Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem

A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Soft computing (Berlin, Germany) Ročník 24; číslo 11; s. 7885 - 7905
Hlavní autori: Sangaiah, Arun Kumar, Tirkolaee, Erfan Babaee, Goli, Alireza, Dehnavi-Arani, Saeed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2020
Springer Nature B.V
Predmet:
ISSN:1432-7643, 1433-7479
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain to provide a significant development of gas trading. Therefore, this paper addresses a robust mixed-integer linear programming model for LNG sales planning over a given time horizon aiming to minimize the costs of the vendor. Since the parameter of the manufacturer supply has an uncertain nature in the real world, and this parameter is regarded to be interval-based uncertain. To validate the model, various illustrative examples are solved using CPLEX solver of GAMS software under different uncertainty levels. Furthermore, a novel metaheuristic algorithm, namely cuckoo optimization algorithm (COA), is designed to solve the problem efficiently. The obtained comparison results demonstrate that the proposed COA can generate high-quality solutions. Furthermore, the comparison results of the deterministic and robust models are evaluated, and sensitivity analyses are performed on the main parameters to provide the concluding remarks and managerial insights of the research. Finally, a comparison evaluation is done between the total vendor profit and the robustness cost to find the optimal robustness level.
AbstractList A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain to provide a significant development of gas trading. Therefore, this paper addresses a robust mixed-integer linear programming model for LNG sales planning over a given time horizon aiming to minimize the costs of the vendor. Since the parameter of the manufacturer supply has an uncertain nature in the real world, and this parameter is regarded to be interval-based uncertain. To validate the model, various illustrative examples are solved using CPLEX solver of GAMS software under different uncertainty levels. Furthermore, a novel metaheuristic algorithm, namely cuckoo optimization algorithm (COA), is designed to solve the problem efficiently. The obtained comparison results demonstrate that the proposed COA can generate high-quality solutions. Furthermore, the comparison results of the deterministic and robust models are evaluated, and sensitivity analyses are performed on the main parameters to provide the concluding remarks and managerial insights of the research. Finally, a comparison evaluation is done between the total vendor profit and the robustness cost to find the optimal robustness level.
Author Goli, Alireza
Dehnavi-Arani, Saeed
Tirkolaee, Erfan Babaee
Sangaiah, Arun Kumar
Author_xml – sequence: 1
  givenname: Arun Kumar
  orcidid: 0000-0002-0229-2460
  surname: Sangaiah
  fullname: Sangaiah, Arun Kumar
  email: arunkumarsangaiah@gmail.com
  organization: School of Computing Science and Engineering, Vellore Institute of Technology (VIT)
– sequence: 2
  givenname: Erfan Babaee
  surname: Tirkolaee
  fullname: Tirkolaee, Erfan Babaee
  organization: Department of Industrial Engineering, Mazandaran University of Science and Technology
– sequence: 3
  givenname: Alireza
  surname: Goli
  fullname: Goli, Alireza
  organization: Department of Industrial Engineering, Yazd University
– sequence: 4
  givenname: Saeed
  surname: Dehnavi-Arani
  fullname: Dehnavi-Arani, Saeed
  organization: Department of Industrial Engineering, Yazd University
BookMark eNp9kE1LwzAYgINMcJv-AU8Bz9F8tElzlKFTGAqi55A26cxok5p04Pz1ZpsgePCUHJ4nb95nBiY-eAvAJcHXBGNxkzAuMUaYSIQLTDDiJ2BKCsaQKIScHO4UCV6wMzBLaYMxJaJkU2BeQr1NIwzD6Hr3pUcXPNTewN59WoOcH-3aRtg5b3WEQwzrqPve-TXsg7EdbEOEq6clTNth6HawedfOw6HT3u-ZzNed7c_Baau7ZC9-zjl4u797XTyg1fPycXG7Qg0TdEQ1FVYWTcsK2zBGS8tLLutCMk615BQbY0pLdUNILSpZ24bnLYysRStKXpWGzcHV8d0892Nr06g2YRt9HqmoJBXmnLEqU9WRamJIKdpWNW48LD5G7TpFsNo3VcemKjdVh6aKZ5X-UYfoeh13_0vsKKUM-1zz91f_WN_oXIwl
CitedBy_id crossref_primary_10_1007_s00521_020_05361_0
crossref_primary_10_1016_j_cie_2023_109368
crossref_primary_10_1016_j_heliyon_2023_e19047
crossref_primary_10_1016_j_dche_2023_100130
crossref_primary_10_1007_s00500_020_04939_z
crossref_primary_10_1016_j_rcim_2025_103015
crossref_primary_10_1016_j_susoc_2021_07_004
crossref_primary_10_1007_s12652_020_02481_2
crossref_primary_10_25077_josi_v23_n2_p207_226_2024
crossref_primary_10_4102_jamba_v15i1_1444
crossref_primary_10_1007_s11356_023_30396_w
crossref_primary_10_1080_02331934_2022_2038152
crossref_primary_10_31413_nat_v13i1_19281
crossref_primary_10_1007_s10479_021_04073_5
crossref_primary_10_3389_feart_2024_1454449
crossref_primary_10_1016_j_omega_2022_102775
crossref_primary_10_1016_j_engappai_2023_107140
crossref_primary_10_1016_j_heliyon_2024_e36669
crossref_primary_10_1186_s13640_020_00520_8
crossref_primary_10_4018_IJKSS_320486
crossref_primary_10_1080_02331934_2021_2009824
crossref_primary_10_1109_TII_2020_3029541
crossref_primary_10_1007_s00500_022_07054_3
crossref_primary_10_1007_s40808_022_01470_y
crossref_primary_10_3390_en13246704
crossref_primary_10_1007_s10479_022_04542_5
crossref_primary_10_3390_su13126663
crossref_primary_10_1080_02331934_2021_1970755
crossref_primary_10_1007_s00500_020_05377_7
crossref_primary_10_1007_s42452_020_03297_7
crossref_primary_10_1007_s12559_022_10101_8
crossref_primary_10_1016_j_atmosenv_2023_119792
crossref_primary_10_1016_j_jclepro_2023_138702
crossref_primary_10_1007_s00500_022_06785_7
crossref_primary_10_1016_j_jhydrol_2021_126852
crossref_primary_10_1177_0734242X19865340
crossref_primary_10_1016_j_jii_2025_100884
crossref_primary_10_1038_s41598_022_26385_7
crossref_primary_10_1177_0734242X19865782
crossref_primary_10_2478_fcds_2021_0003
crossref_primary_10_1016_j_ijdrr_2025_105249
crossref_primary_10_2478_amns_2024_1904
crossref_primary_10_1007_s00500_021_05943_7
crossref_primary_10_1080_02331934_2020_1774586
crossref_primary_10_1007_s12652_021_03691_y
crossref_primary_10_3390_su13105353
crossref_primary_10_1016_j_chemosphere_2022_137029
crossref_primary_10_3390_buildings11030121
crossref_primary_10_1016_j_oceaneng_2024_119299
crossref_primary_10_1007_s10479_022_04529_2
crossref_primary_10_1007_s12652_020_01832_3
crossref_primary_10_1007_s13132_025_02655_3
crossref_primary_10_1007_s10098_025_03143_7
crossref_primary_10_1016_j_compchemeng_2022_107789
crossref_primary_10_1111_coin_12349
crossref_primary_10_1007_s10479_021_04143_8
crossref_primary_10_2478_fcds_2022_0007
crossref_primary_10_1007_s12652_021_03188_8
crossref_primary_10_1016_j_egyr_2021_03_036
crossref_primary_10_3390_app112210781
crossref_primary_10_1155_2022_2290644
crossref_primary_10_1016_j_jmsy_2025_08_016
crossref_primary_10_3390_su132111874
crossref_primary_10_1007_s00500_020_05066_5
crossref_primary_10_1371_journal_pone_0284784
crossref_primary_10_1007_s00500_021_05711_7
crossref_primary_10_1007_s41660_024_00440_4
crossref_primary_10_1155_2022_3254532
crossref_primary_10_3390_s25030955
crossref_primary_10_1016_j_asoc_2023_110949
crossref_primary_10_22399_ijcesen_3841
crossref_primary_10_3390_su16219171
Cites_doi 10.1287/opre.42.1.14
10.1007/s00607-018-00692-2
10.1016/0377-2217(93)90232-C
10.1016/j.ijpe.2018.07.014
10.1007/s10107-003-0396-4
10.1016/j.wasman.2018.03.015
10.1016/B978-0-444-63578-5.50125-0
10.1002/aic.12419
10.1016/j.energy.2018.01.120
10.1287/opre.1030.0065
10.2118/1209-0031-JPT
10.1111/j.1540-5915.1995.tb00836.x
10.1177/0734242X18807001
10.1016/j.apenergy.2014.10.039
10.1016/j.jngse.2017.04.035
10.1016/j.compchemeng.2018.12.021
10.1287/opre.21.5.1154
10.1515/9781400831050
10.1016/j.apenergy.2018.09.148
10.1016/j.trc.2018.03.013
10.1111/j.1745-493X.1973.tb00271.x
10.1007/978-3-642-12067-1_24
10.1007/s00607-018-00693-1
10.1016/B978-0-444-59506-5.50128-0
10.1287/moor.23.4.769
10.1007/PL00011380
10.1016/j.cie.2015.07.004
10.1016/j.enpol.2012.03.045
10.1021/ie200275m
10.1016/j.asoc.2011.05.008
10.1016/j.asoc.2017.02.034
10.1287/opre.43.2.264
10.5547/01956574.35.1.5
10.1016/j.cie.2019.02.040
10.1016/j.apenergy.2016.08.130
10.1016/S0167-6377(99)00016-4
10.1016/j.enpol.2011.03.067
10.1016/j.energy.2017.05.090
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Springer-Verlag GmbH Germany, part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-019-04010-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
International Relations
EISSN 1433-7479
EndPage 7905
ExternalDocumentID 10_1007_s00500_019_04010_6
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c372t-b27e94cf34ec3325e6569b49362a9620ddd5e2ac11b789bec6021d9b7f75685d3
IEDL.DBID P5Z
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530547900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 02:04:11 EST 2025
Sat Nov 29 03:35:55 EST 2025
Tue Nov 18 20:43:00 EST 2025
Fri Feb 21 02:33:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Optimal robustness level
Robust optimization
Cuckoo optimization algorithm (COA)
Liquefied gas sales planning
LNG supply
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b27e94cf34ec3325e6569b49362a9620ddd5e2ac11b789bec6021d9b7f75685d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0229-2460
PQID 2918066338
PQPubID 2043697
PageCount 21
ParticipantIDs proquest_journals_2918066338
crossref_citationtrail_10_1007_s00500_019_04010_6
crossref_primary_10_1007_s00500_019_04010_6
springer_journals_10_1007_s00500_019_04010_6
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Global Energy Statistical Yearbook (2018) https://yearbook.enerdata.net/natural-gas/gas-consumption-data.html. Accessed Dec 2018
Khalilpour R, Karimi IA (2012) Contract selection under uncertainty: LNG buyers’ perspective. In: Computer aided chemical engineering, vol 31. Elsevier, pp 1487–1491
NarasimhanRStoynoffLKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330
SoysterALConvex programming with set-inclusive constraints and applications to inexact linear programmingOper Res1973215115411573687700266.9004610.1287/opre.21.5.1154
GoliATirkolaeeEBMalmirBBianGBSangaiahAKA multi-objective invasive weed optimization algorithm for robust aggregate production planning under uncertain seasonal demandComputing2019394642910.1007/s00607-018-00692-2
WernerAUggenKTFodstadMLiumAGEggingRStochastic mixed-integer programming for integrated portfolio planning in the LNG supply chainEnergy J201435799710.5547/01956574.35.1.5
BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4
Bittante A, Jokinen R, Pettersson F, Saxén H (2015) Optimization of LNG supply chain. In: Computer aided chemical engineering, vol 37. Elsevier, pp 779–784
GoliAAazamiAJabbarzadehAAccelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditionsInt J Artif Intell201816188112
Ben-TalANemirovskiARobust solutions of uncertain linear programsOper Res Lett199925111317023640941.9005310.1016/S0167-6377(99)00016-4
SadrianAAYoonYSA procurement decision support system in business volume discount environmentsOper Res1994421142310.1287/opre.42.1.14
BittanteAPetterssonFSaxénHOptimization of a small-scale LNG supply chainEnergy2018148798910.1016/j.energy.2018.01.120
Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050
KhalilpourRKarimiIASelection of liquefied natural gas (LNG) contracts for minimizing procurement costInd Eng Chem Res20115017102981031210.1021/ie200275m
DavoodiSMRGoliAAn integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: application in the Iranian contextComput Ind Eng201913037038010.1016/j.cie.2019.02.040
ChaudhrySSForstFGZydiakJLVendor selection with price breaksEur J Oper Res199370152660800.9011510.1016/0377-2217(93)90232-C
Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath Program200088341142417821490964.9002510.1007/PL00011380
Andersson H, Christiansen M, Fagerholt K (2010) Transportation planning and inventory management in the LNG supply chain. In: Energy, natural resources and environmental economics. Springer, Berlin, Heidelberg, pp 427–439
MsakniMKHaouariMShort-term planning of liquefied natural gas deliveriesTransp Res Part C Emerg Technol20189039341010.1016/j.trc.2018.03.013
ZimbergBTesturiCEFerrariGStochastic modeling of fuel procurement for electricity generation with contractual terms and logistics constraintsComput Chem Eng2019123496310.1016/j.compchemeng.2018.12.021
HosseinabadiAARTirkolaeeEBA gravitational emulation local search algorithm for task scheduling in multi-agent systemInt J Appl Optim Stud2018111124
MooreDLFearonHEComputer-assisted decision-making in purchasingJ Purch19739452510.1111/j.1745-493X.1973.tb00271.x
SheehanJMassive milestone Qatar LNG project goes forwardJ Petrol Technol20096112313210.2118/1209-0031-JPT
Ben-TalANemirovskiARobust convex optimizationMath Oper Res199823476980516624100977.9005210.1287/moor.23.4.769
RajabiounRCuckoo optimization algorithmAppl Soft Comput20111185508551810.1016/j.asoc.2011.05.008
CoganJPJrContracting practices evolve for new global LNG tradeOil Gas Energy Law J20064114171484630
RosenthalECZydiakJLChaudhrySSVendor selection with bundlingDecis Sci1995261354810.1111/j.1540-5915.1995.tb00836.x
MulveyJMVanderbeiRJZeniosSARobust optimization of large-scale systemsOper Res199543226428113274150832.9008410.1287/opre.43.2.264
ChoJLimGJKimSJBiobakuTLiquefied natural gas inventory routing problem under uncertain weather conditionsInt J Prod Econ2018204182910.1016/j.ijpe.2018.07.014
KumarSKwonHTChoiKHChoJHLimWMoonICurrent status and future projections of LNG demand and supplies: a global prospectiveEnergy Policy20113974097410410.1016/j.enpol.2011.03.067
TirkolaeeEBGoliAHematianMSangaiahAKHanTMulti-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithmsComputing2019394643110.1007/s00607-018-00693-1
BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065
Babaee TirkolaeeEAbbasianPSoltaniMGhaffarianSADeveloping an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: a case studyWaste Manag Res2019371_suppl41310.1177/0734242X18807001
LiXArmaganETomasgardABartonPIStochastic pooling problem for natural gas production network design and operation under uncertaintyAIChE J20115782120213510.1002/aic.12419
NarasimhanRStoynoffKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330
ZhangHLiangYLiaoQYanXShenYZhaoYA three-stage stochastic programming method for LNG supply system infrastructure development and inventory routing in demanding countriesEnergy201713342444210.1016/j.energy.2017.05.090
Saldarriaga-CortésCSalazarHMorenoRJiménez-EstévezGStochastic planning of electricity and gas networks: an asynchronous column generation approachAppl Energy20192331065107710.1016/j.apenergy.2018.09.148
TirkolaeeEBMahdaviIEsfahaniMMSA robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working timeWaste Manag20187613814610.1016/j.wasman.2018.03.015
KimJSeoYChangDEconomic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefactionAppl Energy201618215416310.1016/j.apenergy.2016.08.130
MoreiraMCOCordeauJFCostaAMLaporteGRobust assembly line balancing with heterogeneous workersComput Ind Eng20158825426310.1016/j.cie.2015.07.004
JokinenRPetterssonFSaxénHAn MILP model for optimization of a small-scale LNG supply chain along a coastlineAppl Energy201513842343110.1016/j.apenergy.2014.10.039
KhanMSKarimiIAWoodDARetrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a reviewJ Nat Gas Sci Eng20174516518810.1016/j.jngse.2017.04.035
ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput2017611041105910.1016/j.asoc.2017.02.034
BiresseliogluMEDemirMHKandemirCModeling Turkey’s future LNG supply security strategyEnergy Policy20124614415210.1016/j.enpol.2012.03.045
4010_CR10
SMR Davoodi (4010_CR15) 2019; 130
D Bertsimas (4010_CR7) 2003; 98
H Zhang (4010_CR43) 2017; 133
S Kumar (4010_CR25) 2011; 39
MCO Moreira (4010_CR28) 2015; 88
J Cho (4010_CR13) 2018; 204
JP Cogan Jr (4010_CR14) 2006; 4
AL Soyster (4010_CR39) 1973; 21
A Ben-Tal (4010_CR5) 2000; 88
M Shehab (4010_CR38) 2017; 61
4010_CR16
AAR Hosseinabadi (4010_CR19) 2018; 1
A Ben-Tal (4010_CR3) 1998; 23
SS Chaudhry (4010_CR12) 1993; 70
A Ben-Tal (4010_CR6) 2009
R Narasimhan (4010_CR31) 1986; 22
A Goli (4010_CR18) 2019
DL Moore (4010_CR27) 1973; 9
C Saldarriaga-Cortés (4010_CR36) 2019; 233
EB Tirkolaee (4010_CR40) 2018; 76
D Bertsimas (4010_CR8) 2004; 52
EC Rosenthal (4010_CR34) 1995; 26
J Sheehan (4010_CR37) 2009; 61
EB Tirkolaee (4010_CR41) 2019
ME Biresselioglu (4010_CR9) 2012; 46
J Kim (4010_CR24) 2016; 182
4010_CR22
A Bittante (4010_CR11) 2018; 148
R Khalilpour (4010_CR21) 2011; 50
4010_CR1
R Jokinen (4010_CR20) 2015; 138
MS Khan (4010_CR23) 2017; 45
JM Mulvey (4010_CR30) 1995; 43
A Werner (4010_CR42) 2014; 35
R Narasimhan (4010_CR32) 1986; 22
R Rajabioun (4010_CR33) 2011; 11
E Babaee Tirkolaee (4010_CR2) 2019; 37
A Ben-Tal (4010_CR4) 1999; 25
A Goli (4010_CR17) 2018; 16
AA Sadrian (4010_CR35) 1994; 42
X Li (4010_CR26) 2011; 57
MK Msakni (4010_CR29) 2018; 90
B Zimberg (4010_CR44) 2019; 123
References_xml – reference: Saldarriaga-CortésCSalazarHMorenoRJiménez-EstévezGStochastic planning of electricity and gas networks: an asynchronous column generation approachAppl Energy20192331065107710.1016/j.apenergy.2018.09.148
– reference: KimJSeoYChangDEconomic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefactionAppl Energy201618215416310.1016/j.apenergy.2016.08.130
– reference: KumarSKwonHTChoiKHChoJHLimWMoonICurrent status and future projections of LNG demand and supplies: a global prospectiveEnergy Policy20113974097410410.1016/j.enpol.2011.03.067
– reference: Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath Program200088341142417821490964.9002510.1007/PL00011380
– reference: KhalilpourRKarimiIASelection of liquefied natural gas (LNG) contracts for minimizing procurement costInd Eng Chem Res20115017102981031210.1021/ie200275m
– reference: RosenthalECZydiakJLChaudhrySSVendor selection with bundlingDecis Sci1995261354810.1111/j.1540-5915.1995.tb00836.x
– reference: WernerAUggenKTFodstadMLiumAGEggingRStochastic mixed-integer programming for integrated portfolio planning in the LNG supply chainEnergy J201435799710.5547/01956574.35.1.5
– reference: BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065
– reference: SheehanJMassive milestone Qatar LNG project goes forwardJ Petrol Technol20096112313210.2118/1209-0031-JPT
– reference: ZimbergBTesturiCEFerrariGStochastic modeling of fuel procurement for electricity generation with contractual terms and logistics constraintsComput Chem Eng2019123496310.1016/j.compchemeng.2018.12.021
– reference: TirkolaeeEBGoliAHematianMSangaiahAKHanTMulti-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithmsComputing2019394643110.1007/s00607-018-00693-1
– reference: CoganJPJrContracting practices evolve for new global LNG tradeOil Gas Energy Law J20064114171484630
– reference: NarasimhanRStoynoffKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330
– reference: Ben-TalANemirovskiARobust solutions of uncertain linear programsOper Res Lett199925111317023640941.9005310.1016/S0167-6377(99)00016-4
– reference: ChaudhrySSForstFGZydiakJLVendor selection with price breaksEur J Oper Res199370152660800.9011510.1016/0377-2217(93)90232-C
– reference: KhanMSKarimiIAWoodDARetrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a reviewJ Nat Gas Sci Eng20174516518810.1016/j.jngse.2017.04.035
– reference: SoysterALConvex programming with set-inclusive constraints and applications to inexact linear programmingOper Res1973215115411573687700266.9004610.1287/opre.21.5.1154
– reference: HosseinabadiAARTirkolaeeEBA gravitational emulation local search algorithm for task scheduling in multi-agent systemInt J Appl Optim Stud2018111124
– reference: JokinenRPetterssonFSaxénHAn MILP model for optimization of a small-scale LNG supply chain along a coastlineAppl Energy201513842343110.1016/j.apenergy.2014.10.039
– reference: Ben-TalANemirovskiARobust convex optimizationMath Oper Res199823476980516624100977.9005210.1287/moor.23.4.769
– reference: BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4
– reference: GoliAAazamiAJabbarzadehAAccelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditionsInt J Artif Intell201816188112
– reference: GoliATirkolaeeEBMalmirBBianGBSangaiahAKA multi-objective invasive weed optimization algorithm for robust aggregate production planning under uncertain seasonal demandComputing2019394642910.1007/s00607-018-00692-2
– reference: RajabiounRCuckoo optimization algorithmAppl Soft Comput20111185508551810.1016/j.asoc.2011.05.008
– reference: BittanteAPetterssonFSaxénHOptimization of a small-scale LNG supply chainEnergy2018148798910.1016/j.energy.2018.01.120
– reference: NarasimhanRStoynoffLKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330
– reference: Babaee TirkolaeeEAbbasianPSoltaniMGhaffarianSADeveloping an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: a case studyWaste Manag Res2019371_suppl41310.1177/0734242X18807001
– reference: MooreDLFearonHEComputer-assisted decision-making in purchasingJ Purch19739452510.1111/j.1745-493X.1973.tb00271.x
– reference: MsakniMKHaouariMShort-term planning of liquefied natural gas deliveriesTransp Res Part C Emerg Technol20189039341010.1016/j.trc.2018.03.013
– reference: Bittante A, Jokinen R, Pettersson F, Saxén H (2015) Optimization of LNG supply chain. In: Computer aided chemical engineering, vol 37. Elsevier, pp 779–784
– reference: DavoodiSMRGoliAAn integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: application in the Iranian contextComput Ind Eng201913037038010.1016/j.cie.2019.02.040
– reference: TirkolaeeEBMahdaviIEsfahaniMMSA robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working timeWaste Manag20187613814610.1016/j.wasman.2018.03.015
– reference: Khalilpour R, Karimi IA (2012) Contract selection under uncertainty: LNG buyers’ perspective. In: Computer aided chemical engineering, vol 31. Elsevier, pp 1487–1491
– reference: MulveyJMVanderbeiRJZeniosSARobust optimization of large-scale systemsOper Res199543226428113274150832.9008410.1287/opre.43.2.264
– reference: Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050
– reference: BiresseliogluMEDemirMHKandemirCModeling Turkey’s future LNG supply security strategyEnergy Policy20124614415210.1016/j.enpol.2012.03.045
– reference: ChoJLimGJKimSJBiobakuTLiquefied natural gas inventory routing problem under uncertain weather conditionsInt J Prod Econ2018204182910.1016/j.ijpe.2018.07.014
– reference: MoreiraMCOCordeauJFCostaAMLaporteGRobust assembly line balancing with heterogeneous workersComput Ind Eng20158825426310.1016/j.cie.2015.07.004
– reference: ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput2017611041105910.1016/j.asoc.2017.02.034
– reference: Global Energy Statistical Yearbook (2018) https://yearbook.enerdata.net/natural-gas/gas-consumption-data.html. Accessed Dec 2018
– reference: ZhangHLiangYLiaoQYanXShenYZhaoYA three-stage stochastic programming method for LNG supply system infrastructure development and inventory routing in demanding countriesEnergy201713342444210.1016/j.energy.2017.05.090
– reference: Andersson H, Christiansen M, Fagerholt K (2010) Transportation planning and inventory management in the LNG supply chain. In: Energy, natural resources and environmental economics. Springer, Berlin, Heidelberg, pp 427–439
– reference: LiXArmaganETomasgardABartonPIStochastic pooling problem for natural gas production network design and operation under uncertaintyAIChE J20115782120213510.1002/aic.12419
– reference: SadrianAAYoonYSA procurement decision support system in business volume discount environmentsOper Res1994421142310.1287/opre.42.1.14
– volume: 42
  start-page: 14
  issue: 1
  year: 1994
  ident: 4010_CR35
  publication-title: Oper Res
  doi: 10.1287/opre.42.1.14
– year: 2019
  ident: 4010_CR18
  publication-title: Computing
  doi: 10.1007/s00607-018-00692-2
– volume: 70
  start-page: 52
  issue: 1
  year: 1993
  ident: 4010_CR12
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(93)90232-C
– volume: 204
  start-page: 18
  year: 2018
  ident: 4010_CR13
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2018.07.014
– volume: 98
  start-page: 49
  issue: 1–3
  year: 2003
  ident: 4010_CR7
  publication-title: Math Program
  doi: 10.1007/s10107-003-0396-4
– volume: 76
  start-page: 138
  year: 2018
  ident: 4010_CR40
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2018.03.015
– ident: 4010_CR10
  doi: 10.1016/B978-0-444-63578-5.50125-0
– volume: 57
  start-page: 2120
  issue: 8
  year: 2011
  ident: 4010_CR26
  publication-title: AIChE J
  doi: 10.1002/aic.12419
– volume: 148
  start-page: 79
  year: 2018
  ident: 4010_CR11
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.120
– volume: 52
  start-page: 35
  issue: 1
  year: 2004
  ident: 4010_CR8
  publication-title: Oper Res
  doi: 10.1287/opre.1030.0065
– volume: 61
  start-page: 31
  issue: 12
  year: 2009
  ident: 4010_CR37
  publication-title: J Petrol Technol
  doi: 10.2118/1209-0031-JPT
– ident: 4010_CR16
– volume: 26
  start-page: 35
  issue: 1
  year: 1995
  ident: 4010_CR34
  publication-title: Decis Sci
  doi: 10.1111/j.1540-5915.1995.tb00836.x
– volume: 37
  start-page: 4
  issue: 1_suppl
  year: 2019
  ident: 4010_CR2
  publication-title: Waste Manag Res
  doi: 10.1177/0734242X18807001
– volume: 138
  start-page: 423
  year: 2015
  ident: 4010_CR20
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.10.039
– volume: 45
  start-page: 165
  year: 2017
  ident: 4010_CR23
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2017.04.035
– volume: 123
  start-page: 49
  year: 2019
  ident: 4010_CR44
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2018.12.021
– volume: 21
  start-page: 1154
  issue: 5
  year: 1973
  ident: 4010_CR39
  publication-title: Oper Res
  doi: 10.1287/opre.21.5.1154
– volume-title: Robust optimization
  year: 2009
  ident: 4010_CR6
  doi: 10.1515/9781400831050
– volume: 16
  start-page: 88
  issue: 1
  year: 2018
  ident: 4010_CR17
  publication-title: Int J Artif Intell
– volume: 1
  start-page: 11
  issue: 1
  year: 2018
  ident: 4010_CR19
  publication-title: Int J Appl Optim Stud
– volume: 233
  start-page: 1065
  year: 2019
  ident: 4010_CR36
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.148
– volume: 90
  start-page: 393
  year: 2018
  ident: 4010_CR29
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2018.03.013
– volume: 9
  start-page: 5
  issue: 4
  year: 1973
  ident: 4010_CR27
  publication-title: J Purch
  doi: 10.1111/j.1745-493X.1973.tb00271.x
– ident: 4010_CR1
  doi: 10.1007/978-3-642-12067-1_24
– year: 2019
  ident: 4010_CR41
  publication-title: Computing
  doi: 10.1007/s00607-018-00693-1
– ident: 4010_CR22
  doi: 10.1016/B978-0-444-59506-5.50128-0
– volume: 23
  start-page: 769
  issue: 4
  year: 1998
  ident: 4010_CR3
  publication-title: Math Oper Res
  doi: 10.1287/moor.23.4.769
– volume: 88
  start-page: 411
  issue: 3
  year: 2000
  ident: 4010_CR5
  publication-title: Math Program
  doi: 10.1007/PL00011380
– volume: 88
  start-page: 254
  year: 2015
  ident: 4010_CR28
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.07.004
– volume: 46
  start-page: 144
  year: 2012
  ident: 4010_CR9
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.03.045
– volume: 50
  start-page: 10298
  issue: 17
  year: 2011
  ident: 4010_CR21
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie200275m
– volume: 11
  start-page: 5508
  issue: 8
  year: 2011
  ident: 4010_CR33
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.05.008
– volume: 61
  start-page: 1041
  year: 2017
  ident: 4010_CR38
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.02.034
– volume: 4
  start-page: 14
  issue: 1
  year: 2006
  ident: 4010_CR14
  publication-title: Oil Gas Energy Law J
– volume: 43
  start-page: 264
  issue: 2
  year: 1995
  ident: 4010_CR30
  publication-title: Oper Res
  doi: 10.1287/opre.43.2.264
– volume: 35
  start-page: 79
  year: 2014
  ident: 4010_CR42
  publication-title: Energy J
  doi: 10.5547/01956574.35.1.5
– volume: 22
  start-page: 23
  issue: 1
  year: 1986
  ident: 4010_CR32
  publication-title: J Purch Mater Manag
– volume: 22
  start-page: 23
  issue: 1
  year: 1986
  ident: 4010_CR31
  publication-title: J Purch Mater Manag
– volume: 130
  start-page: 370
  year: 2019
  ident: 4010_CR15
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.02.040
– volume: 182
  start-page: 154
  year: 2016
  ident: 4010_CR24
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.130
– volume: 25
  start-page: 1
  issue: 1
  year: 1999
  ident: 4010_CR4
  publication-title: Oper Res Lett
  doi: 10.1016/S0167-6377(99)00016-4
– volume: 39
  start-page: 4097
  issue: 7
  year: 2011
  ident: 4010_CR25
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.03.067
– volume: 133
  start-page: 424
  year: 2017
  ident: 4010_CR43
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.090
SSID ssj0021753
Score 2.5369184
Snippet A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7885
SubjectTerms Algorithms
Artificial Intelligence
Case studies
Computational Intelligence
Control
Costs
Crude oil prices
Decision making
Discount rates
Energy
Engineering
Focus
Heuristic methods
Households
Integer programming
International relations
Inventory
Linear programming
Liquefied natural gas
Manufacturers
Mathematical Logic and Foundations
Mathematical models
Mathematical programming
Mechatronics
Mixed integer
Optimization
Parameter sensitivity
Power plants
Profitability
Profits
Purchasing contracts
Robotics
Robustness
Suppliers
Supply & demand
Supply chains
Transportation planning
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHp1NxOiUHb1pok_5IjiJOD2PI1LFbaZsEB64bayf635tkaf2BCnpuEsrLS96X5L3vAzilrnSl1Bk1gnrm6sZhaRo4gculdHXJnpFOGPaifp-ORuzWFoUVVbZ79SRpduq62E1TlegkKn2Zr59ww1VYU-GOasGGwd2wPmZZ7kkFBBR2VAHXlsp8P8bncPSOMb88i5po023-7z-3YcuiS3SxdIcdWBF5C5qVcgOyC7kFmx9oCHeBD6bpoijRVG0fE1uXiZKco8n4RXDHMEqo3hqQJnNkM7omqisyOjpI4V7U61-jQiuEvqLsMRnnaGbVkJCVrNmDh-7V_eWNY9UXnIxEuHRSHAnmZ5L4IiMEB0IhP5b6TEW8hIXY5ZwHAieZ56URZcoVQmV6ztJIRkFIA072oZFPc3EASJDAFUyddMJA-FgSSgVzsQwT5qeECdkGr5qEOLPU5Foh4ymuSZWNUWNl1NgYNQ7bcFb3mS2JOX5t3anmNraLtIgx86hGXIS24byay_fPP492-LfmR7CB9Snd3N10oFHOF-IY1rPnclzMT4zzvgHC-ecB
  priority: 102
  providerName: Springer Nature
Title Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem
URI https://link.springer.com/article/10.1007/s00500-019-04010-6
https://www.proquest.com/docview/2918066338
Volume 24
WOSCitedRecordID wos000530547900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGlh4P8qj8sAGEYkdJ_aEAFGQqKqqQIVYoiS2RSWalqYg-PfYrtMKJFhYsiQ5Jbqz7_O9PoAj5itfKVNRI1lgQzcezzLqUV8o5ZuWPUud0G3GrRZ7fORtF3ArXVlltSfajVoMchMjP8U8YMY9EnY2fPUMa5TJrjoKjXlYNFMSDHVDmz5ND1xuCqWGBBpFatfrmmZs65wZfGJKskxqwCSEo--OaYY2fyRIrd9prP73i9dgxSFOdD4xkXWYk8UGrFZsDsgt7g3Y-RYcRNMquU0QnUH2Vo7RQG8vfde3idJCoH7vQwrPTpzQkgxgTUfIVXz19d8gy7ODNC5GzdY1Kg2D6CfKn9NegYaOLQk5SpsteGhc3V_eeI6dwctJjMdehmPJw1yRUOaEYCo1MuRZyLVHTHmEfSEElTjNgyCLGdemEmmFCJ7FKqYRo4Jsw0IxKOQuIEmoL7k-CUVUhlgRxiT3sYpSHmaES1WDoFJNkrvR5YZB4yWZDl226ky0OhOrziSqwfH0neFkcMefTx9UOkzcIi6TmQJrcFJZwez279L2_pa2D8vYnNptLOcAFsajN3kIS_n7uFeO6rB4cdVqd-owfxt7dWvQ-tq5634B--r5rA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhX8rqA5wgIrGz2AeEELtaKoQAcQtJbItKNC1N2X6Kb8R2nVYgwY0D5yQj2XmeGc_2ADapK10pdUWNoJ4J3TgsTQMncLmUrm7ZM9QJt7WoXqd3d-xyCD7KXhhdVlnqRKOoeSvTMfJdzDyqzSOh--0nR7NG6exqSaHRg0VVvL-qK1uxd36k_u8WxifH14dnjmUVcDIS4a6T4kgwP5PEFxkhOBDKo2Gpz5QmT1iIXc55IHCSeV4aUaaWGCozyFkaySgIacCJkjsMoz6hkT5X1cjpX_Ds1EvlgiivVZl626RjWvX0oBVdAqZTEToBHX41hAPv9ltC1ti5k6n_tkPTMGk9anTQOwIzMCTyWZgq2SqQVV6zsPgl-In6VYBzwK9a6XPRRS2lPpu2LxUlOUfNxpvgjpmooSRphzzpIFvR1lS7hwyPEFJ-P6rVT1GhGVLfUfaQNHLUtmxQyFL2zMPNn-zCAozkrVwsARIkcAVTN70wED6WhFLBXCzDhPkpYUJWwCuhEGd2NLtmCHmM-0OlDXxiBZ_YwCcOK7Dd_6bdG0zy69urJWZiq6SKeACYCuyUqBs8_lna8u_SNmD87PqiFtfO69UVmMA6QmHiVqsw0u08izUYy166jaKzbo4Pgvu_RuMnCHxSJA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBecXp1Dz4psU26SV5FHUqjjG8DN9K2yQ4cN3Yqui_N8nSbYoK4nOTUHKSnO8k53wfwCF1pSulzqgR1DNXNw5L08AJXC6lq0v2jHRCuxE1m_TxkbWmqvhNtnv5JDmqadAsTXlx0ufyZFz4pmlLdEKVvtjXz7nhLMz7OpFex-t37XHIZXkoFShQOFI5X1s28_0Yn13TBG9-eSI1nqde-f8_r8KKRZ3odLRM1mBG5OtQKRUdkN3g67A8RU-4Afy2l74MC9RTx0rX1muiJOeo23kT3DFME6q3BqrJANlMr67qioy-DlJ4GDWal2iolUPfUfaUdHLUtypJyErZbMJD_eL-7MqxqgxORiJcOCmOBPMzSXyREYIDoRAhS32mPGHCQuxyzgOBk8zz0ogytURCZQbO0khGQUgDTrZgLu_lYhuQIIErmIqAwkD4WBJKBXOxDBPmp4QJWQWvNEicWcpyrZzxHI_Jls2kxmpSYzOpcViFo3Gf_oiw49fWtdLOsd28wxgzj2okRmgVjku7Tj7_PNrO35ofwGLrvB43rps3u7CEdSBvrndqMFcMXsQeLGSvRWc42Ddr-gMrfPLJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+and+mixed-integer+linear+programming+model+for+LNG+supply+chain+planning+problem&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Sangaiah%2C+Arun+Kumar&rft.au=Tirkolaee%2C+Erfan+Babaee&rft.au=Goli%2C+Alireza&rft.au=Dehnavi-Arani%2C+Saeed&rft.date=2020-06-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=11&rft.spage=7885&rft.epage=7905&rft_id=info:doi/10.1007%2Fs00500-019-04010-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_04010_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon