A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images

Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medical systems Vol. 43; no. 9; pp. 299 - 9
Main Authors: Raghavendra, U., Gudigar, Anjan, Bhandary, Sulatha V., Rao, Tejaswi N., Ciaccio, Edward J., Acharya, U. Rajendra
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2019
Springer Nature B.V
Subjects:
ISSN:0148-5598, 1573-689X, 1573-689X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F  −  measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
AbstractList Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F  −  measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F − measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition. Screening for glaucoma and early detection can avert vision loss. Computer aided diagnosis (CAD) is an automated process with the potential to identify glaucoma early through quantitative analysis of digital fundus images. Preparing an effective model for CAD requires a large database. This study presents a CAD tool for the precise detection of glaucoma using a machine learning approach. An autoencoder is trained to determine effective and important features from fundus images. These features are used to develop classes of glaucoma for testing. The method achieved an F - measure value of 0.95 utilizing 1426 digital fundus images (589 control and 837 glaucoma). The efficacy of the system is evident, and is suggestive of its possible utility as an additional tool for verification of clinical decisions.
ArticleNumber 299
Author Bhandary, Sulatha V.
Raghavendra, U.
Acharya, U. Rajendra
Ciaccio, Edward J.
Rao, Tejaswi N.
Gudigar, Anjan
Author_xml – sequence: 1
  givenname: U.
  surname: Raghavendra
  fullname: Raghavendra, U.
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education
– sequence: 2
  givenname: Anjan
  surname: Gudigar
  fullname: Gudigar, Anjan
  email: anjan.gudigar@manipal.edu
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education
– sequence: 3
  givenname: Sulatha V.
  surname: Bhandary
  fullname: Bhandary, Sulatha V.
  organization: Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education
– sequence: 4
  givenname: Tejaswi N.
  surname: Rao
  fullname: Rao, Tejaswi N.
  organization: Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education
– sequence: 5
  givenname: Edward J.
  surname: Ciaccio
  fullname: Ciaccio, Edward J.
  organization: Department of Medicine, Columbia University
– sequence: 6
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Department of Biomedical Engineering, School of Science and Technology, SUSS University, School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31359230$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLxDAQx4Mouj4-gBcJePFSzaNtmuMiPhZWPKjgLUzTRCttsiYt6rc36_oAQS8ZCL_fzDD_bbTuvDMI7VNyTAkRJ5ESScuMUJnRnInsdQ1NaCF4Vlbyfh1NCM2rrChktYW2Y3wihMiyFJtoi1NeSMbJBF1N8e2Lx3N4MwHfLCBEg6fj4I3Tvklf1gd80cGofQ941hg3tLbVMLTe4Zd2eMTno2vGiGc9PJi4izYsdNHsfdYddHd-dnt6mc2vL2an03mmuWBDVpfSMmalJlCLXOuCgLScSABS11ZQU1GmOWOaMQZlThsAWxR1k6iKGg18Bx2t-i6Cfx5NHFTfRm26DpzxY1SMlYKkp-IJPfyFPvkxuLTdkipZnlc0T9TBJzXWvWnUIrQ9hDf1dagE0BWgg48xGPuNUKKWYahVGCqFoZZhqNfkiF-OboeP0w0B2u5fk63MmKa4BxN-lv5bege6jJ2L
CitedBy_id crossref_primary_10_36660_abc_20200596
crossref_primary_10_1016_j_ajo_2025_02_019
crossref_primary_10_1016_j_eswa_2024_124888
crossref_primary_10_3390_ijerph181910003
crossref_primary_10_1007_s00138_021_01263_w
crossref_primary_10_1007_s00779_022_01673_1
crossref_primary_10_1007_s11042_024_19603_z
crossref_primary_10_1007_s00521_024_10500_y
crossref_primary_10_3390_electronics11010026
crossref_primary_10_1097_IJG_0000000000002015
crossref_primary_10_1016_j_engappai_2024_108454
crossref_primary_10_1007_s11042_021_11087_5
crossref_primary_10_1186_s12911_025_02925_9
crossref_primary_10_1007_s11042_020_09778_6
crossref_primary_10_1016_j_advengsoft_2022_103328
crossref_primary_10_3390_asi8040111
crossref_primary_10_1007_s12652_021_02928_0
crossref_primary_10_1016_j_compbiomed_2020_103632
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_3390_jof7100850
crossref_primary_10_1002_ima_22820
crossref_primary_10_1007_s11517_020_02237_2
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1016_j_bspc_2021_102559
crossref_primary_10_3389_fmed_2022_891369
crossref_primary_10_1016_j_compbiomed_2021_105134
crossref_primary_10_1016_j_ajo_2021_12_008
crossref_primary_10_3390_electronics9111963
crossref_primary_10_1002_int_22911
crossref_primary_10_1007_s42600_023_00305_8
Cites_doi 10.1016/j.bspc.2013.11.006
10.1109/JBHI.2016.2544961
10.1109/INDICON.2015.7443150
10.1016/j.cmpb.2018.07.012
10.1109/ICICES.2014.7033743
10.1159/000303213
10.1001/archopht.1991.01080080050026
10.1016/j.bbe.2017.11.002
10.1109/CBMS.2012.6266344
10.1016/j.ins.2017.10.044
10.1109/EMBC.2015.7318462
10.1016/j.compbiomed.2017.06.017
10.1016/j.media.2004.12.004
10.1001/archopht.124.11.1579
10.1016/j.compmedimag.2007.11.003
10.1016/S0042-6989(97)00169-7
10.1142/S0219519413500115
10.1109/TITB.2011.2176540
10.1016/j.compbiomed.2018.11.028
10.1016/j.compbiomed.2017.06.022
10.1007/s10916-008-9195-z
10.1136/bjo.2005.081224
10.1109/TPAMI.2012.277
10.1016/j.knosys.2012.02.010
10.1016/j.ins.2018.01.051
10.1001/archopht.122.4.532
10.1155/2018/8676387
10.1016/j.bspc.2014.09.004
10.1109/TITB.2011.2119322
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Medical Systems is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QO
7QQ
7RV
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
88C
88E
88I
8AL
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KB0
KR7
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M2P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1007/s10916-019-1427-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Science Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Aluminium Industry Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1573-689X
EndPage 9
ExternalDocumentID 31359230
10_1007_s10916_019_1427_x
Genre Journal Article
GroupedDBID ---
-53
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40E
53G
5GY
5QI
5RE
5VS
67Z
6NX
77K
78A
7RV
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AQUVI
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0N
M0T
M1P
M2P
M4Y
M7P
MA-
MK0
N2Q
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-b69f22f9c0ab74cc50a9f309aa0bbf71e812c322c222a641daaf55bda9f81eca3
IEDL.DBID K7-
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477895300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0148-5598
1573-689X
IngestDate Thu Oct 02 05:41:49 EDT 2025
Tue Nov 04 23:12:32 EST 2025
Wed Feb 19 02:32:13 EST 2025
Sat Nov 29 05:35:01 EST 2025
Tue Nov 18 21:26:10 EST 2025
Fri Feb 21 02:37:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Glaucoma
Sparse autoencoder
Cascade
CAD
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b69f22f9c0ab74cc50a9f309aa0bbf71e812c322c222a641daaf55bda9f81eca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 31359230
PQID 2266244814
PQPubID 54050
PageCount 9
ParticipantIDs proquest_miscellaneous_2267022683
proquest_journals_2266244814
pubmed_primary_31359230
crossref_primary_10_1007_s10916_019_1427_x
crossref_citationtrail_10_1007_s10916_019_1427_x
springer_journals_10_1007_s10916_019_1427_x
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of medical systems
PublicationTitleAbbrev J Med Syst
PublicationTitleAlternate J Med Syst
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gajbhiye, Gaurav O., and Kamthane, Ashok N., Automatic classification of glaucomatous images using wavelet and moment feature. In India Conference (INDICON), 2015 Annual IEEE, pp. 1–5. IEEE, 2015.
AcharyaURDuaSDuXSreeSVChuaCKAutomated diagnosis of glaucoma using texture and higher order spectra featuresIEEE Trans Inf Technol Biomed201115344945510.1109/TITB.2011.211932221349793
Yin, Fengshou, Liu, Jiang, Wong, Damon Wing Kee, Tan, Ngan Meng, Cheung, Carol, Baskaran, Mani, Aung, Tin, and Wong, Tien Yin., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Computer-based medical systems (CBMS), 2012 25th international symposium on, pp. 1–6. IEEE, 2012.
AcharyaURNgEYKEugeneLWJNoronhaKPMinLCNayakKPBhandarySVDecision support system for the glaucoma using Gabor transformationBiomedical Signal Processing and Control201515182610.1016/j.bspc.2014.09.004
AnnuNJustinJAutomated classification of glaucoma images by wavelet energy featuresInternational Journal of Engineering and Technology20135217161721
BurgoyneCFPearls of glaucoma management2010Berlin, HeidelbergSpringer(Chapter 1. p. 1)
NayakJAcharyaRSubbanna BhatPShettyNLimT-CAutomated diagnosis of glaucoma using digital fundus imagesJ. Med. Syst.200933533710.1007/s10916-008-9195-z19827259
MaheshwariSPachoriRBAcharyaURAutomated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus imagesIEEE journal of biomedical and health informatics201621380381310.1109/JBHI.2016.254496128113877
Maheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., and Acharya, U. R., Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput. Biol. Med., 2018 (In Press).
QuigleyHABromanATThe number of people with glaucoma worldwide in 2010 and 2020Br. J. Ophthalmol.20069032622671:STN:280:DC%2BD28%2FpvFOjsA%3D%3D10.1136/bjo.2005.081224164889401856963
Gayathri, R., Rao, P. V., and Aruna, S., Automated glaucoma detection system based on wavelet energy features and ANN. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on, pp. 2808–2812. IEEE, 2014.
Fink, F., Worle, K., Gruber, P., Tome, A. M., Gorriz-Saez, J. M., Puntonet, C. G., and Lang, E. W., ICA analysis of retina images for glaucoma classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4664–4667. IEEE, 2008.
DuaSAcharyaURChowriappaPVinitha SreeSWavelet-based energy features for glaucomatous image classificationIEEE Trans. Inf. Technol. Biomed.2012161808710.1109/TITB.2011.217654022113813
MookiahMRKAcharyaURLimCMPetznickASuriJSData mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy featuresKnowl.-Based Syst.201233738210.1016/j.knosys.2012.02.010
GayathriRRaoPVGlaucoma detection using cup to disc ratio and artificial neural networksInternational Journal of Engineering & Technology20187135140
MatsopoulosGKAsvestasPADelibasisKKMouravlianskyNAZeyenTGDetection of glaucomatous change based on vessel shape analysisComput. Med. Imaging Graph.200832318319210.1016/j.compmedimag.2007.11.00318187308
ShinH-COrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans. Pattern Anal. Mach. Intell.20133581930194310.1109/TPAMI.2012.27723787345
YangJBaiYLiGLiuMLiuXA novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regressionBiomed. Mater. Eng.201526S1549S155826405919
ChenLZhouMSuWWuMSheJHirotaKSoftmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interactionInf. Sci.2018428496110.1016/j.ins.2017.10.044
RaghavendraUFujitaHBhandarySVGudigarATanJHAcharyaURDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051
NikiasCLPetropuluAPHigher-order spectra analysis: A nonlinear signal processing framework1993Englewood Cliffs, NJPTR Prentice Hall
KrishnanMMRFaustOAutomated glaucoma detection using hybrid feature extraction in retinal fundus imagesJournal of Mechanics in Medicine and Biology20131301135001110.1142/S0219519413500115
HagiwaraYKohJEWTanJHBhandarySVLaudeACiaccioEJTongLAcharyaURComputer-aided diagnosis of glaucoma using fundus images: A reviewComput. Methods Prog. Biomed.201816511210.1016/j.cmpb.2018.07.012
GoldmannHSchmidtTApplanation tonometryOphthalmologica19571342212421:STN:280:DyaG1c%2Fis12isw%3D%3D10.1159/00030321313484216
Simonthomas, S., Thulasi, N., and Asharaf, P., Automated diagnosis of glaucoma using Haralick texture features. In Information Communication and Embedded Systems (ICICES), 2014 International Conference on, pp. 1–6. IEEE, 2014.
RaghavendraUBhandarySVGudigarAAcharyaURNovel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus imagesBiocybernetics and Biomedical Engineering201738117018010.1016/j.bbe.2017.11.002
NoronhaKPAcharyaURPrabhakar NayakKMartisRJBhandarySVAutomated classification of glaucoma stages using higher order cumulant featuresBiomedical Signal Processing and Control20141017418310.1016/j.bspc.2013.11.006
SommerATielschJMKatzJQuigleyHAGottschJDJavittJSinghKRelationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye surveyArch. Ophthalmol.19911098109010951:STN:280:DyaK3MzivVKnsw%3D%3D10.1001/archopht.1991.010800800500261867550
XuYXuDLinSLiuJChengJCheungCAungTWongTSliding window and regression based cup detection in digital fundus images for glaucoma diagnosisMedical Image Computing and Computer-Assisted Intervention–MICCAI2011201118
Acharya, U. Rajendra., Ng, E. Y. K., and Suri, J. S., Image Modeling of the Human Eye, Artech House bioinformatics & biomedical imaging series, Artech House, 2008.
OlshausenBAFieldDJSparse coding with an over complete basis set: A strategy employed by V1Vis. Res.199737331133251:STN:280:DyaK1c%2Fos1KrsQ%3D%3D10.1016/S0042-6989(97)00169-79425546
ZhangChangfanChengXiangLiuJianhuaHeJingLiuGuangweiDeep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion StatusJournal of Control Science and Engineering2018201819
ChrástekRWolfMDonathKNiemannHPaulusDHothornTLausenBLämmerRMardinCYMichelsonGAutomated segmentation of the optic nerve head for diagnosis of glaucomaMed. Image Anal.20059429731410.1016/j.media.2004.12.00415950894
HarizmanNOliveiraCChiangATelloCMarmorMRitchRLiebmannJMThe ISNT rule and differentiation of normal from glaucomatous eyesArch. Ophthalmol.2006124111579158310.1001/archopht.124.11.157917102005
MaheshwariSPachoriRBKanhangadVBhandarySVAcharyaURIterative variational mode decomposition based automated detection of glaucoma using fundus imagesComput. Biol. Med.20178814214910.1016/j.compbiomed.2017.06.01728728059
Eye Diseases Prevalence Research GroupPrevalence of open-angle glaucoma among adults in the United StatesArch. Ophthalmol.200412253253810.1001/archopht.122.4.532
AcharyaURBatSKohJEWBhandarySVAdeliHA novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus imagesComput. Biol. Med.201788728310.1016/j.compbiomed.2017.06.02228700902
Chen, Xiangyu, Xu, Yanwu, Wong, Damon Wing Kee, Wong, Tien Yin, and Liu, Jiang, Glaucoma Detection based on Deep Convolutional Neural Network, 37th Annual International IEEE conference on Engineering in Medicine and Biology Society (EMBC), 715–718, 2015.
MMR Krishnan (1427_CR16) 2013; 13
Eye Diseases Prevalence Research Group (1427_CR8) 2004; 122
1427_CR11
1427_CR33
1427_CR12
1427_CR31
CF Burgoyne (1427_CR7) 2010
BA Olshausen (1427_CR34) 1997; 37
N Harizman (1427_CR6) 2006; 124
U Raghavendra (1427_CR26) 2018; 441
Y Hagiwara (1427_CR3) 2018; 165
Y Xu (1427_CR27) 2011; 2011
H-C Shin (1427_CR38) 2013; 35
UR Acharya (1427_CR14) 2015; 15
R Chrástek (1427_CR30) 2005; 9
J Yang (1427_CR36) 2015; 26
GK Matsopoulos (1427_CR20) 2008; 32
KP Noronha (1427_CR15) 2014; 10
1427_CR22
S Dua (1427_CR28) 2012; 16
UR Acharya (1427_CR29) 2011; 15
H Goldmann (1427_CR2) 1957; 134
CL Nikias (1427_CR17) 1993
L Chen (1427_CR37) 2018; 428
1427_CR21
1427_CR1
U Raghavendra (1427_CR25) 2017; 38
1427_CR24
S Maheshwari (1427_CR10) 2016; 21
Changfan Zhang (1427_CR35) 2018; 2018
J Nayak (1427_CR18) 2009; 33
S Maheshwari (1427_CR32) 2017; 88
A Sommer (1427_CR4) 1991; 109
MRK Mookiah (1427_CR9) 2012; 33
N Annu (1427_CR13) 2013; 5
HA Quigley (1427_CR5) 2006; 90
UR Acharya (1427_CR23) 2017; 88
R Gayathri (1427_CR19) 2018; 7
References_xml – reference: Gayathri, R., Rao, P. V., and Aruna, S., Automated glaucoma detection system based on wavelet energy features and ANN. In Advances in Computing, Communications and Informatics (ICACCI, 2014 International Conference on, pp. 2808–2812. IEEE, 2014.
– reference: AcharyaURNgEYKEugeneLWJNoronhaKPMinLCNayakKPBhandarySVDecision support system for the glaucoma using Gabor transformationBiomedical Signal Processing and Control201515182610.1016/j.bspc.2014.09.004
– reference: Acharya, U. Rajendra., Ng, E. Y. K., and Suri, J. S., Image Modeling of the Human Eye, Artech House bioinformatics & biomedical imaging series, Artech House, 2008.
– reference: SommerATielschJMKatzJQuigleyHAGottschJDJavittJSinghKRelationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye surveyArch. Ophthalmol.19911098109010951:STN:280:DyaK3MzivVKnsw%3D%3D10.1001/archopht.1991.010800800500261867550
– reference: Simonthomas, S., Thulasi, N., and Asharaf, P., Automated diagnosis of glaucoma using Haralick texture features. In Information Communication and Embedded Systems (ICICES), 2014 International Conference on, pp. 1–6. IEEE, 2014.
– reference: NoronhaKPAcharyaURPrabhakar NayakKMartisRJBhandarySVAutomated classification of glaucoma stages using higher order cumulant featuresBiomedical Signal Processing and Control20141017418310.1016/j.bspc.2013.11.006
– reference: ChenLZhouMSuWWuMSheJHirotaKSoftmax regression based deep sparse autoencoder network for facial emotion recognition in human-robot interactionInf. Sci.2018428496110.1016/j.ins.2017.10.044
– reference: Eye Diseases Prevalence Research GroupPrevalence of open-angle glaucoma among adults in the United StatesArch. Ophthalmol.200412253253810.1001/archopht.122.4.532
– reference: ChrástekRWolfMDonathKNiemannHPaulusDHothornTLausenBLämmerRMardinCYMichelsonGAutomated segmentation of the optic nerve head for diagnosis of glaucomaMed. Image Anal.20059429731410.1016/j.media.2004.12.00415950894
– reference: Gajbhiye, Gaurav O., and Kamthane, Ashok N., Automatic classification of glaucomatous images using wavelet and moment feature. In India Conference (INDICON), 2015 Annual IEEE, pp. 1–5. IEEE, 2015.
– reference: YangJBaiYLiGLiuMLiuXA novel method of diagnosing premature ventricular contraction based on sparse autoencoder and softmax regressionBiomed. Mater. Eng.201526S1549S155826405919
– reference: RaghavendraUFujitaHBhandarySVGudigarATanJHAcharyaURDeep convolution neural network for accurate diagnosis of glaucoma using digital fundus imagesInf. Sci.2018441414910.1016/j.ins.2018.01.051
– reference: Fink, F., Worle, K., Gruber, P., Tome, A. M., Gorriz-Saez, J. M., Puntonet, C. G., and Lang, E. W., ICA analysis of retina images for glaucoma classification. In Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pp. 4664–4667. IEEE, 2008.
– reference: KrishnanMMRFaustOAutomated glaucoma detection using hybrid feature extraction in retinal fundus imagesJournal of Mechanics in Medicine and Biology20131301135001110.1142/S0219519413500115
– reference: ShinH-COrtonMRCollinsDJDoranSJLeachMOStacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient dataIEEE Trans. Pattern Anal. Mach. Intell.20133581930194310.1109/TPAMI.2012.27723787345
– reference: DuaSAcharyaURChowriappaPVinitha SreeSWavelet-based energy features for glaucomatous image classificationIEEE Trans. Inf. Technol. Biomed.2012161808710.1109/TITB.2011.217654022113813
– reference: RaghavendraUBhandarySVGudigarAAcharyaURNovel expert system for glaucoma identification using non-parametric spatial envelope energy spectrum with fundus imagesBiocybernetics and Biomedical Engineering201738117018010.1016/j.bbe.2017.11.002
– reference: GoldmannHSchmidtTApplanation tonometryOphthalmologica19571342212421:STN:280:DyaG1c%2Fis12isw%3D%3D10.1159/00030321313484216
– reference: MatsopoulosGKAsvestasPADelibasisKKMouravlianskyNAZeyenTGDetection of glaucomatous change based on vessel shape analysisComput. Med. Imaging Graph.200832318319210.1016/j.compmedimag.2007.11.00318187308
– reference: AcharyaURDuaSDuXSreeSVChuaCKAutomated diagnosis of glaucoma using texture and higher order spectra featuresIEEE Trans Inf Technol Biomed201115344945510.1109/TITB.2011.211932221349793
– reference: MookiahMRKAcharyaURLimCMPetznickASuriJSData mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy featuresKnowl.-Based Syst.201233738210.1016/j.knosys.2012.02.010
– reference: AcharyaURBatSKohJEWBhandarySVAdeliHA novel algorithm to detect glaucoma risk using texton and local configuration pattern features extracted from fundus imagesComput. Biol. Med.201788728310.1016/j.compbiomed.2017.06.02228700902
– reference: Yin, Fengshou, Liu, Jiang, Wong, Damon Wing Kee, Tan, Ngan Meng, Cheung, Carol, Baskaran, Mani, Aung, Tin, and Wong, Tien Yin., Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In Computer-based medical systems (CBMS), 2012 25th international symposium on, pp. 1–6. IEEE, 2012.
– reference: HagiwaraYKohJEWTanJHBhandarySVLaudeACiaccioEJTongLAcharyaURComputer-aided diagnosis of glaucoma using fundus images: A reviewComput. Methods Prog. Biomed.201816511210.1016/j.cmpb.2018.07.012
– reference: OlshausenBAFieldDJSparse coding with an over complete basis set: A strategy employed by V1Vis. Res.199737331133251:STN:280:DyaK1c%2Fos1KrsQ%3D%3D10.1016/S0042-6989(97)00169-79425546
– reference: HarizmanNOliveiraCChiangATelloCMarmorMRitchRLiebmannJMThe ISNT rule and differentiation of normal from glaucomatous eyesArch. Ophthalmol.2006124111579158310.1001/archopht.124.11.157917102005
– reference: MaheshwariSPachoriRBAcharyaURAutomated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus imagesIEEE journal of biomedical and health informatics201621380381310.1109/JBHI.2016.254496128113877
– reference: Chen, Xiangyu, Xu, Yanwu, Wong, Damon Wing Kee, Wong, Tien Yin, and Liu, Jiang, Glaucoma Detection based on Deep Convolutional Neural Network, 37th Annual International IEEE conference on Engineering in Medicine and Biology Society (EMBC), 715–718, 2015.
– reference: QuigleyHABromanATThe number of people with glaucoma worldwide in 2010 and 2020Br. J. Ophthalmol.20069032622671:STN:280:DC%2BD28%2FpvFOjsA%3D%3D10.1136/bjo.2005.081224164889401856963
– reference: ZhangChangfanChengXiangLiuJianhuaHeJingLiuGuangweiDeep Sparse Autoencoder for Feature Extraction and Diagnosis of Locomotive Adhesion StatusJournal of Control Science and Engineering2018201819
– reference: NayakJAcharyaRSubbanna BhatPShettyNLimT-CAutomated diagnosis of glaucoma using digital fundus imagesJ. Med. Syst.200933533710.1007/s10916-008-9195-z19827259
– reference: Maheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., and Acharya, U. R., Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Comput. Biol. Med., 2018 (In Press).
– reference: BurgoyneCFPearls of glaucoma management2010Berlin, HeidelbergSpringer(Chapter 1. p. 1)
– reference: NikiasCLPetropuluAPHigher-order spectra analysis: A nonlinear signal processing framework1993Englewood Cliffs, NJPTR Prentice Hall
– reference: GayathriRRaoPVGlaucoma detection using cup to disc ratio and artificial neural networksInternational Journal of Engineering & Technology20187135140
– reference: XuYXuDLinSLiuJChengJCheungCAungTWongTSliding window and regression based cup detection in digital fundus images for glaucoma diagnosisMedical Image Computing and Computer-Assisted Intervention–MICCAI2011201118
– reference: MaheshwariSPachoriRBKanhangadVBhandarySVAcharyaURIterative variational mode decomposition based automated detection of glaucoma using fundus imagesComput. Biol. Med.20178814214910.1016/j.compbiomed.2017.06.01728728059
– reference: AnnuNJustinJAutomated classification of glaucoma images by wavelet energy featuresInternational Journal of Engineering and Technology20135217161721
– volume: 10
  start-page: 174
  year: 2014
  ident: 1427_CR15
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2013.11.006
– volume: 5
  start-page: 1716
  issue: 2
  year: 2013
  ident: 1427_CR13
  publication-title: International Journal of Engineering and Technology
– volume: 21
  start-page: 803
  issue: 3
  year: 2016
  ident: 1427_CR10
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2016.2544961
– ident: 1427_CR12
  doi: 10.1109/INDICON.2015.7443150
– volume: 165
  start-page: 1
  year: 2018
  ident: 1427_CR3
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2018.07.012
– ident: 1427_CR21
  doi: 10.1109/ICICES.2014.7033743
– volume: 134
  start-page: 221
  year: 1957
  ident: 1427_CR2
  publication-title: Ophthalmologica
  doi: 10.1159/000303213
– volume: 109
  start-page: 1090
  issue: 8
  year: 1991
  ident: 1427_CR4
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.1991.01080080050026
– volume: 38
  start-page: 170
  issue: 1
  year: 2017
  ident: 1427_CR25
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2017.11.002
– ident: 1427_CR31
  doi: 10.1109/CBMS.2012.6266344
– ident: 1427_CR22
– volume: 428
  start-page: 49
  year: 2018
  ident: 1427_CR37
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.10.044
– ident: 1427_CR24
  doi: 10.1109/EMBC.2015.7318462
– volume: 88
  start-page: 142
  year: 2017
  ident: 1427_CR32
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.06.017
– volume: 9
  start-page: 297
  issue: 4
  year: 2005
  ident: 1427_CR30
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.12.004
– ident: 1427_CR1
– volume: 124
  start-page: 1579
  issue: 11
  year: 2006
  ident: 1427_CR6
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.124.11.1579
– ident: 1427_CR11
– volume: 32
  start-page: 183
  issue: 3
  year: 2008
  ident: 1427_CR20
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2007.11.003
– volume: 37
  start-page: 3311
  year: 1997
  ident: 1427_CR34
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(97)00169-7
– volume-title: Higher-order spectra analysis: A nonlinear signal processing framework
  year: 1993
  ident: 1427_CR17
– volume: 13
  start-page: 1350011
  issue: 01
  year: 2013
  ident: 1427_CR16
  publication-title: Journal of Mechanics in Medicine and Biology
  doi: 10.1142/S0219519413500115
– volume: 16
  start-page: 80
  issue: 1
  year: 2012
  ident: 1427_CR28
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2176540
– ident: 1427_CR33
  doi: 10.1016/j.compbiomed.2018.11.028
– volume: 88
  start-page: 72
  year: 2017
  ident: 1427_CR23
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.06.022
– volume: 26
  start-page: S1549
  year: 2015
  ident: 1427_CR36
  publication-title: Biomed. Mater. Eng.
– volume: 2011
  start-page: 1
  year: 2011
  ident: 1427_CR27
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI
– volume: 33
  start-page: 337
  issue: 5
  year: 2009
  ident: 1427_CR18
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9195-z
– volume: 90
  start-page: 262
  issue: 3
  year: 2006
  ident: 1427_CR5
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.2005.081224
– volume: 35
  start-page: 1930
  issue: 8
  year: 2013
  ident: 1427_CR38
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.277
– volume-title: Pearls of glaucoma management
  year: 2010
  ident: 1427_CR7
– volume: 33
  start-page: 73
  year: 2012
  ident: 1427_CR9
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.02.010
– volume: 441
  start-page: 41
  year: 2018
  ident: 1427_CR26
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 122
  start-page: 532
  year: 2004
  ident: 1427_CR8
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.122.4.532
– volume: 2018
  start-page: 1
  year: 2018
  ident: 1427_CR35
  publication-title: Journal of Control Science and Engineering
  doi: 10.1155/2018/8676387
– volume: 15
  start-page: 18
  year: 2015
  ident: 1427_CR14
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2014.09.004
– volume: 7
  start-page: 135
  year: 2018
  ident: 1427_CR19
  publication-title: International Journal of Engineering & Technology
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  ident: 1427_CR29
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2011.2119322
SSID ssj0009667
Score 2.3623881
Snippet Glaucoma is a type of eye condition which may result in partial or consummate vision loss. Higher intraocular pressure is the leading cause for this condition....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms Adult
Algorithms
Case-Control Studies
Diagnostic Techniques, Ophthalmological
Digital imaging
Female
Fundus Oculi
Glaucoma
Health Informatics
Health Informatics and Computer Vision
Health Sciences
Humans
Image & Signal Processing
Image Interpretation, Computer-Assisted - methods
Intraocular pressure
Learning algorithms
Machine learning
Male
Medicine
Medicine & Public Health
Middle Aged
Pattern Recognition, Automated - methods
Quantitative analysis
Recent Advances in Deep Learning for Biomedical Signal Processing
Statistics for Life Sciences
Test procedures
Tomography, Optical Coherence - methods
Vision
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5ERQTxPupFBJ-UQNskbfK4iKvCKuKFbyVNUxB0V3a36s930mNX8QB96Es7TcIkk_kyk5kB2M-tUtaakIYqyijnQlBlEcihMuQ20EKxssbSXSe-uJD39-qyjuMeNLfdG5dkuVN_CHZDKINHX0UDHsYUgeMUajvppPHq-m6caTeKqhhpLqnLPt64Mr9r4rMy-oIwv3hHS6XTXvjXcBdhvsaYpFUtiiWYsN1lmDmvvejLMFfZ6kgVgrQC5y1y89ojHY3wm1w_41HXklYx7Lkclxm-QlxLTh51gR1rUkX25rWpjzg7LmkXrgAIOXvCzWmwCrft45ujU1qXWaCGxeGQppHKwzBXxtdpzI0RvlY585XWfprmcWARAxiUe4NQQkc8yLTOhUgzpJKBNZqtwWS317UbQKzk0mgleeDjI5mUImeZ9o1FVJFFwgO_4Xdi6hzkrhTGYzLOnuzYliDbEse25M2Dg9Evz1UCjt-It5tJTGpZHCQIMCMEMTLgHuyNPqMUOdeI7tpeUdLEiGYiyTxYryZ_1BsLmEAY7Htw2Mz0uPEfh7L5J-otmA3dUikvr23D5LBf2B2YNi_Dh0F_t1zg73Lp81g
  priority: 102
  providerName: Springer Nature
Title A Two Layer Sparse Autoencoder for Glaucoma Identification with Fundus Images
URI https://link.springer.com/article/10.1007/s10916-019-1427-x
https://www.ncbi.nlm.nih.gov/pubmed/31359230
https://www.proquest.com/docview/2266244814
https://www.proquest.com/docview/2267022683
Volume 43
WOSCitedRecordID wos000477895300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-689X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009667
  issn: 0148-5598
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaFJiI_xFRiVkXgCWcSOHdtPqKAVEGtVdaWqeIkcx5GQtqasDezP55ykrdDEXnjIPSROcspdzj_f-e4AXpfeGO8dp9ykBRVCSmo8AjmcDIVnVpqk6bE0O1WjkZ7PzbhzuK26bZUbm9gY6qJywUf-DmFCilORZuL98icNXaNCdLVrobEHB4xzFvT8q6K7ortp2qZLC01DIfJNVLNNnUNghAtpQ5ngil79PS9dA5vXAqXN_DO4_7-cP4B7HfIk_VZVHsItvziCO8Mutn4Ed1sPHmkTkx7BsE-mvytyahGUk7MlLoA96dfrKlS-LPAUol3y6dzWyIQlbb5v2TkASfDukkEd2oKQLxdoslaP4dvgZPrxM-2aL1CXKL6meWpKzkvjYpsr4ZyMrSmT2Fgb53mpmEdk4NAaOAQYNhWssLaUMi9wlGbe2eQJ7C-qhX8GxGuhnTVasBgPnWgty6SwsfOINYpURhBvPn3musrkoUHGebarqRyklaG0siCt7CqCN9tblm1ZjpsGH28Ek3V_6CrbSSWCV9vL-G-FgIld-KpuxijEOKlOInja6sH2bQlLJILjOIK3G8XYPfyfrDy_mZUXcMiDSjZ72I5hf31Z-5dw2_1a_1hd9mBPTWaBzlVDdQ8OPpyMxpNeo_ZIh_E0UD4OVAU6lt-RTs5mfwAgLQY2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggAJ8SivQAEjwQVk4fiR2AeEVsDSVXdXSCyot-A4joRUNkt3Q8uf4jcyzmNXqKK3HjjkkjiOHX-e-cb2zAA8K70x3jtOuUkKKqVS1HgkcqgMpY-tMqLJsfRlnE6n-uDAfNyC370vTDhW2cvERlAXlQtr5K-QJiSoinQs3yx-0JA1Kuyu9ik0Wljs-1_HaLItX4_e4fg-53z4fvZ2j3ZZBagTKV_RPDEl56VxzOapdE4xa0rBjLUsz8s09qjyHMLcoea0iYwLa0ul8gJL6dg7K7DeC3AxxNULRwgnbLYJ8pskrXu21DQEPu93UVtXPSRiaLgbGkue0pO_9eApcntqY7bRd8Mb_9ufugnXO2ZNBu1UuAVbfr4Dlyfd2YEduNauUJLW8eo2TAZkdlyRsUWjg3xaoIHvyaBeVSGyZ4G3kM2TD4e2xk5b0vozl90CJwmr12RYh7QnZPQdRfLyDnw-l87dhe15Nff3gXgttbNGy5jhpYXWqhSFZc4jlyoSFQHrhzpzXeT1kADkMNvEjA7oyBAdWUBHdhLBi_UrizbsyFmFd3sgZJ0EWmYbFETwdP0YZUfYELJzX9VNmRQ5XKJFBPda3K2_JmKhkPyzCF72QNxU_s-mPDi7KU_gyt5sMs7Go-n-Q7jKw3RozuvtwvbqqPaP4JL7ufq2PHrcTCwCX88bn38AdCxcuQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiokxKO8AgWMBBeQ1cSPxD4gtKIsrHa7qkRBvQXHcSSkslm6G1r-Gr-OcZzsClX01gOHXBLHcexvnvbMALyonNbOWUaZTksqhJRUO1TkUBgKlxipeVtj6cskm07V0ZE-2IDffSyMP1bZ88SWUZe19T7yXVQTUhRFKhG7VXcs4mBv-Hb-g_oKUn6ntS-nESAydr9O0XxbvBnt4Vq_ZGz4_vDdR9pVGKCWZ2xJi1RXjFXaxqbIhLUyNrrisTYmLooqSxyKP4uQtyhFTSqS0phKyqLEVipx1nDs9wpcRSksPY2NM7pO-JumIVRbKOqToPc7qiFsD5UyNOI1TQTL6NnfMvGcontuk7aVfcNb__Os3YabncZNBoFE7sCGm23D1n53pmAbbgTPJQkBWXdhf0AOT2syMWiMkE9zNPwdGTTL2mf8LPEWavnkw7FpcAIMCXHOVef4JN6rTYaNL4dCRt-RVS_uwedL-bn7sDmrZ-4hEKeEskYrkcR4Ka6UrHhpYutQxypTGUHcL3tuu4zsvjDIcb7OJe2RkiNSco-U_CyCV6tX5iEdyUWNd3pQ5B1nWuRrRETwfPUYeYrfKDIzVzdtmwx1u1TxCB4EDK6-xhMu0SiII3jdg3Ld-T-H8ujioTyDLYRlPhlNx4_hOvOU0R7j24HN5UnjnsA1-3P5bXHytKUxAl8vG55_ADvQZTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Two+Layer+Sparse+Autoencoder+for+Glaucoma+Identification+with+Fundus+Images&rft.jtitle=Journal+of+medical+systems&rft.au=Raghavendra%2C+U&rft.au=Gudigar%2C+Anjan&rft.au=Bhandary%2C+Sulatha+V&rft.au=Rao%2C+Tejaswi+N&rft.date=2019-09-01&rft.pub=Springer+Nature+B.V&rft.issn=0148-5598&rft.eissn=1573-689X&rft.volume=43&rft.issue=9&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1007%2Fs10916-019-1427-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-5598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-5598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-5598&client=summon