Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals
Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and t...
Uloženo v:
| Vydáno v: | Journal of medical systems Ročník 43; číslo 7; s. 205 - 12 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.07.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists. |
|---|---|
| AbstractList | Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists. Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists. Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists.Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using electroencephalogram (EEG) signals. The manual detection of depression by analyzing the EEG signals requires lot of experience, tedious and time consuming. Hence, a fully automated depression diagnosis system developed using EEG signals will help the clinicians. Therefore, we propose a deep hybrid model developed using convolutional neural network (CNN) and long-short term memory (LSTM) architectures to detect depression using EEG signals. In the deep model, temporal properties of the signals are learned with CNN layers and the sequence learning process is provided through the LSTM layers. In this work, we have used EEG signals obtained from left and right hemispheres of the brain. Our work has provided 99.12% and 97.66% classification accuracies for the right and left hemisphere EEG signals respectively. Hence, we can conclude that the developed CNN-LSTM model is accurate and fast in detecting the depression using EEG signals. It can be employed in psychiatry wards of the hospitals to detect the depression using EEG signals accurately and thus aid the psychiatrists. |
| ArticleNumber | 205 |
| Author | Ay, Betul Yildirim, Ozal Acharya, U. Rajendra Baloglu, Ulas Baran Puthankattil, Subha D. Talo, Muhammed Aydin, Galip |
| Author_xml | – sequence: 1 givenname: Betul surname: Ay fullname: Ay, Betul organization: Department of Computer Engineering, Fırat University – sequence: 2 givenname: Ozal orcidid: 0000-0001-5375-3012 surname: Yildirim fullname: Yildirim, Ozal email: oyildirim@munzur.edu.tr organization: Department of Computer Engineering, Munzur University – sequence: 3 givenname: Muhammed surname: Talo fullname: Talo, Muhammed organization: Department of Computer Engineering, Munzur University – sequence: 4 givenname: Ulas Baran surname: Baloglu fullname: Baloglu, Ulas Baran organization: Department of Computer Engineering, Munzur University – sequence: 5 givenname: Galip surname: Aydin fullname: Aydin, Galip organization: Department of Computer Engineering, Fırat University – sequence: 6 givenname: Subha D. surname: Puthankattil fullname: Puthankattil, Subha D. organization: Department of Electrical Engineering, National Institute of Technology Calicut – sequence: 7 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Department of Biomedical Engineering, School of Science and Technology, Singapore School of Social Sciences, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31139932$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFr3DAQhUVISTZpf0AvxdBLLm40kmVZx5Bu08JCoGkgNyHLo63DrryVZMr--8jrpIVAe5oR8z3NY94ZOfaDR0LeA_0ElMrLCFRBXVJQJfBKlPsjsgAheVk36uGYLChUTSmEak7JWYyPlFJV1_KEnHIArhRnC6KvxjRsTcKu-Iy7gDH2g89tQpum7j72fp3fuCu-H-bokzlMjO-KO_w1ordYrNAEP5G_-_SzWC5virt-7c0mviVvXC747rmek_svyx_XX8vV7c2366tVablkqWylo2AoUgaNdZ1pBeNVpyrVibZ1rbXcVZYxKoVsgDWUu1ZI4OhEbRUKx8_JxfzvLgzZU0x620eLm43xOIxRM8ahETRrMvrxFfo4jGEye6BYA7yuM_XhmRrbLXZ6F_qtCXv9croMwAzYMMQY0P1BgOopHj3Ho3M8eopH77NGvtLYfj5nCqbf_FfJZmXMW_waw1_T_xY9Adlzo8Q |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2024_120750 crossref_primary_10_3389_fdgth_2023_1080023 crossref_primary_10_1007_s11548_021_02377_2 crossref_primary_10_1109_ACCESS_2023_3270426 crossref_primary_10_1007_s11042_023_14799_y crossref_primary_10_1016_j_bspc_2024_106973 crossref_primary_10_1016_j_eswa_2022_116761 crossref_primary_10_1109_TCDS_2024_3358022 crossref_primary_10_3389_fpsyt_2022_970993 crossref_primary_10_1016_j_compbiomed_2022_105420 crossref_primary_10_1016_j_compeleceng_2023_109071 crossref_primary_10_1016_j_chaos_2024_114700 crossref_primary_10_3390_diagnostics15020210 crossref_primary_10_1016_j_neuroscience_2025_07_010 crossref_primary_10_1109_TIM_2025_3545204 crossref_primary_10_1007_s12559_022_10042_2 crossref_primary_10_1016_j_jneumeth_2021_109209 crossref_primary_10_1109_TAI_2024_3394792 crossref_primary_10_1109_TNB_2020_2990690 crossref_primary_10_1109_ACCESS_2022_3163311 crossref_primary_10_1109_ACCESS_2023_3304236 crossref_primary_10_3390_diagnostics13101779 crossref_primary_10_3390_s20185234 crossref_primary_10_1016_j_bspc_2024_106182 crossref_primary_10_1016_j_asoc_2022_109713 crossref_primary_10_3389_fnins_2023_1301214 crossref_primary_10_1007_s00500_024_09862_1 crossref_primary_10_3390_bios12121087 crossref_primary_10_1016_j_biopsycho_2021_108117 crossref_primary_10_1109_TIM_2025_3556900 crossref_primary_10_1007_s00530_020_00728_8 crossref_primary_10_1016_j_compbiomed_2021_105039 crossref_primary_10_1016_j_infrared_2019_103041 crossref_primary_10_1016_j_bbr_2024_115325 crossref_primary_10_1007_s11030_021_10274_8 crossref_primary_10_1186_s12938_024_01250_y crossref_primary_10_1109_TNSRE_2023_3336467 crossref_primary_10_1155_2021_1299870 crossref_primary_10_1016_j_irbm_2020_07_002 crossref_primary_10_1109_ACCESS_2023_3262930 crossref_primary_10_3390_brainsci12070834 crossref_primary_10_3389_fphys_2022_1029298 crossref_primary_10_1016_j_matpr_2021_05_659 crossref_primary_10_1109_TCBB_2023_3257175 crossref_primary_10_1080_13607863_2022_2031868 crossref_primary_10_1177_20552076251324456 crossref_primary_10_1088_1741_2552_ad5048 crossref_primary_10_31083_j_jin_2020_01_24 crossref_primary_10_1109_JAS_2025_125393 crossref_primary_10_1155_da_5512539 crossref_primary_10_1007_s10462_021_09986_y crossref_primary_10_1016_j_patrec_2024_10_016 crossref_primary_10_3390_diagnostics13030573 crossref_primary_10_1088_1741_2552_ad038b crossref_primary_10_1016_j_cmpb_2021_106007 crossref_primary_10_1109_TNSRE_2024_3360465 crossref_primary_10_3390_brainsci14101018 crossref_primary_10_1016_j_ajp_2022_103021 crossref_primary_10_1016_j_cmpb_2022_107113 crossref_primary_10_3389_fpsyt_2022_913890 crossref_primary_10_1088_1741_2552_abcdbd crossref_primary_10_1016_j_neucom_2025_129605 crossref_primary_10_1109_ACCESS_2023_3281453 crossref_primary_10_1016_j_compbiomed_2020_103970 crossref_primary_10_1080_19585969_2025_2524337 crossref_primary_10_1016_j_jpsychires_2024_08_002 crossref_primary_10_1016_j_compbiomed_2023_106782 crossref_primary_10_32604_cmc_2022_022609 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_3390_math9060593 crossref_primary_10_1007_s11042_023_17504_1 crossref_primary_10_1177_15500594231163958 crossref_primary_10_1007_s42979_024_03202_8 crossref_primary_10_3389_fnins_2024_1367212 crossref_primary_10_1109_TCDS_2021_3079712 crossref_primary_10_1007_s11571_022_09881_4 crossref_primary_10_1109_JSEN_2020_3028738 crossref_primary_10_1631_jzus_B2400103 crossref_primary_10_1016_j_bspc_2023_104873 crossref_primary_10_32628_IJSRSET2512517 crossref_primary_10_3390_s22249775 crossref_primary_10_3390_biology13040203 crossref_primary_10_1016_j_jad_2024_01_212 crossref_primary_10_1007_s11042_023_14860_w crossref_primary_10_3390_s23208639 crossref_primary_10_1007_s10489_021_02426_y crossref_primary_10_1109_TIM_2023_3303233 crossref_primary_10_1155_2023_1701429 crossref_primary_10_3390_su13126822 crossref_primary_10_1088_2634_4386_acca45 crossref_primary_10_1016_j_bspc_2021_103370 crossref_primary_10_1111_exsy_12773 crossref_primary_10_1109_ACCESS_2022_3146711 crossref_primary_10_3390_s20226526 crossref_primary_10_3390_electronics13010186 crossref_primary_10_1109_ACCESS_2022_3231884 crossref_primary_10_1016_j_knosys_2022_110190 crossref_primary_10_1016_j_ijmedinf_2019_103983 crossref_primary_10_1016_j_apacoust_2025_111084 crossref_primary_10_1016_j_inffus_2023_102017 crossref_primary_10_1016_j_neucom_2025_130008 crossref_primary_10_1109_TAFFC_2022_3210958 crossref_primary_10_1007_s10916_022_01857_5 crossref_primary_10_1520_JTE20190626 crossref_primary_10_1007_s12652_022_04204_1 crossref_primary_10_1016_j_bspc_2024_107440 crossref_primary_10_1016_j_bbe_2021_12_005 crossref_primary_10_1016_j_neulet_2023_137313 crossref_primary_10_1016_j_cmpb_2020_105740 crossref_primary_10_1016_j_eswa_2023_120918 crossref_primary_10_1016_j_cmpb_2023_107683 crossref_primary_10_1109_TIM_2021_3053999 crossref_primary_10_1038_s41598_023_29874_5 crossref_primary_10_1016_j_bspc_2020_102393 crossref_primary_10_3389_fnins_2021_778488 crossref_primary_10_1016_j_imu_2023_101284 crossref_primary_10_3390_s24216815 crossref_primary_10_1007_s11571_022_09904_0 crossref_primary_10_1177_15500594241273181 crossref_primary_10_1080_10255842_2025_2484568 crossref_primary_10_1109_JBHI_2024_3418010 crossref_primary_10_1515_tnsci_2022_0234 crossref_primary_10_3390_brainsci12050630 crossref_primary_10_1016_j_artmed_2023_102745 crossref_primary_10_1016_j_bspc_2024_106402 crossref_primary_10_1016_j_bbe_2021_06_006 crossref_primary_10_1109_ACCESS_2023_3275024 crossref_primary_10_3390_brainsci14050436 crossref_primary_10_1007_s13246_022_01135_1 crossref_primary_10_1186_s12888_022_04439_4 crossref_primary_10_1016_j_eswa_2022_117464 crossref_primary_10_3389_fpsyg_2024_1392240 crossref_primary_10_1038_s41598_023_35545_2 crossref_primary_10_1177_15500594211018545 crossref_primary_10_1016_j_compbiomed_2023_106741 crossref_primary_10_1016_j_neuri_2022_100039 crossref_primary_10_1007_s10916_024_02048_0 crossref_primary_10_1093_cercor_bhae505 crossref_primary_10_1109_TAFFC_2022_3171782 crossref_primary_10_1109_TIM_2024_3502843 crossref_primary_10_1109_TNSRE_2021_3059429 crossref_primary_10_1109_TNSRE_2022_3143162 crossref_primary_10_1109_ACCESS_2024_3436895 crossref_primary_10_1109_JBHI_2023_3285268 crossref_primary_10_1007_s00521_024_09437_z crossref_primary_10_1007_s10489_022_04159_y crossref_primary_10_3389_fnins_2024_1373515 |
| Cites_doi | 10.1016/j.compbiomed.2018.12.012 10.1016/S0925-2312(99)00126-5 10.3390/s17061385 10.1142/S0129065717500435 10.1016/j.compbiomed.2018.06.002 10.1016/j.protcy.2014.09.007 10.1142/S0129065718500090 10.1142/S0129065718500351 10.1162/neco.1997.9.8.1735 10.1016/j.cogsys.2018.07.010 10.1155/2014/627892 10.1088/1741-2560/8/3/036015 10.1166/jmihi.2017.2204 10.1016/j.cogsys.2018.12.001 10.1016/j.ijpsycho.2012.05.001 10.3390/ijerph16040599 10.1016/j.cmpb.2018.04.005 10.1016/j.knosys.2013.02.014 10.1142/S012906571850003X 10.1016/j.compbiomed.2018.03.016 10.1109/72.279181 10.1142/S0219519414500353 10.1109/5.726791 10.1016/j.bspc.2016.07.006 10.1016/j.future.2018.08.044 10.1039/C6RA90093C 10.1016/j.clinph.2009.09.002 10.1142/S0129065718500107 10.1159/000438457 10.1016/j.swevo.2017.10.002 10.1109/TNSRE.2017.2721116 10.1016/j.neures.2010.06.013 10.1016/j.compbiomed.2018.09.008 10.1016/j.compbiomed.2017.09.017 10.1016/j.cmpb.2017.11.023 10.1016/j.compbiomed.2018.09.009 10.1016/j.cmpb.2018.04.012 10.1016/j.cogsys.2018.12.007 10.1016/j.cogsys.2018.07.004 10.1007/s00521-018-03980-2 10.1016/j.patrec.2018.11.004 10.31142/ijtsrd7082 10.1007/s00521-018-3889-z 10.1155/2015/129021 10.1109/CVPR.2015.7298594 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1345-y |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 12 |
| ExternalDocumentID | 31139932 10_1007_s10916_019_1345_y |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-b7f01a0e0218cfdab5234d949d5bbfbcc3f4c220757812803fb5713ef56c9e5f3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469400000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Fri Sep 05 14:58:49 EDT 2025 Tue Nov 04 23:11:17 EST 2025 Wed Feb 19 02:31:40 EST 2025 Sat Nov 29 05:35:00 EST 2025 Tue Nov 18 21:58:09 EST 2025 Fri Feb 21 02:37:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Depression detection Deep learning EEG signals Hybrid deep models CNN-LSTM |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-b7f01a0e0218cfdab5234d949d5bbfbcc3f4c220757812803fb5713ef56c9e5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5375-3012 |
| PMID | 31139932 |
| PQID | 2231281366 |
| PQPubID | 54050 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2231850713 proquest_journals_2231281366 pubmed_primary_31139932 crossref_primary_10_1007_s10916_019_1345_y crossref_citationtrail_10_1007_s10916_019_1345_y springer_journals_10_1007_s10916_019_1345_y |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Mumtaz (CR25) 2017; 31 Li, Cui, Luo, Li, Wang (CR40) 2018; 28 Supratak, Dong, Wu, Guo (CR19) 2017; 25 Ahmadlou, Adeli, Adeli (CR44) 2012; 85 Petrosian, Prokhorov, Homan, Dasheiff, Wunsch (CR11) 2000; 30 Martinez-Murcia, Górriz, Ramírez, Ortiz (CR33) 2018; 28 CR34 Yuan, Zhou, Xu, Leng, Wei (CR38) 2018; 28 Hochreiter, Schmidhuber (CR31) 1997; 9 FAUST, ANG, PUTHANKATTIL, JOSEPH (CR45) 2014; 14 LeCun, Bottou, Bengio, Haffner (CR4) 1998; 86 Bhat, Acharya, Hagiwara, Dadmehr, Adeli (CR7) 2018; 102 Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankatti, Adeli (CR46) 2015; 74 Faust, Hagiwara, Hong, Lih, Acharya (CR49) 2018; 161 CR2 Bachmann (CR27) 2018; 155 CR3 Bengio, Simard, Frasconi (CR30) 1994; 5 CR5 Talo, Baloglu, Yıldırım, Rajendra Acharya (CR6) 2019; 54 CR9 Jirayucharoensak, Pan-Ngum, Israsena (CR18) 2014; 2014 Liao, Wu, Huang, Cheng, Liu (CR26) 2017; 17 Oh, Ng, Tan, Acharya (CR20) 2018; 102 CR43 CR42 Oh, Ng, Tan, Acharya (CR32) 2019; 105 Yildirim, Baloglu, Acharya (CR48) 2019; 16 Wulsin, Gupta, Mani, Blanco, Litt (CR14) 2011; 8 Pławiak (CR39) 2018; 39 Acharya, Oh, Hagiwara, Tan, Adeli (CR13) 2018; 100 CR16 CR15 Ding, Zhang, Xu, Guo, Zhang (CR17) 2015; 2015 Kuncewicz, Ohtani (CR28) 2016; 6 Yuan, Zhou, Chen (CR41) 2018; 28 Mirowski, Madhavan, LeCun, Kuzniecky (CR12) 2009; 120 Yildirim, Tan, Acharya (CR35) 2018; 52 Acharya, Oh, Hagiwara, Tan, Adeli, Subha (CR29) 2018; 161 Bairy, Lih, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (CR24) 2017; 7 Yıldırım, Pławiak, Tan, Acharya (CR22) 2018; 102 Acharya, Vinitha Sree, Swapna, Martis, Suri (CR8) 2013; 45 Książek, Abdar, Acharya, Pławiak (CR37) 2019; 54 Sharma, Achuth, Deb, Puthankattil, Acharya (CR23) 2018; 52 Antoniades, Spyrou, Martin-Lopez, Valentin, Alarcon, Sanei, Took (CR36) 2018; 28 Acharya, Hagiwara, Deshpande, Suren, Koh, Oh, Arunkumar, Ciaccio, Lim (CR10) 2019; 91 Hecht (CR47) 2010; 68 Yildirim (CR21) 2018; 96 Günther, Pilarski, Helfrich, Shen, Diepold (CR1) 2014; 15 U. Rajendra Acharya (1345_CR29) 2018; 161 GM Bairy (1345_CR24) 2017; 7 Shu Lih Oh (1345_CR32) 2019; 105 Johannes Günther (1345_CR1) 2014; 15 Özal Yıldırım (1345_CR22) 2018; 102 Qi Yuan (1345_CR38) 2018; 28 Ozal Yildirim (1345_CR35) 2018; 52 UR Acharya (1345_CR46) 2015; 74 D F Wulsin (1345_CR14) 2011; 8 Manish Sharma (1345_CR23) 2018; 52 Wojciech Książek (1345_CR37) 2019; 54 Francisco J. Martinez-Murcia (1345_CR33) 2018; 28 S Hochreiter (1345_CR31) 1997; 9 Akara Supratak (1345_CR19) 2017; 25 Piotr Mirowski (1345_CR12) 2009; 120 Shih-Cheng Liao (1345_CR26) 2017; 17 1345_CR34 Shreya Bhat (1345_CR7) 2018; 102 U. Rajendra Acharya (1345_CR10) 2019; 91 Suwicha Jirayucharoensak (1345_CR18) 2014; 2014 UR Acharya (1345_CR13) 2018; 100 M Bachmann (1345_CR27) 2018; 155 O Faust (1345_CR49) 2018; 161 Shu Lih Oh (1345_CR20) 2018; 102 S Yuan (1345_CR41) 2018; 28 1345_CR5 Muhammed Talo (1345_CR6) 2019; 54 1345_CR3 1345_CR9 1345_CR2 1345_CR42 1345_CR43 Paweł Pławiak (1345_CR39) 2018; 39 Shifei Ding (1345_CR17) 2015; 2015 J. Kuncewicz (1345_CR28) 2016; 6 D Hecht (1345_CR47) 2010; 68 Y. Bengio (1345_CR30) 1994; 5 Yang Li (1345_CR40) 2018; 28 1345_CR15 Y LeCun (1345_CR4) 1998; 86 Andreas Antoniades (1345_CR36) 2018; 28 Mehran Ahmadlou (1345_CR44) 2012; 85 W Mumtaz (1345_CR25) 2017; 31 Özal Yildirim (1345_CR21) 2018; 96 1345_CR16 OLIVER FAUST (1345_CR45) 2014; 14 Arthur Petrosian (1345_CR11) 2000; 30 UR Acharya (1345_CR8) 2013; 45 O Yildirim (1345_CR48) 2019; 16 |
| References_xml | – volume: 105 start-page: 92 year: 2019 end-page: 101 ident: CR32 article-title: Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.12.012 – volume: 30 start-page: 201 issue: 1-4 year: 2000 end-page: 218 ident: CR11 article-title: Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00126-5 – volume: 17 start-page: 1385 issue: 6 year: 2017 ident: CR26 article-title: Major Depression Detection from EEG Signals Using Kernel Eigen-Filter-Bank Common Spatial Patterns publication-title: Sensors doi: 10.3390/s17061385 – ident: CR16 – volume: 28 start-page: 1750043 issue: 01 year: 2018 ident: CR41 article-title: Epileptic Seizure Prediction Using Diffusion Distance and Bayesian Linear Discriminate Analysis on Intracranial EEG publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500435 – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: CR20 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.06.002 – volume: 15 start-page: 474 year: 2014 end-page: 483 ident: CR1 article-title: First Steps Towards an Intelligent Laser Welding Architecture Using Deep Neural Networks and Reinforcement Learning publication-title: Procedia Technology doi: 10.1016/j.protcy.2014.09.007 – volume: 28 start-page: 1850009 issue: 08 year: 2018 ident: CR36 article-title: Deep Neural Architectures for Mapping Scalp to Intracranial EEG publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500090 – ident: CR42 – volume: 28 start-page: 1850035 issue: 10 year: 2018 ident: CR33 article-title: Convolutional Neural Networks for Neuroimaging in Parkinson’s Disease: Is Preprocessing Needed? publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500351 – volume: 9 start-page: 1 year: 1997 end-page: 32 ident: CR31 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 52 start-page: 508 year: 2018 end-page: 520 ident: CR23 article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with EEG signals publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.010 – volume: 2014 start-page: 1 year: 2014 end-page: 10 ident: CR18 article-title: EEG-Based Emotion Recognition Using Deep Learning Network with Principal Component Based Covariate Shift Adaptation publication-title: The Scientific World Journal doi: 10.1155/2014/627892 – volume: 8 start-page: 036015 issue: 3 year: 2011 ident: CR14 article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/3/036015 – ident: CR15 – volume: 7 start-page: 1857 issue: 8 year: 2017 end-page: 1862 ident: CR24 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: J Med Imaging Health Inform doi: 10.1166/jmihi.2017.2204 – volume: 54 start-page: 116 year: 2019 end-page: 127 ident: CR37 article-title: A novel machine learning approach for early detection of hepatocellular carcinoma patients publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.12.001 – ident: CR9 – volume: 85 start-page: 206 issue: 2 year: 2012 end-page: 211 ident: CR44 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2012.05.001 – volume: 16 start-page: 599 issue: 4 year: 2019 ident: CR48 article-title: A deep learning model for automated sleep stages classification using psg signals publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16040599 – ident: CR5 – volume: 161 start-page: 1 year: 2018 end-page: 13 ident: CR49 article-title: Deep learning for healthcare applications based on physiological signals: A review publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.04.005 – volume: 45 start-page: 147 year: 2013 end-page: 165 ident: CR8 article-title: Automated EEG analysis of epilepsy: A review publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2013.02.014 – volume: 28 start-page: 1850003 issue: 07 year: 2018 ident: CR40 article-title: Epileptic Seizure Detection Based on Time-Frequency Images of EEG Signals Using Gaussian Mixture Model and Gray Level Co-Occurrence Matrix Features publication-title: International Journal of Neural Systems doi: 10.1142/S012906571850003X – ident: CR43 – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: CR21 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.03.016 – ident: CR2 – volume: 5 start-page: 157 issue: 2 year: 1994 end-page: 166 ident: CR30 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279181 – volume: 14 start-page: 1450035 issue: 03 year: 2014 ident: CR45 article-title: DEPRESSION DIAGNOSIS SUPPORT SYSTEM BASED ON EEG SIGNAL ENTROPIES publication-title: Journal of Mechanics in Medicine and Biology doi: 10.1142/S0219519414500353 – volume: 86 start-page: 2278 year: 1998 end-page: 2323 ident: CR4 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 2015 start-page: 1 year: 2015 end-page: 11 ident: CR17 article-title: Deep Extreme Learning Machine and Its Application in EEG Classification publication-title: Mathematical Problems in Engineering – volume: 31 start-page: 108 year: 2017 end-page: 115 ident: CR25 article-title: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD) publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.07.006 – volume: 91 start-page: 290 year: 2019 end-page: 299 ident: CR10 article-title: Characterization of focal EEG signals: A review publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.08.044 – volume: 6 start-page: 91658 issue: 94 year: 2016 end-page: 91658 ident: CR28 article-title: Correction: Rhodium-doped titania photocatalysts with two-step bandgap excitation by visible light—influence of the dopant concentration on photosensitization efficiency publication-title: RSC Advances doi: 10.1039/C6RA90093C – volume: 120 start-page: 1927 issue: 11 year: 2009 end-page: 1940 ident: CR12 article-title: Classification of patterns of EEG synchronization for seizure prediction publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2009.09.002 – volume: 28 start-page: 1850010 issue: 08 year: 2018 ident: CR38 article-title: Epileptic EEG Identification via LBP Operators on Wavelet Coefficients publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500107 – ident: CR3 – volume: 74 start-page: 79 year: 2015 end-page: 83 ident: CR46 article-title: A novel depression diagnosis index using nonlinear features in EEG signals publication-title: Eur. Neurol. doi: 10.1159/000438457 – volume: 39 start-page: 192 year: 2018 end-page: 208 ident: CR39 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.10.002 – volume: 25 start-page: 1998 issue: 11 year: 2017 end-page: 2008 ident: CR19 article-title: DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2721116 – volume: 68 start-page: 77 issue: 2 year: 2010 end-page: 87 ident: CR47 article-title: Depression and the hyperactive right-hemisphere publication-title: Neurosci. Res. doi: 10.1016/j.neures.2010.06.013 – volume: 102 start-page: 234 year: 2018 end-page: 241 ident: CR7 article-title: Parkinson's disease: Cause factors, measurable indicators, and early diagnosis publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.09.008 – volume: 100 start-page: 270 year: 2018 end-page: 278 ident: CR13 article-title: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 155 start-page: 11 year: 2018 end-page: 17 ident: CR27 article-title: Methods for classifying depression in single channel EEG using linear and nonlinear signal analysis publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2017.11.023 – ident: CR34 – volume: 102 start-page: 411 year: 2018 end-page: 420 ident: CR22 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.09.009 – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: CR29 article-title: Automated EEG-based screening of depression using deep convolutional neural network publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2018.04.012 – volume: 54 start-page: 176 year: 2019 end-page: 188 ident: CR6 article-title: Application of deep transfer learning for automated brain abnormality classification using MR images publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.12.007 – volume: 52 start-page: 198 year: 2018 end-page: 211 ident: CR35 article-title: An efficient compression of ECG signals using deep convolutional autoencoders publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.004 – volume: 52 start-page: 508 year: 2018 ident: 1345_CR23 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.010 – volume: 28 start-page: 1850035 issue: 10 year: 2018 ident: 1345_CR33 publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500351 – ident: 1345_CR34 doi: 10.1007/s00521-018-03980-2 – volume: 28 start-page: 1850003 issue: 07 year: 2018 ident: 1345_CR40 publication-title: International Journal of Neural Systems doi: 10.1142/S012906571850003X – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 1345_CR30 publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.279181 – volume: 85 start-page: 206 issue: 2 year: 2012 ident: 1345_CR44 publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2012.05.001 – volume: 31 start-page: 108 year: 2017 ident: 1345_CR25 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2016.07.006 – volume: 52 start-page: 198 year: 2018 ident: 1345_CR35 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.004 – ident: 1345_CR15 – volume: 28 start-page: 1850010 issue: 08 year: 2018 ident: 1345_CR38 publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500107 – ident: 1345_CR42 doi: 10.1016/j.patrec.2018.11.004 – volume: 45 start-page: 147 year: 2013 ident: 1345_CR8 publication-title: Knowledge-Based Syst doi: 10.1016/j.knosys.2013.02.014 – ident: 1345_CR9 doi: 10.31142/ijtsrd7082 – volume: 28 start-page: 1850009 issue: 08 year: 2018 ident: 1345_CR36 publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500090 – volume: 9 start-page: 1 year: 1997 ident: 1345_CR31 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 1345_CR16 doi: 10.1007/s00521-018-3889-z – volume: 102 start-page: 234 year: 2018 ident: 1345_CR7 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.09.008 – volume: 2015 start-page: 1 year: 2015 ident: 1345_CR17 publication-title: Mathematical Problems in Engineering doi: 10.1155/2015/129021 – volume: 28 start-page: 1750043 issue: 01 year: 2018 ident: 1345_CR41 publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500435 – volume: 100 start-page: 270 year: 2018 ident: 1345_CR13 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.09.017 – volume: 120 start-page: 1927 issue: 11 year: 2009 ident: 1345_CR12 publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2009.09.002 – volume: 102 start-page: 278 year: 2018 ident: 1345_CR20 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.06.002 – ident: 1345_CR3 – volume: 155 start-page: 11 year: 2018 ident: 1345_CR27 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2017.11.023 – ident: 1345_CR43 – volume: 54 start-page: 116 year: 2019 ident: 1345_CR37 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.12.001 – volume: 2014 start-page: 1 year: 2014 ident: 1345_CR18 publication-title: The Scientific World Journal doi: 10.1155/2014/627892 – volume: 6 start-page: 91658 issue: 94 year: 2016 ident: 1345_CR28 publication-title: RSC Advances doi: 10.1039/C6RA90093C – volume: 102 start-page: 411 year: 2018 ident: 1345_CR22 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.09.009 – volume: 96 start-page: 189 year: 2018 ident: 1345_CR21 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.03.016 – volume: 16 start-page: 599 issue: 4 year: 2019 ident: 1345_CR48 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16040599 – volume: 161 start-page: 103 year: 2018 ident: 1345_CR29 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2018.04.012 – volume: 7 start-page: 1857 issue: 8 year: 2017 ident: 1345_CR24 publication-title: J Med Imaging Health Inform doi: 10.1166/jmihi.2017.2204 – volume: 15 start-page: 474 year: 2014 ident: 1345_CR1 publication-title: Procedia Technology doi: 10.1016/j.protcy.2014.09.007 – volume: 14 start-page: 1450035 issue: 03 year: 2014 ident: 1345_CR45 publication-title: Journal of Mechanics in Medicine and Biology doi: 10.1142/S0219519414500353 – volume: 74 start-page: 79 year: 2015 ident: 1345_CR46 publication-title: Eur. Neurol. doi: 10.1159/000438457 – volume: 39 start-page: 192 year: 2018 ident: 1345_CR39 publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.10.002 – volume: 8 start-page: 036015 issue: 3 year: 2011 ident: 1345_CR14 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/3/036015 – ident: 1345_CR2 doi: 10.1109/CVPR.2015.7298594 – volume: 105 start-page: 92 year: 2019 ident: 1345_CR32 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2018.12.012 – volume: 54 start-page: 176 year: 2019 ident: 1345_CR6 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.12.007 – volume: 25 start-page: 1998 issue: 11 year: 2017 ident: 1345_CR19 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2721116 – volume: 17 start-page: 1385 issue: 6 year: 2017 ident: 1345_CR26 publication-title: Sensors doi: 10.3390/s17061385 – ident: 1345_CR5 – volume: 86 start-page: 2278 year: 1998 ident: 1345_CR4 publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 68 start-page: 77 issue: 2 year: 2010 ident: 1345_CR47 publication-title: Neurosci. Res. doi: 10.1016/j.neures.2010.06.013 – volume: 161 start-page: 1 year: 2018 ident: 1345_CR49 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.04.005 – volume: 91 start-page: 290 year: 2019 ident: 1345_CR10 publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2018.08.044 – volume: 30 start-page: 201 issue: 1-4 year: 2000 ident: 1345_CR11 publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00126-5 |
| SSID | ssj0009667 |
| Score | 2.6134164 |
| Snippet | Depression affects large number of people across the world today and it is considered as the global problem. It is a mood disorder which can be detected using... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 205 |
| SubjectTerms | Algorithms Artificial neural networks Automation Brain Brain - physiopathology Cerebral hemispheres Deep learning Depression - diagnosis Depression - physiopathology EEG Electroencephalography Electroencephalography - methods Health Informatics Health Informatics and Computer Vision Health Sciences Hemispheric laterality Humans Image & Signal Processing Image Processing, Computer-Assisted Learning Long short-term memory Medicine Medicine & Public Health Mental depression Mood Neural networks Neural Networks, Computer Psychiatry Recent Advances in Deep Learning for Biomedical Signal Processing Short term Signal processing Statistics for Life Sciences |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFBHE-6XeiOCTEmibXh-HbvqgQzYdvpUkTcZAurF1wv69SZtuylTQt5ZcGpKTnu_knPMF4FI4wqdKTWIREYa9IOWYutLHdupJKiInJEWGd_chbLWi19f4yeRxj6to98olWfypPyW7KSijTN8YO8Tz8XQZVpS2i_RubHe6c6bdIChzpL0Ia_bxypX5XRdfldECwlzwjhZKp7n1r-Fuw6bBmKheCsUOLIlsF9YejRd9FzbKszpUpiDtQVKf5AOFXEWKbqvA2Ew95kWYVoaKsAL1LoaoXZSbfKUM0SxFHROMjQxVaw_ps13UaNyhTr-n6Zn34aXZeL65x-biBcxJ6OaYhdJ2qC20_ucypUxZq14ae3HqMyYZ50R63HVtzYXv6OutJPOVsSukH_BY-JIcQC0bZOIIEGdR6nIRUqrsPtWbsicjTkMeSylDRmwL7GoFEm5YyfXlGG_JnE9ZT2SiJjLRE5lMLbiaNRmWlBy_VT6tljUxu3OcKEikHYgkCCy4mBWrfaWdJTQTg0lZJ9JgmVhwWIrD7GvEcTSucy24rtZ-3vmPQzn-U-0TWHftIsFMydAp1PLRRJzBKn_P--PReSHyH0vI-zQ priority: 102 providerName: Springer Nature |
| Title | Automated Depression Detection Using Deep Representation and Sequence Learning with EEG Signals |
| URI | https://link.springer.com/article/10.1007/s10916-019-1345-y https://www.ncbi.nlm.nih.gov/pubmed/31139932 https://www.proquest.com/docview/2231281366 https://www.proquest.com/docview/2231850713 |
| Volume | 43 |
| WOSCitedRecordID | wos000469400000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3va9Qw9OE2EUH8MXVW5xHBT0pYk7RN-0mm3hR0x3E3j8MvJUmTMZDebdcT9t-b16Z3yHBf_PJoSZoG3kve7_cA3lpmU-XZJLW50DTJKkMVdymNq8QpmzMp2gzv2Xc5GuXzeTEOBrdVCKvs78T2oq4WBm3kR56NodNHZNmH5SXFrlHoXQ0tNHZgj3HOkM6_SbotuptlXbp0klMsRN57NbvUOS8YeUW6oEwkKb3-my_dEDZvOEpb_nPy6H93_hgeBsmTHHek8gTu2Hof7p0G3_o-POgseKRLTHoK5fG6WXh51lbkcx8uW_vHpg3eqkkbbODf7ZJM2vGQxVQTVVdkGkK0SSjgek7Q4kuGwy9kenGORZufwY-T4dmnrzS0Y6BGSN5QLV3MVGxRKjCuUtrrsElVJEWVau20McIlhvMYK-QzbHrldOpVYOvSzBQ2deI57NaL2r4AYnRecWOlUl4b9Kt5LTM3SprCOSe1iCOIe2SUJtQqx5YZv8ptlWXEX-nxVyL-yusI3m0-WXaFOm6bfNijqgxndlVu8RTBm82wP23oQlG1Xay7OTmK0CKCg44yNn8TjKG0xyN435PKdvF_buXl7Vt5Bfd53OaZeVo9hN3mam1fw13zu7lYXQ1gR05mCOeyhfkA9j4OR-PJoD0IHp7GZwj5GKFEOE5_ejiZzv4AJc0OAw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQESYilboICR4AKySOwkTg4IVXRKq05HiLZobsZrVQllhk4GNH-K38hzlhmhit564JbIjuPEn9_itwG8conLFLJJ6gquaZpbQxXzGY1t6pUrEsGbCO-vQzEaFeNx-XkNfvexMMGtsqeJDaG2ExPOyN8hGwtGH57nH6Y_aKgaFayrfQmNFhb7bvELVbbZ-71tXN_XjO0Mjj7u0q6qADVcsJpq4eNExS4wN-Ot0qiKpbZMS5tp7bUx3KeGsTgkek9C7SavM9TknM9yU7rMcxz3ClxFOi6CC5kYi1WS3zxvw7PTgobE570VtQ3VQ0EMFfeSJjzN6OJvPnhOuD1nmG343c6d_-1P3YXbnWRNttqtcA_WXLUB1w8634ENuNWeUJI28Oo-yK15PUF53Vmy3bsDV3hZN85pFWmcKfDeTcmXpr2L0qqIqiw57FzQSZeg9oSEE20yGHwih6cnISn1Azi-lM99COvVpHKPgRhdWGacUAq1XRwNtejCKGFK773QPI4g7hdfmi4XeygJ8l2uskgHvEjEiwx4kYsI3iwfmbaJSC7qvNlDQ3Y0aSZXuIjg5bIZqUkwEanKTeZtnyKoCDyCRy0Sl2_jSRKkWRbB2x6aq8H_OZUnF0_lBdzYPToYyuHeaP8p3GRxE1OH-2QT1uuzuXsG18zP-nR29rzZagS-XTZi_wDsMWKF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9RAFD7UKqUgVavVaNUR9EUZmmRyfShS3F0trctitRRf4lxLQbJrN6vsX-uv65nMZBcp9q0PviVkMpkk38w535wbwGsd6ZSjmKS6YIImmZKUxyaloUoM10WUszbC-_gwHw6Lk5NytAIXXSyMdavs1sR2oVZjaffId1CMWaMPy7Id490iRr3B-8kvaitIWUtrV07DQeRAz_8gfZvu7vfwX7-J40H_64dP1FcYoJLlcUNFbsKIh9oKOmkUF0jLElUmpUqFMEJKZhIZx6FN-h7ZOk5GpMjqtEkzWerUMOz3FtzOkWNa4jdKvy8T_maZC9VOCmqToHcWVRe2h0oZkviSRixJ6fxvmXhF0b1ipG1l3-De__zV7sOG17jJnpsiD2BF15uw9tn7FGzCXbdzSVxA1kOo9mbNGPV4rUivcxOu8bBpndZq0jpZ4LmekC_tdR-9VRNeK3LkXdOJT1x7SuxON-n3P5Kjs1ObrPoRfLuR192C1Xpc6ydApChULHXOObJg7A3ZdSF5LktjTC5YGEDYAaGSPke7LRXys1pml7bYqRA7lcVONQ_g7eKWiUtQcl3j7Q4mlV-rptUSIwG8WlzGVcaajnitxzPXprDUgQXw2KFy8TQWRVbLjQN418F02fk_h_L0-qG8hDUEanW4Pzx4Butx2Iba4ZTZhtXmfKafwx35uzmbnr9oZx2BHzcN2EtIRWt4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Depression+Detection+Using+Deep+Representation+and+Sequence+Learning+with+EEG+Signals&rft.jtitle=Journal+of+medical+systems&rft.au=Ay%2C+Betul&rft.au=Yildirim%2C+Ozal&rft.au=Talo%2C+Muhammed&rft.au=Baloglu%2C+Ulas+Baran&rft.date=2019-07-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=43&rft.issue=7&rft.spage=205&rft_id=info:doi/10.1007%2Fs10916-019-1345-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |