Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
•State-of-the-art results on the C-MAPSS dataset.•Genetic algorithm effectively tunes hyper-parameters in deep architectures.•Unsupervised pre-training extracts degradation related features.•Semi-supervised learning improves the remaining useful life prediction accuracy. In recent years, research ha...
Uloženo v:
| Vydáno v: | Reliability engineering & system safety Ročník 183; s. 240 - 251 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
01.03.2019
Elsevier BV |
| Témata: | |
| ISSN: | 0951-8320, 1879-0836 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!