Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals

Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical systems Ročník 43; číslo 7; s. 205 - 12
Hlavní autoři: Ay, Betul, Yildirim, Ozal, Talo, Muhammed, Baloglu, Ulas Baran, Aydin, Galip, Puthankattil, Subha D., Acharya, U. Rajendra
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.07.2019
Springer Nature B.V
Témata:
ISSN:0148-5598, 1573-689X, 1573-689X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
AbstractList Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.
ArticleNumber 205
Author Ay, Betul
Yildirim, Ozal
Acharya, U. Rajendra
Baloglu, Ulas Baran
Puthankattil, Subha D.
Talo, Muhammed
Aydin, Galip
Author_xml – sequence: 1
  givenname: Betul
  surname: Ay
  fullname: Ay, Betul
  organization: Department of Computer Engineering, Fırat University
– sequence: 2
  givenname: Ozal
  orcidid: 0000-0001-5375-3012
  surname: Yildirim
  fullname: Yildirim, Ozal
  email: oyildirim@munzur.edu.tr
  organization: Department of Computer Engineering, Munzur University
– sequence: 3
  givenname: Muhammed
  surname: Talo
  fullname: Talo, Muhammed
  organization: Department of Computer Engineering, Munzur University
– sequence: 4
  givenname: Ulas Baran
  surname: Baloglu
  fullname: Baloglu, Ulas Baran
  organization: Department of Computer Engineering, Munzur University
– sequence: 5
  givenname: Galip
  surname: Aydin
  fullname: Aydin, Galip
  organization: Department of Computer Engineering, Fırat University
– sequence: 6
  givenname: Subha D.
  surname: Puthankattil
  fullname: Puthankattil, Subha D.
  organization: Department of Electrical Engineering, National Institute of Technology Calicut
– sequence: 7
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Department of Biomedical Engineering, School of Science and Technology, Singapore School of Social Sciences, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31139932$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhUVISTZpf0AvxdBLLm40kmVZx5Bu08JCoGkgNyHLo63DrryVZMr--8jrpIVAe5oR8z3NY94ZOfaDR0LeA_0ElMrLCFRBXVJQJfBKlPsjsgAheVk36uGYLChUTSmEak7JWYyPlFJV1_KEnHIArhRnC6KvxjRsTcKu-Iy7gDH2g89tQpum7j72fp3fuCu-H-bokzlMjO-KO_w1ordYrNAEP5G_-_SzWC5virt-7c0mviVvXC747rmek_svyx_XX8vV7c2366tVablkqWylo2AoUgaNdZ1pBeNVpyrVibZ1rbXcVZYxKoVsgDWUu1ZI4OhEbRUKx8_JxfzvLgzZU0x620eLm43xOIxRM8ahETRrMvrxFfo4jGEye6BYA7yuM_XhmRrbLXZ6F_qtCXv9croMwAzYMMQY0P1BgOopHj3Ho3M8eopH77NGvtLYfj5nCqbf_FfJZmXMW_waw1_T_xY9Adlzo8Q
CitedBy_id crossref_primary_10_1016_j_neuroimage_2024_120750
crossref_primary_10_3389_fdgth_2023_1080023
crossref_primary_10_1007_s11548_021_02377_2
crossref_primary_10_1109_ACCESS_2023_3270426
crossref_primary_10_1007_s11042_023_14799_y
crossref_primary_10_1016_j_bspc_2024_106973
crossref_primary_10_1016_j_eswa_2022_116761
crossref_primary_10_1109_TCDS_2024_3358022
crossref_primary_10_3389_fpsyt_2022_970993
crossref_primary_10_1016_j_compbiomed_2022_105420
crossref_primary_10_1016_j_compeleceng_2023_109071
crossref_primary_10_1016_j_chaos_2024_114700
crossref_primary_10_3390_diagnostics15020210
crossref_primary_10_1016_j_neuroscience_2025_07_010
crossref_primary_10_1109_TIM_2025_3545204
crossref_primary_10_1007_s12559_022_10042_2
crossref_primary_10_1016_j_jneumeth_2021_109209
crossref_primary_10_1109_TAI_2024_3394792
crossref_primary_10_1109_TNB_2020_2990690
crossref_primary_10_1109_ACCESS_2022_3163311
crossref_primary_10_1109_ACCESS_2023_3304236
crossref_primary_10_3390_diagnostics13101779
crossref_primary_10_3390_s20185234
crossref_primary_10_1016_j_bspc_2024_106182
crossref_primary_10_1016_j_asoc_2022_109713
crossref_primary_10_3389_fnins_2023_1301214
crossref_primary_10_1007_s00500_024_09862_1
crossref_primary_10_3390_bios12121087
crossref_primary_10_1016_j_biopsycho_2021_108117
crossref_primary_10_1109_TIM_2025_3556900
crossref_primary_10_1007_s00530_020_00728_8
crossref_primary_10_1016_j_compbiomed_2021_105039
crossref_primary_10_1016_j_infrared_2019_103041
crossref_primary_10_1016_j_bbr_2024_115325
crossref_primary_10_1007_s11030_021_10274_8
crossref_primary_10_1186_s12938_024_01250_y
crossref_primary_10_1109_TNSRE_2023_3336467
crossref_primary_10_1155_2021_1299870
crossref_primary_10_1016_j_irbm_2020_07_002
crossref_primary_10_1109_ACCESS_2023_3262930
crossref_primary_10_3390_brainsci12070834
crossref_primary_10_3389_fphys_2022_1029298
crossref_primary_10_1016_j_matpr_2021_05_659
crossref_primary_10_1109_TCBB_2023_3257175
crossref_primary_10_1080_13607863_2022_2031868
crossref_primary_10_1177_20552076251324456
crossref_primary_10_1088_1741_2552_ad5048
crossref_primary_10_31083_j_jin_2020_01_24
crossref_primary_10_1109_JAS_2025_125393
crossref_primary_10_1155_da_5512539
crossref_primary_10_1007_s10462_021_09986_y
crossref_primary_10_1016_j_patrec_2024_10_016
crossref_primary_10_3390_diagnostics13030573
crossref_primary_10_1088_1741_2552_ad038b
crossref_primary_10_1016_j_cmpb_2021_106007
crossref_primary_10_1109_TNSRE_2024_3360465
crossref_primary_10_3390_brainsci14101018
crossref_primary_10_1016_j_ajp_2022_103021
crossref_primary_10_1016_j_cmpb_2022_107113
crossref_primary_10_3389_fpsyt_2022_913890
crossref_primary_10_1088_1741_2552_abcdbd
crossref_primary_10_1016_j_neucom_2025_129605
crossref_primary_10_1109_ACCESS_2023_3281453
crossref_primary_10_1016_j_compbiomed_2020_103970
crossref_primary_10_1080_19585969_2025_2524337
crossref_primary_10_1016_j_jpsychires_2024_08_002
crossref_primary_10_1016_j_compbiomed_2023_106782
crossref_primary_10_32604_cmc_2022_022609
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_3390_math9060593
crossref_primary_10_1007_s11042_023_17504_1
crossref_primary_10_1177_15500594231163958
crossref_primary_10_1007_s42979_024_03202_8
crossref_primary_10_3389_fnins_2024_1367212
crossref_primary_10_1109_TCDS_2021_3079712
crossref_primary_10_1007_s11571_022_09881_4
crossref_primary_10_1109_JSEN_2020_3028738
crossref_primary_10_1631_jzus_B2400103
crossref_primary_10_1016_j_bspc_2023_104873
crossref_primary_10_32628_IJSRSET2512517
crossref_primary_10_3390_s22249775
crossref_primary_10_3390_biology13040203
crossref_primary_10_1016_j_jad_2024_01_212
crossref_primary_10_1007_s11042_023_14860_w
crossref_primary_10_3390_s23208639
crossref_primary_10_1007_s10489_021_02426_y
crossref_primary_10_1109_TIM_2023_3303233
crossref_primary_10_1155_2023_1701429
crossref_primary_10_3390_su13126822
crossref_primary_10_1088_2634_4386_acca45
crossref_primary_10_1016_j_bspc_2021_103370
crossref_primary_10_1111_exsy_12773
crossref_primary_10_1109_ACCESS_2022_3146711
crossref_primary_10_3390_s20226526
crossref_primary_10_3390_electronics13010186
crossref_primary_10_1109_ACCESS_2022_3231884
crossref_primary_10_1016_j_knosys_2022_110190
crossref_primary_10_1016_j_ijmedinf_2019_103983
crossref_primary_10_1016_j_apacoust_2025_111084
crossref_primary_10_1016_j_inffus_2023_102017
crossref_primary_10_1016_j_neucom_2025_130008
crossref_primary_10_1109_TAFFC_2022_3210958
crossref_primary_10_1007_s10916_022_01857_5
crossref_primary_10_1520_JTE20190626
crossref_primary_10_1007_s12652_022_04204_1
crossref_primary_10_1016_j_bspc_2024_107440
crossref_primary_10_1016_j_bbe_2021_12_005
crossref_primary_10_1016_j_neulet_2023_137313
crossref_primary_10_1016_j_cmpb_2020_105740
crossref_primary_10_1016_j_eswa_2023_120918
crossref_primary_10_1016_j_cmpb_2023_107683
crossref_primary_10_1109_TIM_2021_3053999
crossref_primary_10_1038_s41598_023_29874_5
crossref_primary_10_1016_j_bspc_2020_102393
crossref_primary_10_3389_fnins_2021_778488
crossref_primary_10_1016_j_imu_2023_101284
crossref_primary_10_3390_s24216815
crossref_primary_10_1007_s11571_022_09904_0
crossref_primary_10_1177_15500594241273181
crossref_primary_10_1080_10255842_2025_2484568
crossref_primary_10_1109_JBHI_2024_3418010
crossref_primary_10_1515_tnsci_2022_0234
crossref_primary_10_3390_brainsci12050630
crossref_primary_10_1016_j_artmed_2023_102745
crossref_primary_10_1016_j_bspc_2024_106402
crossref_primary_10_1016_j_bbe_2021_06_006
crossref_primary_10_1109_ACCESS_2023_3275024
crossref_primary_10_3390_brainsci14050436
crossref_primary_10_1007_s13246_022_01135_1
crossref_primary_10_1186_s12888_022_04439_4
crossref_primary_10_1016_j_eswa_2022_117464
crossref_primary_10_3389_fpsyg_2024_1392240
crossref_primary_10_1038_s41598_023_35545_2
crossref_primary_10_1177_15500594211018545
crossref_primary_10_1016_j_compbiomed_2023_106741
crossref_primary_10_1016_j_neuri_2022_100039
crossref_primary_10_1007_s10916_024_02048_0
crossref_primary_10_1093_cercor_bhae505
crossref_primary_10_1109_TAFFC_2022_3171782
crossref_primary_10_1109_TIM_2024_3502843
crossref_primary_10_1109_TNSRE_2021_3059429
crossref_primary_10_1109_TNSRE_2022_3143162
crossref_primary_10_1109_ACCESS_2024_3436895
crossref_primary_10_1109_JBHI_2023_3285268
crossref_primary_10_1007_s00521_024_09437_z
crossref_primary_10_1007_s10489_022_04159_y
crossref_primary_10_3389_fnins_2024_1373515
Cites_doi 10.1016/j.compbiomed.2018.12.012
10.1016/S0925-2312(99)00126-5
10.3390/s17061385
10.1142/S0129065717500435
10.1016/j.compbiomed.2018.06.002
10.1016/j.protcy.2014.09.007
10.1142/S0129065718500090
10.1142/S0129065718500351
10.1162/neco.1997.9.8.1735
10.1016/j.cogsys.2018.07.010
10.1155/2014/627892
10.1088/1741-2560/8/3/036015
10.1166/jmihi.2017.2204
10.1016/j.cogsys.2018.12.001
10.1016/j.ijpsycho.2012.05.001
10.3390/ijerph16040599
10.1016/j.cmpb.2018.04.005
10.1016/j.knosys.2013.02.014
10.1142/S012906571850003X
10.1016/j.compbiomed.2018.03.016
10.1109/72.279181
10.1142/S0219519414500353
10.1109/5.726791
10.1016/j.bspc.2016.07.006
10.1016/j.future.2018.08.044
10.1039/C6RA90093C
10.1016/j.clinph.2009.09.002
10.1142/S0129065718500107
10.1159/000438457
10.1016/j.swevo.2017.10.002
10.1109/TNSRE.2017.2721116
10.1016/j.neures.2010.06.013
10.1016/j.compbiomed.2018.09.008
10.1016/j.compbiomed.2017.09.017
10.1016/j.cmpb.2017.11.023
10.1016/j.compbiomed.2018.09.009
10.1016/j.cmpb.2018.04.012
10.1016/j.cogsys.2018.12.007
10.1016/j.cogsys.2018.07.004
10.1007/s00521-018-03980-2
10.1016/j.patrec.2018.11.004
10.31142/ijtsrd7082
10.1007/s00521-018-3889-z
10.1155/2015/129021
10.1109/CVPR.2015.7298594
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1345-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 12
ExternalDocumentID 31139932
10_1007_s10916_019_1345_y
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-b7f01a0e0218cfdab5234d949d5bbfbcc3f4c220757812803fb5713ef56c9e5f3
IEDL.DBID K7-
ISICitedReferencesCount 177
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469400000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Fri Sep 05 14:58:49 EDT 2025
Tue Nov 04 23:11:17 EST 2025
Wed Feb 19 02:31:40 EST 2025
Sat Nov 29 05:35:00 EST 2025
Tue Nov 18 21:58:09 EST 2025
Fri Feb 21 02:37:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Depression detection
Deep learning
EEG signals
Hybrid deep models
CNN-LSTM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b7f01a0e0218cfdab5234d949d5bbfbcc3f4c220757812803fb5713ef56c9e5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5375-3012
PMID 31139932
PQID 2231281366
PQPubID 54050
PageCount 12
ParticipantIDs proquest_miscellaneous_2231850713
proquest_journals_2231281366
pubmed_primary_31139932
crossref_primary_10_1007_s10916_019_1345_y
crossref_citationtrail_10_1007_s10916_019_1345_y
springer_journals_10_1007_s10916_019_1345_y
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mumtaz (CR25) 2017; 31
Li, Cui, Luo, Li, Wang (CR40) 2018; 28
Supratak, Dong, Wu, Guo (CR19) 2017; 25
Ahmadlou, Adeli, Adeli (CR44) 2012; 85
Petrosian, Prokhorov, Homan, Dasheiff, Wunsch (CR11) 2000; 30
Martinez-Murcia, Górriz, Ramírez, Ortiz (CR33) 2018; 28
CR34
Yuan, Zhou, Xu, Leng, Wei (CR38) 2018; 28
Hochreiter, Schmidhuber (CR31) 1997; 9
FAUST, ANG, PUTHANKATTIL, JOSEPH (CR45) 2014; 14
LeCun, Bottou, Bengio, Haffner (CR4) 1998; 86
Bhat, Acharya, Hagiwara, Dadmehr, Adeli (CR7) 2018; 102
Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankatti, Adeli (CR46) 2015; 74
Faust, Hagiwara, Hong, Lih, Acharya (CR49) 2018; 161
CR2
Bachmann (CR27) 2018; 155
CR3
Bengio, Simard, Frasconi (CR30) 1994; 5
CR5
Talo, Baloglu, Yıldırım, Rajendra Acharya (CR6) 2019; 54
CR9
Jirayucharoensak, Pan-Ngum, Israsena (CR18) 2014; 2014
Liao, Wu, Huang, Cheng, Liu (CR26) 2017; 17
Oh, Ng, Tan, Acharya (CR20) 2018; 102
CR43
CR42
Oh, Ng, Tan, Acharya (CR32) 2019; 105
Yildirim, Baloglu, Acharya (CR48) 2019; 16
Wulsin, Gupta, Mani, Blanco, Litt (CR14) 2011; 8
Pławiak (CR39) 2018; 39
Acharya, Oh, Hagiwara, Tan, Adeli (CR13) 2018; 100
CR16
CR15
Ding, Zhang, Xu, Guo, Zhang (CR17) 2015; 2015
Kuncewicz, Ohtani (CR28) 2016; 6
Yuan, Zhou, Chen (CR41) 2018; 28
Mirowski, Madhavan, LeCun, Kuzniecky (CR12) 2009; 120
Yildirim, Tan, Acharya (CR35) 2018; 52
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (CR29) 2018; 161
Bairy, Lih, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (CR24) 2017; 7
Yıldırım, Pławiak, Tan, Acharya (CR22) 2018; 102
Acharya, Vinitha Sree, Swapna, Martis, Suri (CR8) 2013; 45
Książek, Abdar, Acharya, Pławiak (CR37) 2019; 54
Sharma, Achuth, Deb, Puthankattil, Acharya (CR23) 2018; 52
Antoniades, Spyrou, Martin-Lopez, Valentin, Alarcon, Sanei, Took (CR36) 2018; 28
Acharya, Hagiwara, Deshpande, Suren, Koh, Oh, Arunkumar, Ciaccio, Lim (CR10) 2019; 91
Hecht (CR47) 2010; 68
Yildirim (CR21) 2018; 96
Günther, Pilarski, Helfrich, Shen, Diepold (CR1) 2014; 15
U. Rajendra Acharya (1345_CR29) 2018; 161
GM Bairy (1345_CR24) 2017; 7
Shu Lih Oh (1345_CR32) 2019; 105
Johannes Günther (1345_CR1) 2014; 15
Özal Yıldırım (1345_CR22) 2018; 102
Qi Yuan (1345_CR38) 2018; 28
Ozal Yildirim (1345_CR35) 2018; 52
UR Acharya (1345_CR46) 2015; 74
D F Wulsin (1345_CR14) 2011; 8
Manish Sharma (1345_CR23) 2018; 52
Wojciech Książek (1345_CR37) 2019; 54
Francisco J. Martinez-Murcia (1345_CR33) 2018; 28
S Hochreiter (1345_CR31) 1997; 9
Akara Supratak (1345_CR19) 2017; 25
Piotr Mirowski (1345_CR12) 2009; 120
Shih-Cheng Liao (1345_CR26) 2017; 17
1345_CR34
Shreya Bhat (1345_CR7) 2018; 102
U. Rajendra Acharya (1345_CR10) 2019; 91
Suwicha Jirayucharoensak (1345_CR18) 2014; 2014
UR Acharya (1345_CR13) 2018; 100
M Bachmann (1345_CR27) 2018; 155
O Faust (1345_CR49) 2018; 161
Shu Lih Oh (1345_CR20) 2018; 102
S Yuan (1345_CR41) 2018; 28
1345_CR5
Muhammed Talo (1345_CR6) 2019; 54
1345_CR3
1345_CR9
1345_CR2
1345_CR42
1345_CR43
Paweł Pławiak (1345_CR39) 2018; 39
Shifei Ding (1345_CR17) 2015; 2015
J. Kuncewicz (1345_CR28) 2016; 6
D Hecht (1345_CR47) 2010; 68
Y. Bengio (1345_CR30) 1994; 5
Yang Li (1345_CR40) 2018; 28
1345_CR15
Y LeCun (1345_CR4) 1998; 86
Andreas Antoniades (1345_CR36) 2018; 28
Mehran Ahmadlou (1345_CR44) 2012; 85
W Mumtaz (1345_CR25) 2017; 31
Özal Yildirim (1345_CR21) 2018; 96
1345_CR16
OLIVER FAUST (1345_CR45) 2014; 14
Arthur Petrosian (1345_CR11) 2000; 30
UR Acharya (1345_CR8) 2013; 45
O Yildirim (1345_CR48) 2019; 16
References_xml – volume: 105
  start-page: 92
  year: 2019
  end-page: 101
  ident: CR32
  article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 30
  start-page: 201
  issue: 1-4
  year: 2000
  end-page: 218
  ident: CR11
  article-title: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00126-5
– volume: 17
  start-page: 1385
  issue: 6
  year: 2017
  ident: CR26
  article-title: Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns
  publication-title: Sensors
  doi: 10.3390/s17061385
– ident: CR16
– volume: 28
  start-page: 1750043
  issue: 01
  year: 2018
  ident: CR41
  article-title: Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500435
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: CR20
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 15
  start-page: 474
  year: 2014
  end-page: 483
  ident: CR1
  article-title: First Steps Towards an Intelligent Laser Welding Architecture Using Deep Neural Networks and Reinforcement Learning
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2014.09.007
– volume: 28
  start-page: 1850009
  issue: 08
  year: 2018
  ident: CR36
  article-title: Deep Neural Architectures for Mapping Scalp to Intracranial EEG
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500090
– ident: CR42
– volume: 28
  start-page: 1850035
  issue: 10
  year: 2018
  ident: CR33
  article-title: Convolutional Neural Networks for Neuroimaging in Parkinson’s Disease: Is Preprocessing Needed?
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500351
– volume: 9
  start-page: 1
  year: 1997
  end-page: 32
  ident: CR31
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 52
  start-page: 508
  year: 2018
  end-page: 520
  ident: CR23
  article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.07.010
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  ident: CR18
  article-title: EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/627892
– volume: 8
  start-page: 036015
  issue: 3
  year: 2011
  ident: CR14
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/3/036015
– ident: CR15
– volume: 7
  start-page: 1857
  issue: 8
  year: 2017
  end-page: 1862
  ident: CR24
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2017.2204
– volume: 54
  start-page: 116
  year: 2019
  end-page: 127
  ident: CR37
  article-title: A novel machine learning approach for early detection of hepatocellular carcinoma patients
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.001
– ident: CR9
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  end-page: 211
  ident: CR44
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  ident: CR48
  article-title: A deep learning model for automated sleep stages classification using psg signals
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– ident: CR5
– volume: 161
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR49
  article-title: Deep learning for healthcare applications based on physiological signals: A review
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 45
  start-page: 147
  year: 2013
  end-page: 165
  ident: CR8
  article-title: Automated EEG analysis of epilepsy: A review
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.02.014
– volume: 28
  start-page: 1850003
  issue: 07
  year: 2018
  ident: CR40
  article-title: Epileptic Seizure Detection Based on Time-Frequency Images of EEG Signals Using Gaussian Mixture Model and Gray Level Co-Occurrence Matrix Features
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S012906571850003X
– ident: CR43
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: CR21
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: CR2
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  ident: CR30
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 14
  start-page: 1450035
  issue: 03
  year: 2014
  ident: CR45
  article-title: DEPRESSION DIAGNOSIS SUPPORT SYSTEM BASED ON EEG SIGNAL ENTROPIES
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519414500353
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2323
  ident: CR4
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 11
  ident: CR17
  article-title: Deep Extreme Learning Machine and Its Application in EEG Classification
  publication-title: Mathematical Problems in Engineering
– volume: 31
  start-page: 108
  year: 2017
  end-page: 115
  ident: CR25
  article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD)
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 91
  start-page: 290
  year: 2019
  end-page: 299
  ident: CR10
  article-title: Characterization of focal EEG signals: A review
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.08.044
– volume: 6
  start-page: 91658
  issue: 94
  year: 2016
  end-page: 91658
  ident: CR28
  article-title: Correction: Rhodium-doped titania photocatalysts with two-step bandgap excitation by visible light—influence of the dopant concentration on photosensitization efficiency
  publication-title: RSC Advances
  doi: 10.1039/C6RA90093C
– volume: 120
  start-page: 1927
  issue: 11
  year: 2009
  end-page: 1940
  ident: CR12
  article-title: Classification of patterns of EEG synchronization for seizure prediction
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2009.09.002
– volume: 28
  start-page: 1850010
  issue: 08
  year: 2018
  ident: CR38
  article-title: Epileptic EEG Identification via LBP Operators on Wavelet Coefficients
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500107
– ident: CR3
– volume: 74
  start-page: 79
  year: 2015
  end-page: 83
  ident: CR46
  article-title: A novel depression diagnosis index using nonlinear features in EEG signals
  publication-title: Eur. Neurol.
  doi: 10.1159/000438457
– volume: 39
  start-page: 192
  year: 2018
  end-page: 208
  ident: CR39
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.10.002
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  end-page: 2008
  ident: CR19
  article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2721116
– volume: 68
  start-page: 77
  issue: 2
  year: 2010
  end-page: 87
  ident: CR47
  article-title: Depression and the hyperactive right-hemisphere
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2010.06.013
– volume: 102
  start-page: 234
  year: 2018
  end-page: 241
  ident: CR7
  article-title: Parkinson's disease: Cause factors, measurable indicators, and early diagnosis
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.008
– volume: 100
  start-page: 270
  year: 2018
  end-page: 278
  ident: CR13
  article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 155
  start-page: 11
  year: 2018
  end-page: 17
  ident: CR27
  article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2017.11.023
– ident: CR34
– volume: 102
  start-page: 411
  year: 2018
  end-page: 420
  ident: CR22
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: CR29
  article-title: Automated EEG-based screening of depression using deep convolutional neural network
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 54
  start-page: 176
  year: 2019
  end-page: 188
  ident: CR6
  article-title: Application of deep transfer learning for automated brain abnormality classification using MR images
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.007
– volume: 52
  start-page: 198
  year: 2018
  end-page: 211
  ident: CR35
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.07.004
– volume: 52
  start-page: 508
  year: 2018
  ident: 1345_CR23
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.07.010
– volume: 28
  start-page: 1850035
  issue: 10
  year: 2018
  ident: 1345_CR33
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500351
– ident: 1345_CR34
  doi: 10.1007/s00521-018-03980-2
– volume: 28
  start-page: 1850003
  issue: 07
  year: 2018
  ident: 1345_CR40
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S012906571850003X
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 1345_CR30
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.279181
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  ident: 1345_CR44
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 31
  start-page: 108
  year: 2017
  ident: 1345_CR25
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 52
  start-page: 198
  year: 2018
  ident: 1345_CR35
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.07.004
– ident: 1345_CR15
– volume: 28
  start-page: 1850010
  issue: 08
  year: 2018
  ident: 1345_CR38
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500107
– ident: 1345_CR42
  doi: 10.1016/j.patrec.2018.11.004
– volume: 45
  start-page: 147
  year: 2013
  ident: 1345_CR8
  publication-title: Knowledge-Based Syst
  doi: 10.1016/j.knosys.2013.02.014
– ident: 1345_CR9
  doi: 10.31142/ijtsrd7082
– volume: 28
  start-page: 1850009
  issue: 08
  year: 2018
  ident: 1345_CR36
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500090
– volume: 9
  start-page: 1
  year: 1997
  ident: 1345_CR31
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: 1345_CR16
  doi: 10.1007/s00521-018-3889-z
– volume: 102
  start-page: 234
  year: 2018
  ident: 1345_CR7
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.008
– volume: 2015
  start-page: 1
  year: 2015
  ident: 1345_CR17
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2015/129021
– volume: 28
  start-page: 1750043
  issue: 01
  year: 2018
  ident: 1345_CR41
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500435
– volume: 100
  start-page: 270
  year: 2018
  ident: 1345_CR13
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.09.017
– volume: 120
  start-page: 1927
  issue: 11
  year: 2009
  ident: 1345_CR12
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2009.09.002
– volume: 102
  start-page: 278
  year: 2018
  ident: 1345_CR20
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.06.002
– ident: 1345_CR3
– volume: 155
  start-page: 11
  year: 2018
  ident: 1345_CR27
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2017.11.023
– ident: 1345_CR43
– volume: 54
  start-page: 116
  year: 2019
  ident: 1345_CR37
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.001
– volume: 2014
  start-page: 1
  year: 2014
  ident: 1345_CR18
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/627892
– volume: 6
  start-page: 91658
  issue: 94
  year: 2016
  ident: 1345_CR28
  publication-title: RSC Advances
  doi: 10.1039/C6RA90093C
– volume: 102
  start-page: 411
  year: 2018
  ident: 1345_CR22
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 96
  start-page: 189
  year: 2018
  ident: 1345_CR21
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.03.016
– volume: 16
  start-page: 599
  issue: 4
  year: 2019
  ident: 1345_CR48
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16040599
– volume: 161
  start-page: 103
  year: 2018
  ident: 1345_CR29
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 7
  start-page: 1857
  issue: 8
  year: 2017
  ident: 1345_CR24
  publication-title: J Med Imaging Health Inform
  doi: 10.1166/jmihi.2017.2204
– volume: 15
  start-page: 474
  year: 2014
  ident: 1345_CR1
  publication-title: Procedia Technology
  doi: 10.1016/j.protcy.2014.09.007
– volume: 14
  start-page: 1450035
  issue: 03
  year: 2014
  ident: 1345_CR45
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519414500353
– volume: 74
  start-page: 79
  year: 2015
  ident: 1345_CR46
  publication-title: Eur. Neurol.
  doi: 10.1159/000438457
– volume: 39
  start-page: 192
  year: 2018
  ident: 1345_CR39
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.10.002
– volume: 8
  start-page: 036015
  issue: 3
  year: 2011
  ident: 1345_CR14
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/3/036015
– ident: 1345_CR2
  doi: 10.1109/CVPR.2015.7298594
– volume: 105
  start-page: 92
  year: 2019
  ident: 1345_CR32
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2018.12.012
– volume: 54
  start-page: 176
  year: 2019
  ident: 1345_CR6
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.12.007
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 1345_CR19
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2721116
– volume: 17
  start-page: 1385
  issue: 6
  year: 2017
  ident: 1345_CR26
  publication-title: Sensors
  doi: 10.3390/s17061385
– ident: 1345_CR5
– volume: 86
  start-page: 2278
  year: 1998
  ident: 1345_CR4
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 68
  start-page: 77
  issue: 2
  year: 2010
  ident: 1345_CR47
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2010.06.013
– volume: 161
  start-page: 1
  year: 2018
  ident: 1345_CR49
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 91
  start-page: 290
  year: 2019
  ident: 1345_CR10
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2018.08.044
– volume: 30
  start-page: 201
  issue: 1-4
  year: 2000
  ident: 1345_CR11
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00126-5
SSID ssj0009667
Score 2.6134164
Snippet Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 205
SubjectTerms Algorithms
Artificial neural networks
Automation
Brain
Brain - physiopathology
Cerebral hemispheres
Deep learning
Depression - diagnosis
Depression - physiopathology
EEG
Electroencephalography
Electroencephalography - methods
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Hemispheric laterality
Humans
Image & Signal Processing
Image Processing, Computer-Assisted
Learning
Long short-term memory
Medicine
Medicine & Public Health
Mental depression
Mood
Neural networks
Neural Networks, Computer
Psychiatry
Recent Advances in Deep Learning for Biomedical Signal Processing
Short term
Signal processing
Statistics for Life Sciences
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFBHE-6XeiOCTEmibXh-HbvqgQzYdvpUkTcZAurF1wv69SZtuylTQt5ZcGpKTnu_knPMF4FI4wqdKTWIREYa9IOWYutLHdupJKiInJEWGd_chbLWi19f4yeRxj6to98olWfypPyW7KSijTN8YO8Tz8XQZVpS2i_RubHe6c6bdIChzpL0Ia_bxypX5XRdfldECwlzwjhZKp7n1r-Fuw6bBmKheCsUOLIlsF9YejRd9FzbKszpUpiDtQVKf5AOFXEWKbqvA2Ew95kWYVoaKsAL1LoaoXZSbfKUM0SxFHROMjQxVaw_ps13UaNyhTr-n6Zn34aXZeL65x-biBcxJ6OaYhdJ2qC20_ucypUxZq14ae3HqMyYZ50R63HVtzYXv6OutJPOVsSukH_BY-JIcQC0bZOIIEGdR6nIRUqrsPtWbsicjTkMeSylDRmwL7GoFEm5YyfXlGG_JnE9ZT2SiJjLRE5lMLbiaNRmWlBy_VT6tljUxu3OcKEikHYgkCCy4mBWrfaWdJTQTg0lZJ9JgmVhwWIrD7GvEcTSucy24rtZ-3vmPQzn-U-0TWHftIsFMydAp1PLRRJzBKn_P--PReSHyH0vI-zQ
  priority: 102
  providerName: Springer Nature
Title Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals
URI https://link.springer.com/article/10.1007/s10916-019-1345-y
https://www.ncbi.nlm.nih.gov/pubmed/31139932
https://www.proquest.com/docview/2231281366
https://www.proquest.com/docview/2231850713
Volume 43
WOSCitedRecordID wos000469400000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3va9Qw9OE2EUH8MXVW5xHBT0pYk7RN-0mm3hR0x3E3j8MvJUmTMZDebdcT9t-b16Z3yHBf_PJoSZoG3kve7_cA3lpmU-XZJLW50DTJKkMVdymNq8QpmzMp2gzv2Xc5GuXzeTEOBrdVCKvs78T2oq4WBm3kR56NodNHZNmH5SXFrlHoXQ0tNHZgj3HOkM6_SbotuptlXbp0klMsRN57NbvUOS8YeUW6oEwkKb3-my_dEDZvOEpb_nPy6H93_hgeBsmTHHek8gTu2Hof7p0G3_o-POgseKRLTHoK5fG6WXh51lbkcx8uW_vHpg3eqkkbbODf7ZJM2vGQxVQTVVdkGkK0SSjgek7Q4kuGwy9kenGORZufwY-T4dmnrzS0Y6BGSN5QLV3MVGxRKjCuUtrrsElVJEWVau20McIlhvMYK-QzbHrldOpVYOvSzBQ2deI57NaL2r4AYnRecWOlUl4b9Kt5LTM3SprCOSe1iCOIe2SUJtQqx5YZv8ptlWXEX-nxVyL-yusI3m0-WXaFOm6bfNijqgxndlVu8RTBm82wP23oQlG1Xay7OTmK0CKCg44yNn8TjKG0xyN435PKdvF_buXl7Vt5Bfd53OaZeVo9hN3mam1fw13zu7lYXQ1gR05mCOeyhfkA9j4OR-PJoD0IHp7GZwj5GKFEOE5_ejiZzv4AJc0OAw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQESYilboICR4AKySOwkTg4IVXRKq05HiLZobsZrVQllhk4GNH-K38hzlhmhit564JbIjuPEn9_itwG8conLFLJJ6gquaZpbQxXzGY1t6pUrEsGbCO-vQzEaFeNx-XkNfvexMMGtsqeJDaG2ExPOyN8hGwtGH57nH6Y_aKgaFayrfQmNFhb7bvELVbbZ-71tXN_XjO0Mjj7u0q6qADVcsJpq4eNExS4wN-Ot0qiKpbZMS5tp7bUx3KeGsTgkek9C7SavM9TknM9yU7rMcxz3ClxFOi6CC5kYi1WS3zxvw7PTgobE570VtQ3VQ0EMFfeSJjzN6OJvPnhOuD1nmG343c6d_-1P3YXbnWRNttqtcA_WXLUB1w8634ENuNWeUJI28Oo-yK15PUF53Vmy3bsDV3hZN85pFWmcKfDeTcmXpr2L0qqIqiw57FzQSZeg9oSEE20yGHwih6cnISn1Azi-lM99COvVpHKPgRhdWGacUAq1XRwNtejCKGFK773QPI4g7hdfmi4XeygJ8l2uskgHvEjEiwx4kYsI3iwfmbaJSC7qvNlDQ3Y0aSZXuIjg5bIZqUkwEanKTeZtnyKoCDyCRy0Sl2_jSRKkWRbB2x6aq8H_OZUnF0_lBdzYPToYyuHeaP8p3GRxE1OH-2QT1uuzuXsG18zP-nR29rzZagS-XTZi_wDsMWKF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqUgVavVaNUR9EUZmmRyfShS3F0trctitRRf4lxLQbJrN6vsX-uv65nMZBcp9q0PviVkMpkk38w535wbwGsd6ZSjmKS6YIImmZKUxyaloUoM10WUszbC-_gwHw6Lk5NytAIXXSyMdavs1sR2oVZjaffId1CMWaMPy7Id490iRr3B-8kvaitIWUtrV07DQeRAz_8gfZvu7vfwX7-J40H_64dP1FcYoJLlcUNFbsKIh9oKOmkUF0jLElUmpUqFMEJKZhIZx6FN-h7ZOk5GpMjqtEkzWerUMOz3FtzOkWNa4jdKvy8T_maZC9VOCmqToHcWVRe2h0oZkviSRixJ6fxvmXhF0b1ipG1l3-De__zV7sOG17jJnpsiD2BF15uw9tn7FGzCXbdzSVxA1kOo9mbNGPV4rUivcxOu8bBpndZq0jpZ4LmekC_tdR-9VRNeK3LkXdOJT1x7SuxON-n3P5Kjs1ObrPoRfLuR192C1Xpc6ydApChULHXOObJg7A3ZdSF5LktjTC5YGEDYAaGSPke7LRXys1pml7bYqRA7lcVONQ_g7eKWiUtQcl3j7Q4mlV-rptUSIwG8WlzGVcaajnitxzPXprDUgQXw2KFy8TQWRVbLjQN418F02fk_h_L0-qG8hDUEanW4Pzx4Butx2Iba4ZTZhtXmfKafwx35uzmbnr9oZx2BHzcN2EtIRWt4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Depression+Detection+Using+Deep+Representation+and+Sequence+Learning+with+EEG+Signals&rft.jtitle=Journal+of+medical+systems&rft.au=Ay%2C+Betul&rft.au=Yildirim%2C+Ozal&rft.au=Talo%2C+Muhammed&rft.au=Baloglu%2C+Ulas+Baran&rft.date=2019-07-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=43&rft.issue=7&rft.spage=205&rft_id=info:doi/10.1007%2Fs10916-019-1345-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon