY-b1h9N4ZOQljQELeMfjEAKrPiYFhqgBmCiYkL_QrsmKy4oXS5scJWQETupDS6FNyltI9ABilqjfklDMlOIBYkbim1_ibrg-HODr_k7ZjpJfRdYHu5iHXt7gfMExu6sZAXWjopncpdW3nl9alS9jQXNz6MSLd4gP29GpOx9ld6sKe7qILqcWYZy6G3Lkgr1vXJ3z7-J6Tu6svu823Ynvz9ftmvS08r8qpqI3WuqlRGMEEyKZthFa-lp55UyotXeVq7bSua2wVOKUdcuVQNSARBDP8nHxc9uav_ZoxTXbokse-dwHHOdmSg2YVkyXP6Idn6P04x5CvO1KV4ZIZyNT7R2quB2zsIXaDi3_sk5sZqBbAxzGliK313WLdlC3tLQN7zM0uudmcmz3mZnVWsmfKp-UvacpFkzIb9hj_Hf1_0V9qjakf
CitedBy_id crossref_primary_10_1002_cpe_7543
crossref_primary_10_1016_j_cmpb_2021_106539
crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_3390_jpm12020275
crossref_primary_10_1002_cpe_7100
crossref_primary_10_1016_j_compbiomed_2024_108503
crossref_primary_10_1007_s12553_020_00514_6
crossref_primary_10_1007_s00521_025_11013_y
crossref_primary_10_1007_s00521_023_08717_4
crossref_primary_10_1080_13682199_2023_2211890
crossref_primary_10_13005_bpj_2124
crossref_primary_10_1016_j_compeleceng_2022_108386
crossref_primary_10_1016_j_compmedimag_2021_101940
crossref_primary_10_1016_j_brainres_2023_148300
crossref_primary_10_1080_21681163_2022_2124546
crossref_primary_10_1002_jemt_23429
crossref_primary_10_1080_0954898X_2023_2225601
crossref_primary_10_32604_cmc_2022_019115
crossref_primary_10_1016_j_bspc_2024_107180
crossref_primary_10_1007_s00521_022_07388_x
crossref_primary_10_3390_jimaging11010002
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_4103_jmp_jmp_52_22
crossref_primary_10_1007_s11042_022_13107_4
crossref_primary_10_3390_bioengineering11121265
crossref_primary_10_1016_j_rineng_2024_102459
crossref_primary_10_3390_info13060268
crossref_primary_10_1007_s11042_024_20353_1
crossref_primary_10_1002_jemt_24054
crossref_primary_10_1016_j_patrec_2019_12_006
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_1007_s10586_022_03707_y
crossref_primary_10_1111_exsy_13225
crossref_primary_10_3390_cancers13215546
crossref_primary_10_1007_s11042_025_20702_8
crossref_primary_10_1109_ACCESS_2020_3045732
crossref_primary_10_3390_diagnostics12040823
crossref_primary_10_1007_s13721_019_0209_1
crossref_primary_10_3390_app13063680
crossref_primary_10_1016_j_compbiomed_2022_105539
crossref_primary_10_3390_jimaging7040066
crossref_primary_10_1109_ACCESS_2020_3021660
crossref_primary_10_3390_bioengineering11050497
crossref_primary_10_1007_s11042_023_17738_z
crossref_primary_10_1007_s12559_022_10096_2
crossref_primary_10_1016_j_rineng_2025_105154
crossref_primary_10_1088_2057_1976_ac0ccc
crossref_primary_10_1016_j_heliyon_2024_e37804
crossref_primary_10_1007_s12559_021_09926_6
crossref_primary_10_1186_s41824_024_00195_8
crossref_primary_10_1002_acm2_70012
crossref_primary_10_3390_jpm12091454
crossref_primary_10_3390_electronics12030590
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1016_j_ejrad_2022_110639
crossref_primary_10_1007_s42600_022_00214_2
crossref_primary_10_1111_exsy_13510
crossref_primary_10_1007_s11760_020_01793_2
crossref_primary_10_1002_ima_22831
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_1080_01969722_2020_1871231
crossref_primary_10_32604_cmc_2022_018562
crossref_primary_10_1109_JBHI_2023_3270861
crossref_primary_10_1007_s11548_021_02326_z
crossref_primary_10_1007_s40747_021_00310_3
crossref_primary_10_32604_cmc_2023_035860
crossref_primary_10_1007_s40747_021_00564_x
crossref_primary_10_1080_13682199_2023_2283678
crossref_primary_10_4018_IJEHMC_315730
crossref_primary_10_3390_app11041675
crossref_primary_10_1002_cpe_6821
crossref_primary_10_1038_s41598_022_07733_z
crossref_primary_10_1016_j_inffus_2024_102424
crossref_primary_10_1016_j_neucom_2021_08_159
crossref_primary_10_1016_j_jocn_2021_04_043
crossref_primary_10_1109_ACCESS_2023_3347545
crossref_primary_10_3233_IDA_240069
crossref_primary_10_3390_life12081126
crossref_primary_10_32604_cmc_2023_032816
crossref_primary_10_1016_j_bspc_2022_104027
crossref_primary_10_3390_app13053108
crossref_primary_10_1111_exsy_13200
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_3389_fpubh_2022_819865
crossref_primary_10_3390_diagnostics13111832
crossref_primary_10_1007_s11042_020_10423_5
crossref_primary_10_1016_j_bspc_2022_104017
crossref_primary_10_1007_s40747_021_00321_0
crossref_primary_10_1111_exsy_13281
crossref_primary_10_1111_coin_70018
Cites_doi 10.1109/TIP.2017.2760512
10.1109/TIP.2013.2278465
10.1016/j.media.2016.07.009
10.1007/s12652-018-0854-8
10.1016/j.future.2018.05.002
10.1016/j.future.2018.04.065
10.1167/17.10.296
10.1016/j.media.2016.05.004
10.1007/978-981-13-1819-1_51
10.1117/12.2083596
10.1007/978-3-319-60964-5_44
10.1016/j.patrec.2017.06.021
10.1016/j.media.2016.10.004
10.2196/jmir.2930
10.1016/j.patrec.2017.10.036
10.1016/j.sigpro.2012.05.012
10.1007/978-3-319-55524-9_14
10.1155/2019/8415485
10.1016/j.jocs.2017.01.002
10.1088/0031-9155/58/13/R97
10.1016/j.patrec.2018.01.021
10.1016/j.eij.2015.01.003
10.1016/j.future.2018.04.074
10.1155/2016/8356294
10.1016/j.artmed.2018.08.008
10.1109/BMEI.2010.5639536
10.1007/978-3-319-55524-9_13
10.1016/j.mri.2013.05.002
10.1109/TIP.2017.2781424
10.1016/j.patrec.2017.05.028
10.1259/bjr/65711810
10.1109/34.295913
10.1166/jmihi.2018.2502
10.2174/1574893614666181220094918
10.1016/j.media.2017.10.002
10.1007/978-981-10-4280-5_33
10.1007/978-3-540-85988-8_43
10.1142/S0219519418500380
10.1109/TMI.2014.2377694
10.1016/j.patcog.2018.11.009
10.1007/978-3-642-15745-5_19
10.2174/1573405613666170306114320
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1453-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
ExternalDocumentID 31643004
10_1007_s10916_019_1453_8
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-b9888dbe4941405dfd486cb5c1c92685a7ab8a88bbef60a68ae36ae6d05e04193
IEDL.DBID M7P
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492183400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Thu Sep 04 16:37:57 EDT 2025
Wed Nov 05 01:14:21 EST 2025
Wed Feb 19 02:31:25 EST 2025
Tue Nov 18 22:42:16 EST 2025
Sat Nov 29 05:35:01 EST 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Segmentation
Alex network
Fused score vector
Classification
Google network
Brain tumor detection
Softmax layer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b9888dbe4941405dfd486cb5c1c92685a7ab8a88bbef60a68ae36ae6d05e04193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31643004
PQID 2307935190
PQPubID 54050
ParticipantIDs proquest_miscellaneous_2308171523
proquest_journals_2307935190
pubmed_primary_31643004
crossref_citationtrail_10_1007_s10916_019_1453_8
crossref_primary_10_1007_s10916_019_1453_8
springer_journals_10_1007_s10916_019_1453_8
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Amorim, P.H.A.C.V.S., Escudero, G.G., Oliveira, D.D.C., Pereira, S.M., Santos, H.M., and Scussel, A.A., 3D U-nets for brain tumor segmentation in MICCAI 2017 BraTS challenge proceedings of the 6th MICCAI BraTS Challenge, 2017.
RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028
Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., Rueckert, D., and Glocker, B., DeepMedic for brain tumor segmentation. In: International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 2016, 138–149.
Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., and Golland, P., A generative model for brain tumor segmentation in multi-modal images. International conference on medical image computing and computer-assisted intervention, Springer. 151–159, 2010.
Ellwaa, A., Hussein, A., AlNaggar, E., Zidan, M., Zaki, M., Ismail, M.A., and Ghanem, N.M., Brain tumor segmantation using random forest trained on iteratively selected patients. International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 129–137, 2016.
AminJSharifMYasminMFernandesSLBig data analysis for brain tumor detection: Deep convolutional neural networksFut. Gen. Comput. Syst.20188729029710.1016/j.future.2018.04.065
Zhang, L., Song, M., Liu, X., Bu, J., and Chen, C.J.S.P., Fast multi-view segment graph kernel for object classification. 93 (6):1597–1607, 2013.
Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí, R., and Lladó, X., Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artificial intelligence in medicine, 2018.
Deng, W., Xiao, W., Deng, H., and Liu, J., MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. Biomedical engineering and informatics (BMEI), 2010 3rd international conference on, IEEE. 393–396, 2010.
AminJSharifMYasminMAliHFernandesSLA method for the detection and classification of diabetic retinopathy using structural predictors of bright lesionsJ. Comput. Sci.20171915316410.1016/j.jocs.2017.01.002
LiaqatAKhanMAShahJHSharifMYasminMFernandesSLAutomated ulcer and bleeding classification from WCE images using multiple features fusion and selectionJ. Mech. Med. Biol.20181804185003810.1142/S0219519418500380
MenzeBHJakabABauerSKalpathy-CramerJFarahaniKKirbyJBurrenYPorzNSlotboomJWiestRThe multimodal brain tumor image segmentation benchmark (BRATS)IEEE Trans. Med. Imag.20153410199310.1109/TMI.2014.2377694
HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.004
Reza, S.M., and Mays, R., Iftekharuddin KM multi-fractal detrended texture feature for brain tumor classification. Proceedings of SPIE--the International Society for Optical Engineering. NIH Public Access, 2015.
Shah, J.H., Sharif, M., Yasmin, M., and Fernandes, S.L., Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recognition Letters, 2017.
AnsariGJShahJHYasminMSharifMFernandesSLA novel machine learning approach for scene text extractionFut. Gen. Comput. Syst.20188732834010.1016/j.future.2018.04.074
RazaMSharifMYasminMKhanMASabaTFernandesSLAppearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learningFut. Gen. Comput. Syst.201888283910.1016/j.future.2018.05.002
Ghosh, A., Maso, F.D., Roig, M., Mitsis, G.D., and Boudrias, M.-H., Deep semantic architecture with discriminative feature visualization for neuroimage analysis. arXiv preprint arXiv:180511704, 2018.
Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K., Convolutional neural networks: An overview and application in radiology. Insights into imaging:1–19, 2018.
Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., and Büchler, P., The virtual skeleton database: An open access repository for biomedical research and collaboration. Journal of medical Internet research 15 (11), 2013.
Alex, Krizhevsky., Sutskever, Ilya., and Hinton, GE., ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 2012.
ChenSDingCLiuMDual-force convolutional neural networks for accurate brain tumor segmentationPattern Recogn.2019889010010.1016/j.patcog.2018.11.009
Gordillo, N., Montseny, E., and Sobrevilla, P.J., State of the art survey on MRI brain tumor segmentation. 31 (8):1426–1438, 2013.
Upadhyay, N., and AJTBjor, W., Conventional MRI evaluation of gliomas. 84 (special_issue_2):S107-S111, 2011.
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. Annual conference on medical image understanding and analysis. Springer, 506–517, 2017.
Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., and Oliva, A., Places: An image database for deep scene understanding, (2016).
KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Analy.201736617810.1016/j.media.2016.10.004
Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., and Wirkert, S., Nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486, 2018.
Simon Andermatt, S.P., and Cattin, P., Multi-dimensional gated recurrent units for brain tumor segmentation. Proceedings of the 6th MICCAI BraTS Challenge (2017), 1984.
Van Der Kouwe, A., Brain tumor segmentation from multi modal MR images using fully convolutional neural network. Proceedings of the 6th MICCAI BraTS challenge, 2017.
Abdel-MaksoudEElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform. J.2015161718110.1016/j.eij.2015.01.003
NidaNSharifMKhanMUGYasminMFernandesSLA framework for automatic colorization of medical imagingIIOAB J.20167202209
Cui, Z., Yang, J., and Qiao, Y., Brain MRI segmentation with patch-based CNN approach. Control conference (CCC), 2016 35th Chinese. IEEE. 7026–7031, 2016.
Hai, J., Qiao, K., Chen, J., Tan, H., Xu, J., Zeng, L., Shi, D., and Yan, B., Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation. Journal of Healthcare Engineering, 2019.
Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., and Tian, QJIToIP., Discovering discriminative graphlets for aerial image categories recognition. 22 (12):5071–5084, 2013.
ZhangCFangMNieHBrain tumor segmentation using fully convolutional networks from magnetic resonance imagingJ. Med. Imag. Health Inform.2018881546155310.1166/jmihi.2018.2502
Amin, J., Sharif, M., Yasmin, M., and Fernandes, S.L., A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 2017.
Han, J., Quan, R., Zhang, D., and Nie, F.J.I., ToIP Robust object co-segmentation using background prior. 27 (4):1639–1651, 2018.
SatapathySCFernandesSLLinHStroke lesion segmentation and analysis using entropy/Otsu’s function–a study with social group optimizationCurr. Bioinform.20191443053131:CAS:528:DC%2BC1MXhtVGhsb3J10.2174/1574893614666181220094918
Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.J., PiM, Biology. A survey of MRI-based medical image analysis for brain tumor studies. 58 (13):R97, 2013.
NaqiSSharifMYasminMFernandesSLLung nodule detection using polygon approximation and hybrid features from CT imagesCurr. Med. Imag. Rev.201814110811710.2174/1573405613666170306114320
Bhagat, P., and Choudhary, P., Multiclass segmentation of brain tumor from MRI images. In: Applications of artificial intelligence techniques in engineering. Springer, 543–553, 2019.
Zhao, L., and Jia K., Multiscale cnns for brain tumor segmentation and diagnosis. Computational and mathematical methods in medicine 2016.
Sharif, M., Khan, M.A., Faisal, M., Yasmin, M., and Fernandes, S.L., A framework for offline signature verification system: Best features selection approach. Pattern Recognition Letters, 2018.
Cheng, G., Zhou, P., and Han, JJIToIP., Duplex metric learning for image set classification. 27 (1):281–292, 2018.
Raja, N.S.M., Fernandes, S., Dey, N., Satapathy, S.C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. Journal of Ambient Intelligence and Humanized Computing:1–12, 2018.
Lee, C.-H., Wang, S., Murtha, A., Brown, M.R., and Greiner, R., Segmenting brain tumors using pseudo–conditional random fields. International conference on medical image computing and computer-assisted intervention. Springer. 359–366, 2008.
MaierOMenzeBHvon der GablentzJHäniLHeinrichMPLiebrandMWinzeckSBasitABentleyPChenLISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRIMed. Image Analy.20173525026910.1016/j.media.2016.07.009
ZhaoXWuYSongGLiZZhangYFanYA deep learning model integrating FCNNs and CRFs for brain tumor segmentationMed. Image Analy.2018439811110.1016/j.media.2017.10.002
Adams, R., and Bischof, L.J., ITopa, intelligence m. Seeded region growing. 16 (6):641–647, 1994.
Rajinikanth, V., Fernandes, S.L., Bhushan, B., and Sunder, N.R., Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Proceedings of 2nd international conference on micro-electronics, electromagnetics and telecommunications. Springer, 313–321, 2018.
1453_CR20
C Zhang (1453_CR17) 2018; 8
K Kamnitsas (1453_CR24) 2017; 36
1453_CR22
1453_CR27
BH Menze (1453_CR41) 2015; 34
1453_CR28
1453_CR26
1453_CR29
E Abdel-Maksoud (1453_CR23) 2015; 16
1453_CR6
S Naqi (1453_CR40) 2018; 14
1453_CR8
1453_CR7
1453_CR9
M Raza (1453_CR34) 2018; 88
O Maier (1453_CR43) 2017; 35
1453_CR50
1453_CR51
1453_CR2
1453_CR12
A Liaqat (1453_CR38) 2018; 18
1453_CR1
1453_CR13
X Zhao (1453_CR44) 2018; 43
1453_CR4
1453_CR10
1453_CR11
1453_CR16
1453_CR14
V Rajinikanth (1453_CR3) 2017; 94
1453_CR15
1453_CR18
1453_CR19
J Amin (1453_CR25) 2018; 87
SC Satapathy (1453_CR31) 2019; 14
1453_CR42
1453_CR45
1453_CR46
GJ Ansari (1453_CR39) 2018; 87
1453_CR49
J Amin (1453_CR35) 2017; 19
1453_CR48
M Havaei (1453_CR21) 2017; 35
N Nida (1453_CR5) 2016; 7
1453_CR30
1453_CR32
1453_CR33
1453_CR36
1453_CR37
S Chen (1453_CR47) 2019; 88
References_xml – reference: Deng, W., Xiao, W., Deng, H., and Liu, J., MRI brain tumor segmentation with region growing method based on the gradients and variances along and inside of the boundary curve. Biomedical engineering and informatics (BMEI), 2010 3rd international conference on, IEEE. 393–396, 2010.
– reference: Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., Rueckert, D., and Glocker, B., DeepMedic for brain tumor segmentation. In: International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 2016, 138–149.
– reference: Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., and Tian, QJIToIP., Discovering discriminative graphlets for aerial image categories recognition. 22 (12):5071–5084, 2013.
– reference: ChenSDingCLiuMDual-force convolutional neural networks for accurate brain tumor segmentationPattern Recogn.2019889010010.1016/j.patcog.2018.11.009
– reference: Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., and Büchler, P., The virtual skeleton database: An open access repository for biomedical research and collaboration. Journal of medical Internet research 15 (11), 2013.
– reference: SatapathySCFernandesSLLinHStroke lesion segmentation and analysis using entropy/Otsu’s function–a study with social group optimizationCurr. Bioinform.20191443053131:CAS:528:DC%2BC1MXhtVGhsb3J10.2174/1574893614666181220094918
– reference: Zhou, B., Khosla, A., Lapedriza, A., Torralba, A., and Oliva, A., Places: An image database for deep scene understanding, (2016).
– reference: Simon Andermatt, S.P., and Cattin, P., Multi-dimensional gated recurrent units for brain tumor segmentation. Proceedings of the 6th MICCAI BraTS Challenge (2017), 1984.
– reference: Amorim, P.H.A.C.V.S., Escudero, G.G., Oliveira, D.D.C., Pereira, S.M., Santos, H.M., and Scussel, A.A., 3D U-nets for brain tumor segmentation in MICCAI 2017 BraTS challenge proceedings of the 6th MICCAI BraTS Challenge, 2017.
– reference: Raja, N.S.M., Fernandes, S., Dey, N., Satapathy, S.C., and Rajinikanth, V., Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. Journal of Ambient Intelligence and Humanized Computing:1–12, 2018.
– reference: Sharif, M., Khan, M.A., Faisal, M., Yasmin, M., and Fernandes, S.L., A framework for offline signature verification system: Best features selection approach. Pattern Recognition Letters, 2018.
– reference: Isensee, F., Petersen, J., Klein, A., Zimmerer, D., Jaeger, P.F., Kohl, S., Wasserthal, J., Koehler, G., Norajitra, T., and Wirkert, S., Nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:180910486, 2018.
– reference: ZhaoXWuYSongGLiZZhangYFanYA deep learning model integrating FCNNs and CRFs for brain tumor segmentationMed. Image Analy.2018439811110.1016/j.media.2017.10.002
– reference: AnsariGJShahJHYasminMSharifMFernandesSLA novel machine learning approach for scene text extractionFut. Gen. Comput. Syst.20188732834010.1016/j.future.2018.04.074
– reference: Van Der Kouwe, A., Brain tumor segmentation from multi modal MR images using fully convolutional neural network. Proceedings of the 6th MICCAI BraTS challenge, 2017.
– reference: Cui, Z., Yang, J., and Qiao, Y., Brain MRI segmentation with patch-based CNN approach. Control conference (CCC), 2016 35th Chinese. IEEE. 7026–7031, 2016.
– reference: Han, J., Quan, R., Zhang, D., and Nie, F.J.I., ToIP Robust object co-segmentation using background prior. 27 (4):1639–1651, 2018.
– reference: RazaMSharifMYasminMKhanMASabaTFernandesSLAppearance based pedestrians’ gender recognition by employing stacked auto encoders in deep learningFut. Gen. Comput. Syst.201888283910.1016/j.future.2018.05.002
– reference: Zhang, L., Song, M., Liu, X., Bu, J., and Chen, C.J.S.P., Fast multi-view segment graph kernel for object classification. 93 (6):1597–1607, 2013.
– reference: Hai, J., Qiao, K., Chen, J., Tan, H., Xu, J., Zeng, L., Shi, D., and Yan, B., Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation. Journal of Healthcare Engineering, 2019.
– reference: LiaqatAKhanMAShahJHSharifMYasminMFernandesSLAutomated ulcer and bleeding classification from WCE images using multiple features fusion and selectionJ. Mech. Med. Biol.20181804185003810.1142/S0219519418500380
– reference: Ellwaa, A., Hussein, A., AlNaggar, E., Zidan, M., Zaki, M., Ismail, M.A., and Ghanem, N.M., Brain tumor segmantation using random forest trained on iteratively selected patients. International workshop on Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries. Springer, 129–137, 2016.
– reference: Zhao, L., and Jia K., Multiscale cnns for brain tumor segmentation and diagnosis. Computational and mathematical methods in medicine 2016.
– reference: Lee, C.-H., Wang, S., Murtha, A., Brown, M.R., and Greiner, R., Segmenting brain tumors using pseudo–conditional random fields. International conference on medical image computing and computer-assisted intervention. Springer. 359–366, 2008.
– reference: Upadhyay, N., and AJTBjor, W., Conventional MRI evaluation of gliomas. 84 (special_issue_2):S107-S111, 2011.
– reference: RajinikanthVSatapathySCFernandesSLNachiappanSEntropy based segmentation of tumor from brain MR images–a study with teaching learning based optimizationPattern Recogn. Lett.201794879510.1016/j.patrec.2017.05.028
– reference: Alex, Krizhevsky., Sutskever, Ilya., and Hinton, GE., ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 2012.
– reference: Ghosh, A., Maso, F.D., Roig, M., Mitsis, G.D., and Boudrias, M.-H., Deep semantic architecture with discriminative feature visualization for neuroimage analysis. arXiv preprint arXiv:180511704, 2018.
– reference: NidaNSharifMKhanMUGYasminMFernandesSLA framework for automatic colorization of medical imagingIIOAB J.20167202209
– reference: AminJSharifMYasminMAliHFernandesSLA method for the detection and classification of diabetic retinopathy using structural predictors of bright lesionsJ. Comput. Sci.20171915316410.1016/j.jocs.2017.01.002
– reference: Abdel-MaksoudEElmogyMAl-AwadiRBrain tumor segmentation based on a hybrid clustering techniqueEgypt Inform. J.2015161718110.1016/j.eij.2015.01.003
– reference: AminJSharifMYasminMFernandesSLBig data analysis for brain tumor detection: Deep convolutional neural networksFut. Gen. Comput. Syst.20188729029710.1016/j.future.2018.04.065
– reference: Amin, J., Sharif, M., Yasmin, M., and Fernandes, S.L., A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters, 2017.
– reference: Rajinikanth, V., Fernandes, S.L., Bhushan, B., and Sunder, N.R., Segmentation and analysis of brain tumor using Tsallis entropy and regularised level set. Proceedings of 2nd international conference on micro-electronics, electromagnetics and telecommunications. Springer, 313–321, 2018.
– reference: NaqiSSharifMYasminMFernandesSLLung nodule detection using polygon approximation and hybrid features from CT imagesCurr. Med. Imag. Rev.201814110811710.2174/1573405613666170306114320
– reference: Yamashita, R., Nishio, M., Do, R.K.G., and Togashi, K., Convolutional neural networks: An overview and application in radiology. Insights into imaging:1–19, 2018.
– reference: ZhangCFangMNieHBrain tumor segmentation using fully convolutional networks from magnetic resonance imagingJ. Med. Imag. Health Inform.2018881546155310.1166/jmihi.2018.2502
– reference: Gordillo, N., Montseny, E., and Sobrevilla, P.J., State of the art survey on MRI brain tumor segmentation. 31 (8):1426–1438, 2013.
– reference: Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. Annual conference on medical image understanding and analysis. Springer, 506–517, 2017.
– reference: Cheng, G., Zhou, P., and Han, JJIToIP., Duplex metric learning for image set classification. 27 (1):281–292, 2018.
– reference: Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., and Golland, P., A generative model for brain tumor segmentation in multi-modal images. International conference on medical image computing and computer-assisted intervention, Springer. 151–159, 2010.
– reference: HavaeiMDavyAWarde-FarleyDBiardACourvilleABengioYPalCJodoinP-MLarochelleHBrain tumor segmentation with deep neural networksMed. Image Anal.201735183110.1016/j.media.2016.05.004
– reference: MenzeBHJakabABauerSKalpathy-CramerJFarahaniKKirbyJBurrenYPorzNSlotboomJWiestRThe multimodal brain tumor image segmentation benchmark (BRATS)IEEE Trans. Med. Imag.20153410199310.1109/TMI.2014.2377694
– reference: Bernal, J., Kushibar, K., Asfaw, D. S., Valverde, S., Oliver, A., Martí, R., and Lladó, X., Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artificial intelligence in medicine, 2018.
– reference: Reza, S.M., and Mays, R., Iftekharuddin KM multi-fractal detrended texture feature for brain tumor classification. Proceedings of SPIE--the International Society for Optical Engineering. NIH Public Access, 2015.
– reference: Shah, J.H., Sharif, M., Yasmin, M., and Fernandes, S.L., Facial expressions classification and false label reduction using LDA and threefold SVM. Pattern Recognition Letters, 2017.
– reference: KamnitsasKLedigCNewcombeVFSimpsonJPKaneADMenonDKRueckertDGlockerBEfficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentationMed. Image Analy.201736617810.1016/j.media.2016.10.004
– reference: MaierOMenzeBHvon der GablentzJHäniLHeinrichMPLiebrandMWinzeckSBasitABentleyPChenLISLES 2015-a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRIMed. Image Analy.20173525026910.1016/j.media.2016.07.009
– reference: Bauer, S., Wiest, R., Nolte, L.-P., Reyes, M.J., PiM, Biology. A survey of MRI-based medical image analysis for brain tumor studies. 58 (13):R97, 2013.
– reference: Bhagat, P., and Choudhary, P., Multiclass segmentation of brain tumor from MRI images. In: Applications of artificial intelligence techniques in engineering. Springer, 543–553, 2019.
– reference: Adams, R., and Bischof, L.J., ITopa, intelligence m. Seeded region growing. 16 (6):641–647, 1994.
– ident: 1453_CR49
– ident: 1453_CR15
  doi: 10.1109/TIP.2017.2760512
– ident: 1453_CR13
  doi: 10.1109/TIP.2013.2278465
– volume: 35
  start-page: 250
  year: 2017
  ident: 1453_CR43
  publication-title: Med. Image Analy.
  doi: 10.1016/j.media.2016.07.009
– ident: 1453_CR10
  doi: 10.1007/s12652-018-0854-8
– ident: 1453_CR22
– volume: 88
  start-page: 28
  year: 2018
  ident: 1453_CR34
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2018.05.002
– volume: 87
  start-page: 290
  year: 2018
  ident: 1453_CR25
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2018.04.065
– ident: 1453_CR33
  doi: 10.1167/17.10.296
– volume: 35
  start-page: 18
  year: 2017
  ident: 1453_CR21
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– ident: 1453_CR45
  doi: 10.1007/978-981-13-1819-1_51
– ident: 1453_CR46
  doi: 10.1117/12.2083596
– ident: 1453_CR26
  doi: 10.1007/978-3-319-60964-5_44
– ident: 1453_CR36
  doi: 10.1016/j.patrec.2017.06.021
– ident: 1453_CR32
– ident: 1453_CR51
– volume: 36
  start-page: 61
  year: 2017
  ident: 1453_CR24
  publication-title: Med. Image Analy.
  doi: 10.1016/j.media.2016.10.004
– ident: 1453_CR42
  doi: 10.2196/jmir.2930
– ident: 1453_CR1
  doi: 10.1016/j.patrec.2017.10.036
– volume: 7
  start-page: 202
  year: 2016
  ident: 1453_CR5
  publication-title: IIOAB J.
– ident: 1453_CR7
  doi: 10.1016/j.sigpro.2012.05.012
– ident: 1453_CR27
  doi: 10.1007/978-3-319-55524-9_14
– ident: 1453_CR30
  doi: 10.1155/2019/8415485
– volume: 19
  start-page: 153
  year: 2017
  ident: 1453_CR35
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.01.002
– ident: 1453_CR2
  doi: 10.1088/0031-9155/58/13/R97
– ident: 1453_CR37
  doi: 10.1016/j.patrec.2018.01.021
– volume: 16
  start-page: 71
  issue: 1
  year: 2015
  ident: 1453_CR23
  publication-title: Egypt Inform. J.
  doi: 10.1016/j.eij.2015.01.003
– volume: 87
  start-page: 328
  year: 2018
  ident: 1453_CR39
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2018.04.074
– ident: 1453_CR50
– ident: 1453_CR19
  doi: 10.1155/2016/8356294
– ident: 1453_CR28
  doi: 10.1016/j.artmed.2018.08.008
– ident: 1453_CR12
  doi: 10.1109/BMEI.2010.5639536
– ident: 1453_CR48
  doi: 10.1007/978-3-319-55524-9_13
– ident: 1453_CR6
  doi: 10.1016/j.mri.2013.05.002
– ident: 1453_CR9
  doi: 10.1109/TIP.2017.2781424
– volume: 94
  start-page: 87
  year: 2017
  ident: 1453_CR3
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.05.028
– ident: 1453_CR4
  doi: 10.1259/bjr/65711810
– ident: 1453_CR20
– ident: 1453_CR8
  doi: 10.1109/34.295913
– volume: 8
  start-page: 1546
  issue: 8
  year: 2018
  ident: 1453_CR17
  publication-title: J. Med. Imag. Health Inform.
  doi: 10.1166/jmihi.2018.2502
– volume: 14
  start-page: 305
  issue: 4
  year: 2019
  ident: 1453_CR31
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893614666181220094918
– volume: 43
  start-page: 98
  year: 2018
  ident: 1453_CR44
  publication-title: Med. Image Analy.
  doi: 10.1016/j.media.2017.10.002
– ident: 1453_CR11
  doi: 10.1007/978-981-10-4280-5_33
– ident: 1453_CR16
  doi: 10.1007/978-3-540-85988-8_43
– volume: 18
  start-page: 1850038
  issue: 04
  year: 2018
  ident: 1453_CR38
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519418500380
– ident: 1453_CR29
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 1453_CR41
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2014.2377694
– volume: 88
  start-page: 90
  year: 2019
  ident: 1453_CR47
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.11.009
– ident: 1453_CR14
  doi: 10.1007/978-3-642-15745-5_19
– ident: 1453_CR18
– volume: 14
  start-page: 108
  issue: 1
  year: 2018
  ident: 1453_CR40
  publication-title: Curr. Med. Imag. Rev.
  doi: 10.2174/1573405613666170306114320
SSID ssj0009667
Score 2.5656552
Snippet Brain tumor is one of the most death defying diseases nowadays. The tumor contains a cluster of abnormal cells grouped around the inner portion of human brain....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Algorithms
Brain cancer
Brain damage
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
Brain tumors
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Humans
Image & Signal Processing
Image classification
Image enhancement
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Ischemia
Magnetic Resonance Imaging - methods
Medical imaging
Medicine
Medicine & Public Health
Neural Networks, Computer
Recent Advances in Deep Learning for Biomedical Signal Processing
Statistics for Life Sciences
Tomography, X-Ray Computed - methods
Transfer learning
Tumor cells
Tumors
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5yEQqhaZK2cXOgQJ4SBF7bkuXH3ZKlD0kI3STsm9HlJdB1yh79_R3J8m5KDkhfjLHlA2mk-UYz8w3AaZroPK7ilCYGD5moLFU5txR1EWMW8bKqlC82kV9fi-GwuAl53NM22r11SfqV-kmyG0IZNH0L2slYSsUqrKO2E242_hzcL5l2OW9ypDNBHft468p86RX_KqNnCPOZd9Qrnf72f_3uJ_gYMCbpNkKxAyu23oXNq-BF34WtZq-ONClIezDpElzrSDfQixPEsaTnSkeQ2_kYzwd2NA4pSjWRtSG-kqaLMWou9VATGoInA8eJSS5dHBLpz90-HPEhCcRrxMpOSKBzHX2Gu_7F7fcfNNRioDrNkxlVBZrKRtmsyNAkY6YymeBaMd3RRcIFk7lUQgqhlK14LLmQNuXSchMzG2eIEr_AWv1Y230gKAIF72imtEJrjiUyMzlHYGoQOSa5SiKI20EpdSAqd_UyfpVLimXXtyX2ben6thQRnC0e-d2wdLzV-LAd6TJM2Gnp4uELV6wwjuBkcRunmvOfyNo-zn0b0ckR8KQRfG0kZPG1FM1OR14WwXkrDsuXv_or397V-gA-JF6e3AbQIazNJnN7BBv6z-xhOjn2s-AvyuH-Ug
  priority: 102
  providerName: Springer Nature
Title A New Approach for Brain Tumor Segmentation and Classification Based on Score Level Fusion Using Transfer Learning
URI https://link.springer.com/article/10.1007/s10916-019-1453-8
https://www.ncbi.nlm.nih.gov/pubmed/31643004
https://www.proquest.com/docview/2307935190
https://www.proquest.com/docview/2308171523
Volume 43
WOSCitedRecordID wos000492183400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Standard Collection
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9NAEB-8OxFBfJyv6FlW8JOyXJpkH_kkrVwR9Epp61H8ErKbzSF46dmHf78zm02LHN4Xvwx5Z2Fmd577G4B3aWJVXMcpTyokma4dN0o6jrpICIf2sqmNbzahxmO9WOSTEHBbh7LKbk30C3W1tBQjP6WC5Zy6ycUfr39x6hpF2dXQQuMAjgglIfWle5M96K6U7XbpTHMCIu-ymu3WOTSM0JHOeT8TKdd_66UbxuaNRKnXP6NH_zvyx_AwWJ5s0IrKE7jjmmO4dx5y68fwoI3gsXZj0lNYDRiugGwQQMcZWrdsSA0l2Hx7hcczd3kVNi41rGwq5vtrUuVRe2mI-rFieDAjpEz2laqT2GhL0TnmCxWY15O1W7EA8nr5DL6NzuafPvPQoYHbVCUbbnJ0oCvjsjxDR01UdZVpaY2wfZsnUotSlUaXWhvjahmXUpculaWTVSxcnKHt-BwOm2XjXgJDwchl3wpjDfp4IimzSkk0Vyu0JxNlkgjijj-FDfDl1EXjZ7EHXiaWFsjSglha6Aje7165brE7bnv4pONeEabxutizLoK3u9s4ASmrUjZuufXP6L5CMyiN4EUrLLu_peiMEqRZBB866dl__J9DeXX7UF7D_cTLLcWBTuBws9q6N3DX_t78WK96cKCmF0QXylPdg6Ph2XgyxbMviiM9j-dEk0nPzxakE_Ed6XR28QdRmhIb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UKloQL_XSaNUR9EUZTCbJZPJQZKsuLd1dhK7Qt3RuKQWbbfei-Kf8jT0nl12k2Lc--BJCrkPyzZnvzJzzHYC3sbBZWIYxFw43iSo9N5n0HMeiNPXIl01p6mIT2Wikjo7yb2vwp8uFobDKzibWhtpNLM2Rf6SA5ZyqyYWfzi84VY2i1dWuhEYDiwP_-xe6bLOd_S_4f98J0f86_rzH26oC3MaZmHOTo9PnjE_yBJ2L1JUuUdKa1EY2F1KlOtNGaaWM8aUMtVTax1J76cLUh0lE4kto8m-Rrh6FEA7D8UrkV8omPTtRnITPu1XUJlUPiRg67jmPkjTm6u9x8Aq5vbIwW493_Qf_25d6CPdbZs16TVd4BGu-2oQ7wzZ2YBPuNTOUrEm8egzTHkMLz3qtqDpD9s52qWAGGy_OcP_Qn5y1iVkV05Vjdf1QiqxqDu3i-O8Y7hySEigbUPQV6y9o9pHVgRis5gGln7JWxPbkCXy_kS_wFNarSeW3gCHwcxnZ1FiDPmwqdOIyiXTcIV8WmREBhB0eCtvKs1OVkB_FSliaIFQghAqCUKECeL-85bzRJrnu4u0OLUVrpmbFCioBvFmeRgNDq0a68pNFfY2KMqR5cQDPGnAu3xajs02SbQF86NC6evg_m_L8-qa8hrt74-GgGOyPDl7Ahqj7DM15bcP6fLrwL-G2_Tk_nU1f1b2PwfFNg_gShWxm0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD6UKkUQL_UWrTqCvihDk0nmkgeRrXWxbF0KrdC3mLmkFNps3YviX_PXeU4uu0ixb33wJYRsdjNkv3PmOzPnfAfgdSqcjqs45cLjITNV4FarwHEukjIgX7aVbZpN6PHYHB_nB2vwu6-FobTK3ic2jtpPHK2Rb1PCck7d5OLtqkuLONgdfrj4zqmDFO209u00WoiMwq-fGL7N3u_t4n_9Rojhp6OPn3nXYYC7VIs5tzkGgN6GLM8w0JC-8plRzkqXuFwoI0tdWlMaY22oVFwqU4ZUlUH5WIY4S0iICd3_DZyFJdnYSPOV4K9Sbal2ZjiJoPc7qm3ZHpIyDOJznmQy5ebvOfES0b20SdvMfcO7__Nbuwd3OsbNBq2J3Ie1UG_Cxpcup2ATbrcrl6wtyHoA0wFDz88Gndg6Q1bPdqiRBjtanOP5YTg57wq2albWnjV9RSnjqr20g7zAMzw5JIVQtk9ZWWy4oFVJ1iRosIYfVGHKOnHbk4fw9VrewCNYryd1eAIMDSJXiZPWWYxtpSgzrxXSdI88WmgrIoh7bBSuk22n7iFnxUpwmuBUIJwKglNhIni7_MpFq1ly1c1bPXKKzn3NihVsIni1_BgdD-0mlXWYLJp7TKKR_qURPG6BunxaikE4SblF8K5H7urH_zmUp1cP5SVsIHaL_b3x6BncEo350FLYFqzPp4vwHG66H_PT2fRFY4gMvl03hv8Ai2hvUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Approach+for+Brain+Tumor+Segmentation+and+Classification+Based+on+Score+Level+Fusion+Using+Transfer+Learning&rft.jtitle=Journal+of+medical+systems&rft.au=Amin+Javeria&rft.au=Sharif%2C+Muhammad&rft.au=Mussarat%2C+Yasmin&rft.au=Saba+Tanzila&rft.date=2019-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=11&rft_id=info:doi/10.1007%2Fs10916-019-1453-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon