A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images
Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential...
Uloženo v:
| Vydáno v: | Journal of medical systems Ročník 43; číslo 9; s. 299 - 9 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0148-5598, 1573-689X, 1573-689X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an
F
−
measure
value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions. |
|---|---|
| AbstractList | Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an
F
−
measure
value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions. Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F − measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions. Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions. Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions. |
| ArticleNumber | 299 |
| Author | Bhandary, Sulatha V. Raghavendra, U. Acharya, U. Rajendra Ciaccio, Edward J. Rao, Tejaswi N. Gudigar, Anjan |
| Author_xml | – sequence: 1 givenname: U. surname: Raghavendra fullname: Raghavendra, U. organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 2 givenname: Anjan surname: Gudigar fullname: Gudigar, Anjan email: anjan.gudigar@manipal.edu organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 3 givenname: Sulatha V. surname: Bhandary fullname: Bhandary, Sulatha V. organization: Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education – sequence: 4 givenname: Tejaswi N. surname: Rao fullname: Rao, Tejaswi N. organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education – sequence: 5 givenname: Edward J. surname: Ciaccio fullname: Ciaccio, Edward J. organization: Department of Medicine, Columbia University – sequence: 6 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Department of Biomedical Engineering, School of Science and Technology, SUSS University, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31359230$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLxDAQx4Mouj4-gBcJePFSzaNtmuMiPhZWPKjgLUzTRCttsiYt6rc36_oAQS8ZCL_fzDD_bbTuvDMI7VNyTAkRJ5ESScuMUJnRnInsdQ1NaCF4Vlbyfh1NCM2rrChktYW2Y3wihMiyFJtoi1NeSMbJBF1N8e2Lx3N4MwHfLCBEg6fj4I3Tvklf1gd80cGofQ941hg3tLbVMLTe4Zd2eMTno2vGiGc9PJi4izYsdNHsfdYddHd-dnt6mc2vL2an03mmuWBDVpfSMmalJlCLXOuCgLScSABS11ZQU1GmOWOaMQZlThsAWxR1k6iKGg18Bx2t-i6Cfx5NHFTfRm26DpzxY1SMlYKkp-IJPfyFPvkxuLTdkipZnlc0T9TBJzXWvWnUIrQ9hDf1dagE0BWgg48xGPuNUKKWYahVGCqFoZZhqNfkiF-OboeP0w0B2u5fk63MmKa4BxN-lv5bege6jJ2L |
| CitedBy_id | crossref_primary_10_36660_abc_20200596 crossref_primary_10_1016_j_ajo_2025_02_019 crossref_primary_10_1016_j_eswa_2024_124888 crossref_primary_10_3390_ijerph181910003 crossref_primary_10_1007_s00138_021_01263_w crossref_primary_10_1007_s00779_022_01673_1 crossref_primary_10_1007_s11042_024_19603_z crossref_primary_10_1007_s00521_024_10500_y crossref_primary_10_3390_electronics11010026 crossref_primary_10_1097_IJG_0000000000002015 crossref_primary_10_1016_j_engappai_2024_108454 crossref_primary_10_1007_s11042_021_11087_5 crossref_primary_10_1186_s12911_025_02925_9 crossref_primary_10_1007_s11042_020_09778_6 crossref_primary_10_1016_j_advengsoft_2022_103328 crossref_primary_10_3390_asi8040111 crossref_primary_10_1007_s12652_021_02928_0 crossref_primary_10_1016_j_compbiomed_2020_103632 crossref_primary_10_1016_j_knosys_2020_105596 crossref_primary_10_3390_jof7100850 crossref_primary_10_1002_ima_22820 crossref_primary_10_1007_s11517_020_02237_2 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_1016_j_bspc_2021_102559 crossref_primary_10_3389_fmed_2022_891369 crossref_primary_10_1016_j_compbiomed_2021_105134 crossref_primary_10_1016_j_ajo_2021_12_008 crossref_primary_10_3390_electronics9111963 crossref_primary_10_1002_int_22911 crossref_primary_10_1007_s42600_023_00305_8 |
| Cites_doi | 10.1016/j.bspc.2013.11.006 10.1109/JBHI.2016.2544961 10.1109/INDICON.2015.7443150 10.1016/j.cmpb.2018.07.012 10.1109/ICICES.2014.7033743 10.1159/000303213 10.1001/archopht.1991.01080080050026 10.1016/j.bbe.2017.11.002 10.1109/CBMS.2012.6266344 10.1016/j.ins.2017.10.044 10.1109/EMBC.2015.7318462 10.1016/j.compbiomed.2017.06.017 10.1016/j.media.2004.12.004 10.1001/archopht.124.11.1579 10.1016/j.compmedimag.2007.11.003 10.1016/S0042-6989(97)00169-7 10.1142/S0219519413500115 10.1109/TITB.2011.2176540 10.1016/j.compbiomed.2018.11.028 10.1016/j.compbiomed.2017.06.022 10.1007/s10916-008-9195-z 10.1136/bjo.2005.081224 10.1109/TPAMI.2012.277 10.1016/j.knosys.2012.02.010 10.1016/j.ins.2018.01.051 10.1001/archopht.122.4.532 10.1155/2018/8676387 10.1016/j.bspc.2014.09.004 10.1109/TITB.2011.2119322 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QO 7QQ 7RV 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 88C 88E 88I 8AL 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KB0 KR7 L7M LK8 L~C L~D M0N M0S M0T M1P M2P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1007/s10916-019-1427-x |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Civil Engineering Abstracts Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Science Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Aluminium Industry Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1573-689X |
| EndPage | 9 |
| ExternalDocumentID | 31359230 10_1007_s10916_019_1427_x |
| Genre | Journal Article |
| GroupedDBID | --- -53 -5D -5G -BR -EM -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40E 53G 5GY 5QI 5RE 5VS 67Z 6NX 77K 78A 7RV 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AQUVI ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIHBH EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAK LK8 LLZTM M0N M0T M1P M2P M4Y M7P MA- MK0 N2Q NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZ9 SZN T13 T16 TEORI TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-b69f22f9c0ab74cc50a9f309aa0bbf71e812c322c222a641daaf55bda9f81eca3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477895300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0148-5598 1573-689X |
| IngestDate | Thu Oct 02 05:41:49 EDT 2025 Tue Nov 04 23:12:32 EST 2025 Wed Feb 19 02:32:13 EST 2025 Sat Nov 29 05:35:01 EST 2025 Tue Nov 18 21:26:10 EST 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Glaucoma Sparse autoencoder Cascade CAD |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-b69f22f9c0ab74cc50a9f309aa0bbf71e812c322c222a641daaf55bda9f81eca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 31359230 |
| PQID | 2266244814 |
| PQPubID | 54050 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2267022683 proquest_journals_2266244814 pubmed_primary_31359230 crossref_primary_10_1007_s10916_019_1427_x crossref_citationtrail_10_1007_s10916_019_1427_x springer_journals_10_1007_s10916_019_1427_x |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Journal of medical systems |
| PublicationTitleAbbrev | J Med Syst |
| PublicationTitleAlternate | J Med Syst |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Gajbhiye, Gaurav O., and Kamthane, Ashok N., Automatic classification of glaucomatous images using wavelet and moment feature. In India Conference (INDICON), 2015 Annual IEEE, pp. 1–5. IEEE, 2015. AcharyaURDuaSDuXSreeSVChuaCKAutomated diagnosis of glaucoma using texture and higher order spectra featuresIEEE Trans Inf Technol Biomed201115344945510.1109/TITB.2011.211932221349793 Yin, Fengshou, Liu, Jiang, Wong, Damon Wing Kee, Tan, Ngan Meng, Cheung, Carol, Baskaran, Mani, Aung, Tin, and Wong, Tien Yin., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Computer-based medical systems (CBMS), 2012 25th international symposium on, pp. 1–6. IEEE, 2012. AcharyaURNgEYKEugeneLWJNoronhaKPMinLCNayakKPBhandarySVDecision support system for the glaucoma using Gabor transformationBiomedical Signal Processing and Control201515182610.1016/j.bspc.2014.09.004 AnnuNJustinJAutomated classification of glaucoma images by wavelet energy featuresInternational Journal of Engineering and Technology20135217161721 BurgoyneCFPearls of glaucoma management2010Berlin, HeidelbergSpringer(Chapter 1. p. 1) NayakJAcharyaRSubbanna BhatPShettyNLimT-CAutomated diagnosis of glaucoma using digital fundus imagesJ. Med. Syst.200933533710.1007/s10916-008-9195-z19827259 MaheshwariSPachoriRBAcharyaURAutomated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus imagesIEEE journal of biomedical and health informatics201621380381310.1109/JBHI.2016.254496128113877 Maheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., and Acharya, U. R., Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput. Biol. Med., 2018 (In Press). QuigleyHABromanATThe number of people with glaucoma worldwide in 2010 and 2020Br. J. Ophthalmol.20069032622671:STN:280:DC%2BD28%2FpvFOjsA%3D%3D10.1136/bjo.2005.081224164889401856963 Gayathri, R., Rao, P. V., and Aruna, S., Automated glaucoma detection system based on wavelet energy features and ANN. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on, pp. 2808–2812. IEEE, 2014. Fink, F., Worle, K., Gruber, P., Tome, A. M., Gorriz-Saez, J. M., Puntonet, C. G., and Lang, E. W., ICA analysis of retina images for glaucoma classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4664–4667. IEEE, 2008. DuaSAcharyaURChowriappaPVinitha SreeSWavelet-based energy features for glaucomatous image classificationIEEE Trans. Inf. Technol. Biomed.2012161808710.1109/TITB.2011.217654022113813 MookiahMRKAcharyaURLimCMPetznickASuriJSData mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy featuresKnowl.-Based Syst.201233738210.1016/j.knosys.2012.02.010 GayathriRRaoPVGlaucoma detection using cup to disc ratio and artificial neural networksInternational Journal of Engineering & Technology20187135140 MatsopoulosGKAsvestasPADelibasisKKMouravlianskyNAZeyenTGDetection of glaucomatous change based on vessel shape analysisComput. Med. Imaging Graph.200832318319210.1016/j.compmedimag.2007.11.00318187308 ShinH-COrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans. Pattern Anal. Mach. Intell.20133581930194310.1109/TPAMI.2012.27723787345 YangJBaiYLiGLiuMLiuXA novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regressionBiomed. Mater. Eng.201526S1549S155826405919 ChenLZhouMSuWWuMSheJHirotaKSoftmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interactionInf. Sci.2018428496110.1016/j.ins.2017.10.044 RaghavendraUFujitaHBhandarySVGudigarATanJHAcharyaURDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051 NikiasCLPetropuluAPHigher-order spectra analysis: A nonlinear signal processing framework1993Englewood Cliffs, NJPTR Prentice Hall KrishnanMMRFaustOAutomated glaucoma detection using hybrid feature extraction in retinal fundus imagesJournal of Mechanics in Medicine and Biology20131301135001110.1142/S0219519413500115 HagiwaraYKohJEWTanJHBhandarySVLaudeACiaccioEJTongLAcharyaURComputer-aided diagnosis of glaucoma using fundus images: A reviewComput. Methods Prog. Biomed.201816511210.1016/j.cmpb.2018.07.012 GoldmannHSchmidtTApplanation tonometryOphthalmologica19571342212421:STN:280:DyaG1c%2Fis12isw%3D%3D10.1159/00030321313484216 Simonthomas, S., Thulasi, N., and Asharaf, P., Automated diagnosis of glaucoma using Haralick texture features. In Information Communication and Embedded Systems (ICICES), 2014 International Conference on, pp. 1–6. IEEE, 2014. RaghavendraUBhandarySVGudigarAAcharyaURNovel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus imagesBiocybernetics and Biomedical Engineering201738117018010.1016/j.bbe.2017.11.002 NoronhaKPAcharyaURPrabhakar NayakKMartisRJBhandarySVAutomated classification of glaucoma stages using higher order cumulant featuresBiomedical Signal Processing and Control20141017418310.1016/j.bspc.2013.11.006 SommerATielschJMKatzJQuigleyHAGottschJDJavittJSinghKRelationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye surveyArch. Ophthalmol.19911098109010951:STN:280:DyaK3MzivVKnsw%3D%3D10.1001/archopht.1991.010800800500261867550 XuYXuDLinSLiuJChengJCheungCAungTWongTSliding window and regression based cup detection in digital fundus images for glaucoma diagnosisMedical Image Computing and Computer-Assisted Intervention–MICCAI2011201118 Acharya, U. Rajendra., Ng, E. Y. K., and Suri, J. S., Image Modeling of the Human Eye, Artech House bioinformatics & biomedical imaging series, Artech House, 2008. OlshausenBAFieldDJSparse coding with an over complete basis set: A strategy employed by V1Vis. Res.199737331133251:STN:280:DyaK1c%2Fos1KrsQ%3D%3D10.1016/S0042-6989(97)00169-79425546 ZhangChangfanChengXiangLiuJianhuaHeJingLiuGuangweiDeep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion StatusJournal of Control Science and Engineering2018201819 ChrástekRWolfMDonathKNiemannHPaulusDHothornTLausenBLämmerRMardinCYMichelsonGAutomated segmentation of the optic nerve head for diagnosis of glaucomaMed. Image Anal.20059429731410.1016/j.media.2004.12.00415950894 HarizmanNOliveiraCChiangATelloCMarmorMRitchRLiebmannJMThe ISNT rule and differentiation of normal from glaucomatous eyesArch. Ophthalmol.2006124111579158310.1001/archopht.124.11.157917102005 MaheshwariSPachoriRBKanhangadVBhandarySVAcharyaURIterative variational mode decomposition based automated detection of glaucoma using fundus imagesComput. Biol. Med.20178814214910.1016/j.compbiomed.2017.06.01728728059 Eye Diseases Prevalence Research GroupPrevalence of open-angle glaucoma among adults in the United StatesArch. Ophthalmol.200412253253810.1001/archopht.122.4.532 AcharyaURBatSKohJEWBhandarySVAdeliHA novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus imagesComput. Biol. Med.201788728310.1016/j.compbiomed.2017.06.02228700902 Chen, Xiangyu, Xu, Yanwu, Wong, Damon Wing Kee, Wong, Tien Yin, and Liu, Jiang, Glaucoma Detection based on Deep Convolutional Neural Network, 37th Annual International IEEE conference on Engineering in Medicine and Biology Society (EMBC), 715–718, 2015. MMR Krishnan (1427_CR16) 2013; 13 Eye Diseases Prevalence Research Group (1427_CR8) 2004; 122 1427_CR11 1427_CR33 1427_CR12 1427_CR31 CF Burgoyne (1427_CR7) 2010 BA Olshausen (1427_CR34) 1997; 37 N Harizman (1427_CR6) 2006; 124 U Raghavendra (1427_CR26) 2018; 441 Y Hagiwara (1427_CR3) 2018; 165 Y Xu (1427_CR27) 2011; 2011 H-C Shin (1427_CR38) 2013; 35 UR Acharya (1427_CR14) 2015; 15 R Chrástek (1427_CR30) 2005; 9 J Yang (1427_CR36) 2015; 26 GK Matsopoulos (1427_CR20) 2008; 32 KP Noronha (1427_CR15) 2014; 10 1427_CR22 S Dua (1427_CR28) 2012; 16 UR Acharya (1427_CR29) 2011; 15 H Goldmann (1427_CR2) 1957; 134 CL Nikias (1427_CR17) 1993 L Chen (1427_CR37) 2018; 428 1427_CR21 1427_CR1 U Raghavendra (1427_CR25) 2017; 38 1427_CR24 S Maheshwari (1427_CR10) 2016; 21 Changfan Zhang (1427_CR35) 2018; 2018 J Nayak (1427_CR18) 2009; 33 S Maheshwari (1427_CR32) 2017; 88 A Sommer (1427_CR4) 1991; 109 MRK Mookiah (1427_CR9) 2012; 33 N Annu (1427_CR13) 2013; 5 HA Quigley (1427_CR5) 2006; 90 UR Acharya (1427_CR23) 2017; 88 R Gayathri (1427_CR19) 2018; 7 |
| References_xml | – reference: Gayathri, R., Rao, P. V., and Aruna, S., Automated glaucoma detection system based on wavelet energy features and ANN. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on, pp. 2808–2812. IEEE, 2014. – reference: AcharyaURNgEYKEugeneLWJNoronhaKPMinLCNayakKPBhandarySVDecision support system for the glaucoma using Gabor transformationBiomedical Signal Processing and Control201515182610.1016/j.bspc.2014.09.004 – reference: Acharya, U. Rajendra., Ng, E. Y. K., and Suri, J. S., Image Modeling of the Human Eye, Artech House bioinformatics & biomedical imaging series, Artech House, 2008. – reference: SommerATielschJMKatzJQuigleyHAGottschJDJavittJSinghKRelationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye surveyArch. Ophthalmol.19911098109010951:STN:280:DyaK3MzivVKnsw%3D%3D10.1001/archopht.1991.010800800500261867550 – reference: Simonthomas, S., Thulasi, N., and Asharaf, P., Automated diagnosis of glaucoma using Haralick texture features. In Information Communication and Embedded Systems (ICICES), 2014 International Conference on, pp. 1–6. IEEE, 2014. – reference: NoronhaKPAcharyaURPrabhakar NayakKMartisRJBhandarySVAutomated classification of glaucoma stages using higher order cumulant featuresBiomedical Signal Processing and Control20141017418310.1016/j.bspc.2013.11.006 – reference: ChenLZhouMSuWWuMSheJHirotaKSoftmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interactionInf. Sci.2018428496110.1016/j.ins.2017.10.044 – reference: Eye Diseases Prevalence Research GroupPrevalence of open-angle glaucoma among adults in the United StatesArch. Ophthalmol.200412253253810.1001/archopht.122.4.532 – reference: ChrástekRWolfMDonathKNiemannHPaulusDHothornTLausenBLämmerRMardinCYMichelsonGAutomated segmentation of the optic nerve head for diagnosis of glaucomaMed. Image Anal.20059429731410.1016/j.media.2004.12.00415950894 – reference: Gajbhiye, Gaurav O., and Kamthane, Ashok N., Automatic classification of glaucomatous images using wavelet and moment feature. In India Conference (INDICON), 2015 Annual IEEE, pp. 1–5. IEEE, 2015. – reference: YangJBaiYLiGLiuMLiuXA novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regressionBiomed. Mater. Eng.201526S1549S155826405919 – reference: RaghavendraUFujitaHBhandarySVGudigarATanJHAcharyaURDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051 – reference: Fink, F., Worle, K., Gruber, P., Tome, A. M., Gorriz-Saez, J. M., Puntonet, C. G., and Lang, E. W., ICA analysis of retina images for glaucoma classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4664–4667. IEEE, 2008. – reference: KrishnanMMRFaustOAutomated glaucoma detection using hybrid feature extraction in retinal fundus imagesJournal of Mechanics in Medicine and Biology20131301135001110.1142/S0219519413500115 – reference: ShinH-COrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans. Pattern Anal. Mach. Intell.20133581930194310.1109/TPAMI.2012.27723787345 – reference: DuaSAcharyaURChowriappaPVinitha SreeSWavelet-based energy features for glaucomatous image classificationIEEE Trans. Inf. Technol. Biomed.2012161808710.1109/TITB.2011.217654022113813 – reference: RaghavendraUBhandarySVGudigarAAcharyaURNovel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus imagesBiocybernetics and Biomedical Engineering201738117018010.1016/j.bbe.2017.11.002 – reference: GoldmannHSchmidtTApplanation tonometryOphthalmologica19571342212421:STN:280:DyaG1c%2Fis12isw%3D%3D10.1159/00030321313484216 – reference: MatsopoulosGKAsvestasPADelibasisKKMouravlianskyNAZeyenTGDetection of glaucomatous change based on vessel shape analysisComput. Med. Imaging Graph.200832318319210.1016/j.compmedimag.2007.11.00318187308 – reference: AcharyaURDuaSDuXSreeSVChuaCKAutomated diagnosis of glaucoma using texture and higher order spectra featuresIEEE Trans Inf Technol Biomed201115344945510.1109/TITB.2011.211932221349793 – reference: MookiahMRKAcharyaURLimCMPetznickASuriJSData mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy featuresKnowl.-Based Syst.201233738210.1016/j.knosys.2012.02.010 – reference: AcharyaURBatSKohJEWBhandarySVAdeliHA novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus imagesComput. Biol. Med.201788728310.1016/j.compbiomed.2017.06.02228700902 – reference: Yin, Fengshou, Liu, Jiang, Wong, Damon Wing Kee, Tan, Ngan Meng, Cheung, Carol, Baskaran, Mani, Aung, Tin, and Wong, Tien Yin., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Computer-based medical systems (CBMS), 2012 25th international symposium on, pp. 1–6. IEEE, 2012. – reference: HagiwaraYKohJEWTanJHBhandarySVLaudeACiaccioEJTongLAcharyaURComputer-aided diagnosis of glaucoma using fundus images: A reviewComput. Methods Prog. Biomed.201816511210.1016/j.cmpb.2018.07.012 – reference: OlshausenBAFieldDJSparse coding with an over complete basis set: A strategy employed by V1Vis. Res.199737331133251:STN:280:DyaK1c%2Fos1KrsQ%3D%3D10.1016/S0042-6989(97)00169-79425546 – reference: HarizmanNOliveiraCChiangATelloCMarmorMRitchRLiebmannJMThe ISNT rule and differentiation of normal from glaucomatous eyesArch. Ophthalmol.2006124111579158310.1001/archopht.124.11.157917102005 – reference: MaheshwariSPachoriRBAcharyaURAutomated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus imagesIEEE journal of biomedical and health informatics201621380381310.1109/JBHI.2016.254496128113877 – reference: Chen, Xiangyu, Xu, Yanwu, Wong, Damon Wing Kee, Wong, Tien Yin, and Liu, Jiang, Glaucoma Detection based on Deep Convolutional Neural Network, 37th Annual International IEEE conference on Engineering in Medicine and Biology Society (EMBC), 715–718, 2015. – reference: QuigleyHABromanATThe number of people with glaucoma worldwide in 2010 and 2020Br. J. Ophthalmol.20069032622671:STN:280:DC%2BD28%2FpvFOjsA%3D%3D10.1136/bjo.2005.081224164889401856963 – reference: ZhangChangfanChengXiangLiuJianhuaHeJingLiuGuangweiDeep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion StatusJournal of Control Science and Engineering2018201819 – reference: NayakJAcharyaRSubbanna BhatPShettyNLimT-CAutomated diagnosis of glaucoma using digital fundus imagesJ. Med. Syst.200933533710.1007/s10916-008-9195-z19827259 – reference: Maheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., and Acharya, U. R., Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput. Biol. Med., 2018 (In Press). – reference: BurgoyneCFPearls of glaucoma management2010Berlin, HeidelbergSpringer(Chapter 1. p. 1) – reference: NikiasCLPetropuluAPHigher-order spectra analysis: A nonlinear signal processing framework1993Englewood Cliffs, NJPTR Prentice Hall – reference: GayathriRRaoPVGlaucoma detection using cup to disc ratio and artificial neural networksInternational Journal of Engineering & Technology20187135140 – reference: XuYXuDLinSLiuJChengJCheungCAungTWongTSliding window and regression based cup detection in digital fundus images for glaucoma diagnosisMedical Image Computing and Computer-Assisted Intervention–MICCAI2011201118 – reference: MaheshwariSPachoriRBKanhangadVBhandarySVAcharyaURIterative variational mode decomposition based automated detection of glaucoma using fundus imagesComput. Biol. Med.20178814214910.1016/j.compbiomed.2017.06.01728728059 – reference: AnnuNJustinJAutomated classification of glaucoma images by wavelet energy featuresInternational Journal of Engineering and Technology20135217161721 – volume: 10 start-page: 174 year: 2014 ident: 1427_CR15 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2013.11.006 – volume: 5 start-page: 1716 issue: 2 year: 2013 ident: 1427_CR13 publication-title: International Journal of Engineering and Technology – volume: 21 start-page: 803 issue: 3 year: 2016 ident: 1427_CR10 publication-title: IEEE journal of biomedical and health informatics doi: 10.1109/JBHI.2016.2544961 – ident: 1427_CR12 doi: 10.1109/INDICON.2015.7443150 – volume: 165 start-page: 1 year: 2018 ident: 1427_CR3 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2018.07.012 – ident: 1427_CR21 doi: 10.1109/ICICES.2014.7033743 – volume: 134 start-page: 221 year: 1957 ident: 1427_CR2 publication-title: Ophthalmologica doi: 10.1159/000303213 – volume: 109 start-page: 1090 issue: 8 year: 1991 ident: 1427_CR4 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.1991.01080080050026 – volume: 38 start-page: 170 issue: 1 year: 2017 ident: 1427_CR25 publication-title: Biocybernetics and Biomedical Engineering doi: 10.1016/j.bbe.2017.11.002 – ident: 1427_CR31 doi: 10.1109/CBMS.2012.6266344 – ident: 1427_CR22 – volume: 428 start-page: 49 year: 2018 ident: 1427_CR37 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.10.044 – ident: 1427_CR24 doi: 10.1109/EMBC.2015.7318462 – volume: 88 start-page: 142 year: 2017 ident: 1427_CR32 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.06.017 – volume: 9 start-page: 297 issue: 4 year: 2005 ident: 1427_CR30 publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.12.004 – ident: 1427_CR1 – volume: 124 start-page: 1579 issue: 11 year: 2006 ident: 1427_CR6 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.124.11.1579 – ident: 1427_CR11 – volume: 32 start-page: 183 issue: 3 year: 2008 ident: 1427_CR20 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2007.11.003 – volume: 37 start-page: 3311 year: 1997 ident: 1427_CR34 publication-title: Vis. Res. doi: 10.1016/S0042-6989(97)00169-7 – volume-title: Higher-order spectra analysis: A nonlinear signal processing framework year: 1993 ident: 1427_CR17 – volume: 13 start-page: 1350011 issue: 01 year: 2013 ident: 1427_CR16 publication-title: Journal of Mechanics in Medicine and Biology doi: 10.1142/S0219519413500115 – volume: 16 start-page: 80 issue: 1 year: 2012 ident: 1427_CR28 publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2176540 – ident: 1427_CR33 doi: 10.1016/j.compbiomed.2018.11.028 – volume: 88 start-page: 72 year: 2017 ident: 1427_CR23 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.06.022 – volume: 26 start-page: S1549 year: 2015 ident: 1427_CR36 publication-title: Biomed. Mater. Eng. – volume: 2011 start-page: 1 year: 2011 ident: 1427_CR27 publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI – volume: 33 start-page: 337 issue: 5 year: 2009 ident: 1427_CR18 publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9195-z – volume: 90 start-page: 262 issue: 3 year: 2006 ident: 1427_CR5 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.2005.081224 – volume: 35 start-page: 1930 issue: 8 year: 2013 ident: 1427_CR38 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.277 – volume-title: Pearls of glaucoma management year: 2010 ident: 1427_CR7 – volume: 33 start-page: 73 year: 2012 ident: 1427_CR9 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.02.010 – volume: 441 start-page: 41 year: 2018 ident: 1427_CR26 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 122 start-page: 532 year: 2004 ident: 1427_CR8 publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.122.4.532 – volume: 2018 start-page: 1 year: 2018 ident: 1427_CR35 publication-title: Journal of Control Science and Engineering doi: 10.1155/2018/8676387 – volume: 15 start-page: 18 year: 2015 ident: 1427_CR14 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2014.09.004 – volume: 7 start-page: 135 year: 2018 ident: 1427_CR19 publication-title: International Journal of Engineering & Technology – volume: 15 start-page: 449 issue: 3 year: 2011 ident: 1427_CR29 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2011.2119322 |
| SSID | ssj0009667 |
| Score | 2.3623881 |
| Snippet | Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition.... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 299 |
| SubjectTerms | Adult Algorithms Case-Control Studies Diagnostic Techniques, Ophthalmological Digital imaging Female Fundus Oculi Glaucoma Health Informatics Health Informatics and Computer Vision Health Sciences Humans Image & Signal Processing Image Interpretation, Computer-Assisted - methods Intraocular pressure Learning algorithms Machine learning Male Medicine Medicine & Public Health Middle Aged Pattern Recognition, Automated - methods Quantitative analysis Recent Advances in Deep Learning for Biomedical Signal Processing Statistics for Life Sciences Test procedures Tomography, Optical Coherence - methods Vision |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5ERQTxPupFBJ-UQNukTfK4iKuCK-KFbyVNUxB0V3a36s930mNX8QB9bScHk5nMl0xmBmBfM5YhTOCUpZZRroOIqgxPKbm2IjMSAXRdbEJcXMj7e3VZx3EPmtfujUuy3Kk_BLshlMGjr6IBDwVF4DiF1k46bby6vhtn2o3jKkaaS-qyjzeuzO-6-GyMviDML97R0ui0F_413UWYrzEmaVVCsQQTtrsMM53ai74Mc9VdHalCkFag0yI3rz1yrhF-k-tnPOpa0iqGPZfjMsNPiGvJyaMucGBNqsjevL7qI-4el7QLVwCEnD3h5jRYhdv28c3RKa3LLFDDRDikaazyMMyV8XUquDGRr1XOfKW1n6a5CCxiAIN6bxBK6JgHmdZ5FKUZUsnAGs3WYLLb69oNINjYZGkqhI4MZyaWKhQi5oplMhQRDzzwG34nps5B7kphPCbj7MmObQmyLXFsS948OBg1ea4ScPxGvN0sYlLr4iBBgBkjiJEB92Bv9Bu1yLlGdNf2ipJGIJqJJfNgvVr80WgsYBHCYN-Dw2alx53_OJXNP1FvwWzoRKV8vLYNk8N-YXdg2rwMHwb93VLA3wFddPO7 priority: 102 providerName: Springer Nature |
| Title | A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images |
| URI | https://link.springer.com/article/10.1007/s10916-019-1427-x https://www.ncbi.nlm.nih.gov/pubmed/31359230 https://www.proquest.com/docview/2266244814 https://www.proquest.com/docview/2267022683 |
| Volume | 43 |
| WOSCitedRecordID | wos000477895300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-689X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009667 issn: 0148-5598 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSEkxMf4CozKSDyBrMUfie0nVNAKCFpVXZkqXiLHSSSk0ZS1gf35nBOnFZrYCy_3kNjJKXc5_3znuwN4ZYUoECZIKvJSUGlZQk2Bu5TKlqpwGgF0aDahJhO9WJhpcLitw7HK3ia2hrqonfeRHyNMSHEp0ky-Xf2kvmuUj66GFhp7cMA4Z17PPyu6K7qbpl26tNTUFyLvo5pd6hwCI9xIG8okV_Ty73XpCti8Eiht15_Rvf_l_D7cDciTDDtVeQA3yuUh3BqH2Poh3Ok8eKRLTHoI4yGZ_67JF4ugnJyucANckmGzqX3lywIvIdolH85tg0xY0uX7VsEBSLx3l4wa3xaEfPqBJmv9CL6OTubvP9LQfIE6ofiG5qmpOK-Mi22upHNJbE0lYmNtnOeVYiUiA4fWwCHAsKlkhbVVkuQFjtKsdFY8hv1lvSyfAsHJrshzpWzipHCpNlypVBpRaK4SySKI-0-fuVCZ3DfIOM92NZW9tDKUVuallV1G8Ho7ZdWV5bhu8FEvmCz8oetsJ5UIXm5v47_lAyZ2WdZNO0Yhxkm1iOBJpwfbtwkmEgTHcQRvesXYPfyfrDy7npXncJt7lWzPsB3B_uaiKV_ATfdr8319MYA9NTvzdKFaqgdw8O5kMp0NWrVHOo7nnvKpp8rTafIN6ez07A8e9QaZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NgQAJ8TG-AgOMBC9DFontxPEDQhVQVq2tkCjS3oJjOxLSaMrasPFP8TdyjpNWaGJve-A1sR07_vnud7bvDuCF5twiTRCUl45ToZOUKotWSqWdtCZHAt0lm5DTaX54qD5twe_eF8Zfq-xlYiuobW38HvlrpAkZqqI8EW8XP6jPGuVPV_sUGgEWB-7XCZpsyzej9zi_Lxkbfpi926ddVgFquGQrWmaqYqxSJtalFMaksVYVj5XWcVlWMnGo8gzC3KDm1JlIrNZVmpYWS-WJM5pju5fgso-r568QTuLZJshvlgX3bJFTH_i8P0UNrnpIxNBwVzQRTNLTv_XgGXJ75mC21XfDW__bn7oNNztmTQZhKdyBLTffgauT7u7ADtwIO5QkOF7dhcmAzE5qMtZodJDPCzTwHRk0q9pH9rT4CNk8-XikGxy0JsGfueo2OInfvSbDxqc9IaPvKJKX9-DLhQzuPmzP67l7CAQrG1uWUurUCG6yXDEpM6G4zZlMRRJB3E91YbrI6z4ByFGxiRnt0VEgOgqPjuI0gr11lUUIO3Je4d0eCEUngZbFBgURPF-_RtnhD4T03NVNW0Yih8tyHsGDgLv113jCUyT_cQSveiBuGv9nVx6d35VncG1_NhkX49H04DFcZ345tPf1dmF7ddy4J3DF_Fx9Wx4_bRcWga8Xjc8_tNldHA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aA01IiMu4BQYYCV5A1hLbieMHhCpGoepWTWJIe8sc25EmbU1ZGzb-Gr-O4zhphSb2tgdeE9tx7O_c7HMBeKM5t6gmCMpLx6nQSUqVRSul0k5ak6MC3RWbkJNJfnio9tfgdx8L490qe57YMmpbG39Gvo1qQoaiKE_EdtW5RezvDD_OflBfQcrftPblNAJExu7XOZpv8w-jHdzrt4wNPx98-kq7CgPUcMkWtMxUxVilTKxLKYxJY60qHiut47KsZOJQ_BmEvEEpqjORWK2rNC0ttsoTZzTHcW_ATZTCqaexsaSrhL9ZFkK1RU59EvT-RjWE7aFShka8oolgkl78LRMvKbqXLmlb2Te89z-v2n2422ncZBBI5AGsuekmbOx1PgWbcCecXJIQkPUQ9gbk4LwmuxqNEfJthoa_I4NmUfuMnxYfoZZPvpzoBhdAkxDnXHUHn8SfapNh48uhkNEpsur5I_h-LT_3GNan9dQ9BYKdjS1LKXVqBDdZrpiUmVDc5kymIokg7re9MF1Gdl8Y5KRY5ZL2SCkQKYVHSnERwbtll1lIR3JV460eFEXHmebFChERvF6-Rp7iL4r01NVN20aibpflPIInAYPLr_GEp2gUxBG870G5GvyfU3l29VRewQbCstgdTcbP4TbzlNG68W3B-uKscS_glvm5OJ6fvWxpjMDRdcPzD4DiZZs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two+Layer+Sparse+Autoencoder+for+Glaucoma+Identification+with+Fundus+Images&rft.jtitle=Journal+of+medical+systems&rft.au=Raghavendra%2C+U&rft.au=Gudigar%2C+Anjan&rft.au=Bhandary%2C+Sulatha+V&rft.au=Rao%2C+Tejaswi+N&rft.date=2019-09-01&rft.issn=1573-689X&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft.spage=299&rft_id=info:doi/10.1007%2Fs10916-019-1427-x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon |