Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem
A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain...
Uložené v:
| Vydané v: | Soft computing (Berlin, Germany) Ročník 24; číslo 11; s. 7885 - 7905 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2020
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1432-7643, 1433-7479 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain to provide a significant development of gas trading. Therefore, this paper addresses a robust mixed-integer linear programming model for LNG sales planning over a given time horizon aiming to minimize the costs of the vendor. Since the parameter of the manufacturer supply has an uncertain nature in the real world, and this parameter is regarded to be interval-based uncertain. To validate the model, various illustrative examples are solved using CPLEX solver of GAMS software under different uncertainty levels. Furthermore, a novel metaheuristic algorithm, namely cuckoo optimization algorithm (COA), is designed to solve the problem efficiently. The obtained comparison results demonstrate that the proposed COA can generate high-quality solutions. Furthermore, the comparison results of the deterministic and robust models are evaluated, and sensitivity analyses are performed on the main parameters to provide the concluding remarks and managerial insights of the research. Finally, a comparison evaluation is done between the total vendor profit and the robustness cost to find the optimal robustness level. |
|---|---|
| AbstractList | A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring of energy. Supply and transportation planning of liquefied natural gas (LNG) need a great attention from the management of the supply chain to provide a significant development of gas trading. Therefore, this paper addresses a robust mixed-integer linear programming model for LNG sales planning over a given time horizon aiming to minimize the costs of the vendor. Since the parameter of the manufacturer supply has an uncertain nature in the real world, and this parameter is regarded to be interval-based uncertain. To validate the model, various illustrative examples are solved using CPLEX solver of GAMS software under different uncertainty levels. Furthermore, a novel metaheuristic algorithm, namely cuckoo optimization algorithm (COA), is designed to solve the problem efficiently. The obtained comparison results demonstrate that the proposed COA can generate high-quality solutions. Furthermore, the comparison results of the deterministic and robust models are evaluated, and sensitivity analyses are performed on the main parameters to provide the concluding remarks and managerial insights of the research. Finally, a comparison evaluation is done between the total vendor profit and the robustness cost to find the optimal robustness level. |
| Author | Goli, Alireza Dehnavi-Arani, Saeed Tirkolaee, Erfan Babaee Sangaiah, Arun Kumar |
| Author_xml | – sequence: 1 givenname: Arun Kumar orcidid: 0000-0002-0229-2460 surname: Sangaiah fullname: Sangaiah, Arun Kumar email: arunkumarsangaiah@gmail.com organization: School of Computing Science and Engineering, Vellore Institute of Technology (VIT) – sequence: 2 givenname: Erfan Babaee surname: Tirkolaee fullname: Tirkolaee, Erfan Babaee organization: Department of Industrial Engineering, Mazandaran University of Science and Technology – sequence: 3 givenname: Alireza surname: Goli fullname: Goli, Alireza organization: Department of Industrial Engineering, Yazd University – sequence: 4 givenname: Saeed surname: Dehnavi-Arani fullname: Dehnavi-Arani, Saeed organization: Department of Industrial Engineering, Yazd University |
| BookMark | eNp9kE1LwzAYgINMcJv-AU8Bz9F8tElzlKFTGAqi55A26cxok5p04Pz1ZpsgePCUHJ4nb95nBiY-eAvAJcHXBGNxkzAuMUaYSIQLTDDiJ2BKCsaQKIScHO4UCV6wMzBLaYMxJaJkU2BeQr1NIwzD6Hr3pUcXPNTewN59WoOcH-3aRtg5b3WEQwzrqPve-TXsg7EdbEOEq6clTNth6HawedfOw6HT3u-ZzNed7c_Baau7ZC9-zjl4u797XTyg1fPycXG7Qg0TdEQ1FVYWTcsK2zBGS8tLLutCMk615BQbY0pLdUNILSpZ24bnLYysRStKXpWGzcHV8d0892Nr06g2YRt9HqmoJBXmnLEqU9WRamJIKdpWNW48LD5G7TpFsNo3VcemKjdVh6aKZ5X-UYfoeh13_0vsKKUM-1zz91f_WN_oXIwl |
| CitedBy_id | crossref_primary_10_1007_s00521_020_05361_0 crossref_primary_10_1016_j_cie_2023_109368 crossref_primary_10_1016_j_heliyon_2023_e19047 crossref_primary_10_1016_j_dche_2023_100130 crossref_primary_10_1007_s00500_020_04939_z crossref_primary_10_1016_j_rcim_2025_103015 crossref_primary_10_1016_j_susoc_2021_07_004 crossref_primary_10_1007_s12652_020_02481_2 crossref_primary_10_25077_josi_v23_n2_p207_226_2024 crossref_primary_10_4102_jamba_v15i1_1444 crossref_primary_10_1007_s11356_023_30396_w crossref_primary_10_1080_02331934_2022_2038152 crossref_primary_10_31413_nat_v13i1_19281 crossref_primary_10_1007_s10479_021_04073_5 crossref_primary_10_3389_feart_2024_1454449 crossref_primary_10_1016_j_omega_2022_102775 crossref_primary_10_1016_j_engappai_2023_107140 crossref_primary_10_1016_j_heliyon_2024_e36669 crossref_primary_10_1186_s13640_020_00520_8 crossref_primary_10_4018_IJKSS_320486 crossref_primary_10_1080_02331934_2021_2009824 crossref_primary_10_1109_TII_2020_3029541 crossref_primary_10_1007_s00500_022_07054_3 crossref_primary_10_1007_s40808_022_01470_y crossref_primary_10_3390_en13246704 crossref_primary_10_1007_s10479_022_04542_5 crossref_primary_10_3390_su13126663 crossref_primary_10_1080_02331934_2021_1970755 crossref_primary_10_1007_s00500_020_05377_7 crossref_primary_10_1007_s42452_020_03297_7 crossref_primary_10_1007_s12559_022_10101_8 crossref_primary_10_1016_j_atmosenv_2023_119792 crossref_primary_10_1016_j_jclepro_2023_138702 crossref_primary_10_1007_s00500_022_06785_7 crossref_primary_10_1016_j_jhydrol_2021_126852 crossref_primary_10_1177_0734242X19865340 crossref_primary_10_1016_j_jii_2025_100884 crossref_primary_10_1038_s41598_022_26385_7 crossref_primary_10_1177_0734242X19865782 crossref_primary_10_2478_fcds_2021_0003 crossref_primary_10_1016_j_ijdrr_2025_105249 crossref_primary_10_2478_amns_2024_1904 crossref_primary_10_1007_s00500_021_05943_7 crossref_primary_10_1080_02331934_2020_1774586 crossref_primary_10_1007_s12652_021_03691_y crossref_primary_10_3390_su13105353 crossref_primary_10_1016_j_chemosphere_2022_137029 crossref_primary_10_3390_buildings11030121 crossref_primary_10_1016_j_oceaneng_2024_119299 crossref_primary_10_1007_s10479_022_04529_2 crossref_primary_10_1007_s12652_020_01832_3 crossref_primary_10_1007_s13132_025_02655_3 crossref_primary_10_1007_s10098_025_03143_7 crossref_primary_10_1016_j_compchemeng_2022_107789 crossref_primary_10_1111_coin_12349 crossref_primary_10_1007_s10479_021_04143_8 crossref_primary_10_2478_fcds_2022_0007 crossref_primary_10_1007_s12652_021_03188_8 crossref_primary_10_1016_j_egyr_2021_03_036 crossref_primary_10_3390_app112210781 crossref_primary_10_1155_2022_2290644 crossref_primary_10_1016_j_jmsy_2025_08_016 crossref_primary_10_3390_su132111874 crossref_primary_10_1007_s00500_020_05066_5 crossref_primary_10_1371_journal_pone_0284784 crossref_primary_10_1007_s00500_021_05711_7 crossref_primary_10_1007_s41660_024_00440_4 crossref_primary_10_1155_2022_3254532 crossref_primary_10_3390_s25030955 crossref_primary_10_1016_j_asoc_2023_110949 crossref_primary_10_22399_ijcesen_3841 crossref_primary_10_3390_su16219171 |
| Cites_doi | 10.1287/opre.42.1.14 10.1007/s00607-018-00692-2 10.1016/0377-2217(93)90232-C 10.1016/j.ijpe.2018.07.014 10.1007/s10107-003-0396-4 10.1016/j.wasman.2018.03.015 10.1016/B978-0-444-63578-5.50125-0 10.1002/aic.12419 10.1016/j.energy.2018.01.120 10.1287/opre.1030.0065 10.2118/1209-0031-JPT 10.1111/j.1540-5915.1995.tb00836.x 10.1177/0734242X18807001 10.1016/j.apenergy.2014.10.039 10.1016/j.jngse.2017.04.035 10.1016/j.compchemeng.2018.12.021 10.1287/opre.21.5.1154 10.1515/9781400831050 10.1016/j.apenergy.2018.09.148 10.1016/j.trc.2018.03.013 10.1111/j.1745-493X.1973.tb00271.x 10.1007/978-3-642-12067-1_24 10.1007/s00607-018-00693-1 10.1016/B978-0-444-59506-5.50128-0 10.1287/moor.23.4.769 10.1007/PL00011380 10.1016/j.cie.2015.07.004 10.1016/j.enpol.2012.03.045 10.1021/ie200275m 10.1016/j.asoc.2011.05.008 10.1016/j.asoc.2017.02.034 10.1287/opre.43.2.264 10.5547/01956574.35.1.5 10.1016/j.cie.2019.02.040 10.1016/j.apenergy.2016.08.130 10.1016/S0167-6377(99)00016-4 10.1016/j.enpol.2011.03.067 10.1016/j.energy.2017.05.090 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2019 Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s00500-019-04010-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science International Relations |
| EISSN | 1433-7479 |
| EndPage | 7905 |
| ExternalDocumentID | 10_1007_s00500_019_04010_6 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c372t-b27e94cf34ec3325e6569b49362a9620ddd5e2ac11b789bec6021d9b7f75685d3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 91 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530547900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1432-7643 |
| IngestDate | Wed Nov 05 02:04:11 EST 2025 Sat Nov 29 03:35:55 EST 2025 Tue Nov 18 20:43:00 EST 2025 Fri Feb 21 02:33:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Optimal robustness level Robust optimization Cuckoo optimization algorithm (COA) Liquefied gas sales planning LNG supply |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-b27e94cf34ec3325e6569b49362a9620ddd5e2ac11b789bec6021d9b7f75685d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0229-2460 |
| PQID | 2918066338 |
| PQPubID | 2043697 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2918066338 crossref_citationtrail_10_1007_s00500_019_04010_6 crossref_primary_10_1007_s00500_019_04010_6 springer_journals_10_1007_s00500_019_04010_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-01 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
| PublicationTitle | Soft computing (Berlin, Germany) |
| PublicationTitleAbbrev | Soft Comput |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Global Energy Statistical Yearbook (2018) https://yearbook.enerdata.net/natural-gas/gas-consumption-data.html. Accessed Dec 2018 Khalilpour R, Karimi IA (2012) Contract selection under uncertainty: LNG buyers’ perspective. In: Computer aided chemical engineering, vol 31. Elsevier, pp 1487–1491 NarasimhanRStoynoffLKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330 SoysterALConvex programming with set-inclusive constraints and applications to inexact linear programmingOper Res1973215115411573687700266.9004610.1287/opre.21.5.1154 GoliATirkolaeeEBMalmirBBianGBSangaiahAKA multi-objective invasive weed optimization algorithm for robust aggregate production planning under uncertain seasonal demandComputing2019394642910.1007/s00607-018-00692-2 WernerAUggenKTFodstadMLiumAGEggingRStochastic mixed-integer programming for integrated portfolio planning in the LNG supply chainEnergy J201435799710.5547/01956574.35.1.5 BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4 Bittante A, Jokinen R, Pettersson F, Saxén H (2015) Optimization of LNG supply chain. In: Computer aided chemical engineering, vol 37. Elsevier, pp 779–784 GoliAAazamiAJabbarzadehAAccelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditionsInt J Artif Intell201816188112 Ben-TalANemirovskiARobust solutions of uncertain linear programsOper Res Lett199925111317023640941.9005310.1016/S0167-6377(99)00016-4 SadrianAAYoonYSA procurement decision support system in business volume discount environmentsOper Res1994421142310.1287/opre.42.1.14 BittanteAPetterssonFSaxénHOptimization of a small-scale LNG supply chainEnergy2018148798910.1016/j.energy.2018.01.120 Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050 KhalilpourRKarimiIASelection of liquefied natural gas (LNG) contracts for minimizing procurement costInd Eng Chem Res20115017102981031210.1021/ie200275m DavoodiSMRGoliAAn integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: application in the Iranian contextComput Ind Eng201913037038010.1016/j.cie.2019.02.040 ChaudhrySSForstFGZydiakJLVendor selection with price breaksEur J Oper Res199370152660800.9011510.1016/0377-2217(93)90232-C Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath Program200088341142417821490964.9002510.1007/PL00011380 Andersson H, Christiansen M, Fagerholt K (2010) Transportation planning and inventory management in the LNG supply chain. In: Energy, natural resources and environmental economics. Springer, Berlin, Heidelberg, pp 427–439 MsakniMKHaouariMShort-term planning of liquefied natural gas deliveriesTransp Res Part C Emerg Technol20189039341010.1016/j.trc.2018.03.013 ZimbergBTesturiCEFerrariGStochastic modeling of fuel procurement for electricity generation with contractual terms and logistics constraintsComput Chem Eng2019123496310.1016/j.compchemeng.2018.12.021 HosseinabadiAARTirkolaeeEBA gravitational emulation local search algorithm for task scheduling in multi-agent systemInt J Appl Optim Stud2018111124 MooreDLFearonHEComputer-assisted decision-making in purchasingJ Purch19739452510.1111/j.1745-493X.1973.tb00271.x SheehanJMassive milestone Qatar LNG project goes forwardJ Petrol Technol20096112313210.2118/1209-0031-JPT Ben-TalANemirovskiARobust convex optimizationMath Oper Res199823476980516624100977.9005210.1287/moor.23.4.769 RajabiounRCuckoo optimization algorithmAppl Soft Comput20111185508551810.1016/j.asoc.2011.05.008 CoganJPJrContracting practices evolve for new global LNG tradeOil Gas Energy Law J20064114171484630 RosenthalECZydiakJLChaudhrySSVendor selection with bundlingDecis Sci1995261354810.1111/j.1540-5915.1995.tb00836.x MulveyJMVanderbeiRJZeniosSARobust optimization of large-scale systemsOper Res199543226428113274150832.9008410.1287/opre.43.2.264 ChoJLimGJKimSJBiobakuTLiquefied natural gas inventory routing problem under uncertain weather conditionsInt J Prod Econ2018204182910.1016/j.ijpe.2018.07.014 KumarSKwonHTChoiKHChoJHLimWMoonICurrent status and future projections of LNG demand and supplies: a global prospectiveEnergy Policy20113974097410410.1016/j.enpol.2011.03.067 TirkolaeeEBGoliAHematianMSangaiahAKHanTMulti-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithmsComputing2019394643110.1007/s00607-018-00693-1 BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065 Babaee TirkolaeeEAbbasianPSoltaniMGhaffarianSADeveloping an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: a case studyWaste Manag Res2019371_suppl41310.1177/0734242X18807001 LiXArmaganETomasgardABartonPIStochastic pooling problem for natural gas production network design and operation under uncertaintyAIChE J20115782120213510.1002/aic.12419 NarasimhanRStoynoffKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330 ZhangHLiangYLiaoQYanXShenYZhaoYA three-stage stochastic programming method for LNG supply system infrastructure development and inventory routing in demanding countriesEnergy201713342444210.1016/j.energy.2017.05.090 Saldarriaga-CortésCSalazarHMorenoRJiménez-EstévezGStochastic planning of electricity and gas networks: an asynchronous column generation approachAppl Energy20192331065107710.1016/j.apenergy.2018.09.148 TirkolaeeEBMahdaviIEsfahaniMMSA robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working timeWaste Manag20187613814610.1016/j.wasman.2018.03.015 KimJSeoYChangDEconomic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefactionAppl Energy201618215416310.1016/j.apenergy.2016.08.130 MoreiraMCOCordeauJFCostaAMLaporteGRobust assembly line balancing with heterogeneous workersComput Ind Eng20158825426310.1016/j.cie.2015.07.004 JokinenRPetterssonFSaxénHAn MILP model for optimization of a small-scale LNG supply chain along a coastlineAppl Energy201513842343110.1016/j.apenergy.2014.10.039 KhanMSKarimiIAWoodDARetrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a reviewJ Nat Gas Sci Eng20174516518810.1016/j.jngse.2017.04.035 ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput2017611041105910.1016/j.asoc.2017.02.034 BiresseliogluMEDemirMHKandemirCModeling Turkey’s future LNG supply security strategyEnergy Policy20124614415210.1016/j.enpol.2012.03.045 4010_CR10 SMR Davoodi (4010_CR15) 2019; 130 D Bertsimas (4010_CR7) 2003; 98 H Zhang (4010_CR43) 2017; 133 S Kumar (4010_CR25) 2011; 39 MCO Moreira (4010_CR28) 2015; 88 J Cho (4010_CR13) 2018; 204 JP Cogan Jr (4010_CR14) 2006; 4 AL Soyster (4010_CR39) 1973; 21 A Ben-Tal (4010_CR5) 2000; 88 M Shehab (4010_CR38) 2017; 61 4010_CR16 AAR Hosseinabadi (4010_CR19) 2018; 1 A Ben-Tal (4010_CR3) 1998; 23 SS Chaudhry (4010_CR12) 1993; 70 A Ben-Tal (4010_CR6) 2009 R Narasimhan (4010_CR31) 1986; 22 A Goli (4010_CR18) 2019 DL Moore (4010_CR27) 1973; 9 C Saldarriaga-Cortés (4010_CR36) 2019; 233 EB Tirkolaee (4010_CR40) 2018; 76 D Bertsimas (4010_CR8) 2004; 52 EC Rosenthal (4010_CR34) 1995; 26 J Sheehan (4010_CR37) 2009; 61 EB Tirkolaee (4010_CR41) 2019 ME Biresselioglu (4010_CR9) 2012; 46 J Kim (4010_CR24) 2016; 182 4010_CR22 A Bittante (4010_CR11) 2018; 148 R Khalilpour (4010_CR21) 2011; 50 4010_CR1 R Jokinen (4010_CR20) 2015; 138 MS Khan (4010_CR23) 2017; 45 JM Mulvey (4010_CR30) 1995; 43 A Werner (4010_CR42) 2014; 35 R Narasimhan (4010_CR32) 1986; 22 R Rajabioun (4010_CR33) 2011; 11 E Babaee Tirkolaee (4010_CR2) 2019; 37 A Ben-Tal (4010_CR4) 1999; 25 A Goli (4010_CR17) 2018; 16 AA Sadrian (4010_CR35) 1994; 42 X Li (4010_CR26) 2011; 57 MK Msakni (4010_CR29) 2018; 90 B Zimberg (4010_CR44) 2019; 123 |
| References_xml | – reference: Saldarriaga-CortésCSalazarHMorenoRJiménez-EstévezGStochastic planning of electricity and gas networks: an asynchronous column generation approachAppl Energy20192331065107710.1016/j.apenergy.2018.09.148 – reference: KimJSeoYChangDEconomic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefactionAppl Energy201618215416310.1016/j.apenergy.2016.08.130 – reference: KumarSKwonHTChoiKHChoJHLimWMoonICurrent status and future projections of LNG demand and supplies: a global prospectiveEnergy Policy20113974097410410.1016/j.enpol.2011.03.067 – reference: Ben-TalANemirovskiARobust solutions of linear programming problems contaminated with uncertain dataMath Program200088341142417821490964.9002510.1007/PL00011380 – reference: KhalilpourRKarimiIASelection of liquefied natural gas (LNG) contracts for minimizing procurement costInd Eng Chem Res20115017102981031210.1021/ie200275m – reference: RosenthalECZydiakJLChaudhrySSVendor selection with bundlingDecis Sci1995261354810.1111/j.1540-5915.1995.tb00836.x – reference: WernerAUggenKTFodstadMLiumAGEggingRStochastic mixed-integer programming for integrated portfolio planning in the LNG supply chainEnergy J201435799710.5547/01956574.35.1.5 – reference: BertsimasDSimMThe price of robustnessOper Res2004521355320662391165.9056510.1287/opre.1030.0065 – reference: SheehanJMassive milestone Qatar LNG project goes forwardJ Petrol Technol20096112313210.2118/1209-0031-JPT – reference: ZimbergBTesturiCEFerrariGStochastic modeling of fuel procurement for electricity generation with contractual terms and logistics constraintsComput Chem Eng2019123496310.1016/j.compchemeng.2018.12.021 – reference: TirkolaeeEBGoliAHematianMSangaiahAKHanTMulti-objective multi-mode resource constrained project scheduling problem using Pareto-based algorithmsComputing2019394643110.1007/s00607-018-00693-1 – reference: CoganJPJrContracting practices evolve for new global LNG tradeOil Gas Energy Law J20064114171484630 – reference: NarasimhanRStoynoffKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330 – reference: Ben-TalANemirovskiARobust solutions of uncertain linear programsOper Res Lett199925111317023640941.9005310.1016/S0167-6377(99)00016-4 – reference: ChaudhrySSForstFGZydiakJLVendor selection with price breaksEur J Oper Res199370152660800.9011510.1016/0377-2217(93)90232-C – reference: KhanMSKarimiIAWoodDARetrospective and future perspective of natural gas liquefaction and optimization technologies contributing to efficient LNG supply: a reviewJ Nat Gas Sci Eng20174516518810.1016/j.jngse.2017.04.035 – reference: SoysterALConvex programming with set-inclusive constraints and applications to inexact linear programmingOper Res1973215115411573687700266.9004610.1287/opre.21.5.1154 – reference: HosseinabadiAARTirkolaeeEBA gravitational emulation local search algorithm for task scheduling in multi-agent systemInt J Appl Optim Stud2018111124 – reference: JokinenRPetterssonFSaxénHAn MILP model for optimization of a small-scale LNG supply chain along a coastlineAppl Energy201513842343110.1016/j.apenergy.2014.10.039 – reference: Ben-TalANemirovskiARobust convex optimizationMath Oper Res199823476980516624100977.9005210.1287/moor.23.4.769 – reference: BertsimasDSimMRobust discrete optimization and network flowsMath Program2003981–3497120193671082.9006710.1007/s10107-003-0396-4 – reference: GoliAAazamiAJabbarzadehAAccelerated cuckoo optimization algorithm for capacitated vehicle routing problem in competitive conditionsInt J Artif Intell201816188112 – reference: GoliATirkolaeeEBMalmirBBianGBSangaiahAKA multi-objective invasive weed optimization algorithm for robust aggregate production planning under uncertain seasonal demandComputing2019394642910.1007/s00607-018-00692-2 – reference: RajabiounRCuckoo optimization algorithmAppl Soft Comput20111185508551810.1016/j.asoc.2011.05.008 – reference: BittanteAPetterssonFSaxénHOptimization of a small-scale LNG supply chainEnergy2018148798910.1016/j.energy.2018.01.120 – reference: NarasimhanRStoynoffLKOptimizing aggregate procurement allocation decisionsJ Purch Mater Manag19862212330 – reference: Babaee TirkolaeeEAbbasianPSoltaniMGhaffarianSADeveloping an applied algorithm for multi-trip vehicle routing problem with time windows in urban waste collection: a case studyWaste Manag Res2019371_suppl41310.1177/0734242X18807001 – reference: MooreDLFearonHEComputer-assisted decision-making in purchasingJ Purch19739452510.1111/j.1745-493X.1973.tb00271.x – reference: MsakniMKHaouariMShort-term planning of liquefied natural gas deliveriesTransp Res Part C Emerg Technol20189039341010.1016/j.trc.2018.03.013 – reference: Bittante A, Jokinen R, Pettersson F, Saxén H (2015) Optimization of LNG supply chain. In: Computer aided chemical engineering, vol 37. Elsevier, pp 779–784 – reference: DavoodiSMRGoliAAn integrated disaster relief model based on covering tour using hybrid Benders decomposition and variable neighborhood search: application in the Iranian contextComput Ind Eng201913037038010.1016/j.cie.2019.02.040 – reference: TirkolaeeEBMahdaviIEsfahaniMMSA robust periodic capacitated arc routing problem for urban waste collection considering drivers and crew’s working timeWaste Manag20187613814610.1016/j.wasman.2018.03.015 – reference: Khalilpour R, Karimi IA (2012) Contract selection under uncertainty: LNG buyers’ perspective. In: Computer aided chemical engineering, vol 31. Elsevier, pp 1487–1491 – reference: MulveyJMVanderbeiRJZeniosSARobust optimization of large-scale systemsOper Res199543226428113274150832.9008410.1287/opre.43.2.264 – reference: Ben-TalAEl GhaouiLNemirovskiARobust optimization2009PrincetonPrinceton University Press1221.9000110.1515/9781400831050 – reference: BiresseliogluMEDemirMHKandemirCModeling Turkey’s future LNG supply security strategyEnergy Policy20124614415210.1016/j.enpol.2012.03.045 – reference: ChoJLimGJKimSJBiobakuTLiquefied natural gas inventory routing problem under uncertain weather conditionsInt J Prod Econ2018204182910.1016/j.ijpe.2018.07.014 – reference: MoreiraMCOCordeauJFCostaAMLaporteGRobust assembly line balancing with heterogeneous workersComput Ind Eng20158825426310.1016/j.cie.2015.07.004 – reference: ShehabMKhaderATAl-BetarMAA survey on applications and variants of the cuckoo search algorithmAppl Soft Comput2017611041105910.1016/j.asoc.2017.02.034 – reference: Global Energy Statistical Yearbook (2018) https://yearbook.enerdata.net/natural-gas/gas-consumption-data.html. Accessed Dec 2018 – reference: ZhangHLiangYLiaoQYanXShenYZhaoYA three-stage stochastic programming method for LNG supply system infrastructure development and inventory routing in demanding countriesEnergy201713342444210.1016/j.energy.2017.05.090 – reference: Andersson H, Christiansen M, Fagerholt K (2010) Transportation planning and inventory management in the LNG supply chain. In: Energy, natural resources and environmental economics. Springer, Berlin, Heidelberg, pp 427–439 – reference: LiXArmaganETomasgardABartonPIStochastic pooling problem for natural gas production network design and operation under uncertaintyAIChE J20115782120213510.1002/aic.12419 – reference: SadrianAAYoonYSA procurement decision support system in business volume discount environmentsOper Res1994421142310.1287/opre.42.1.14 – volume: 42 start-page: 14 issue: 1 year: 1994 ident: 4010_CR35 publication-title: Oper Res doi: 10.1287/opre.42.1.14 – year: 2019 ident: 4010_CR18 publication-title: Computing doi: 10.1007/s00607-018-00692-2 – volume: 70 start-page: 52 issue: 1 year: 1993 ident: 4010_CR12 publication-title: Eur J Oper Res doi: 10.1016/0377-2217(93)90232-C – volume: 204 start-page: 18 year: 2018 ident: 4010_CR13 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2018.07.014 – volume: 98 start-page: 49 issue: 1–3 year: 2003 ident: 4010_CR7 publication-title: Math Program doi: 10.1007/s10107-003-0396-4 – volume: 76 start-page: 138 year: 2018 ident: 4010_CR40 publication-title: Waste Manag doi: 10.1016/j.wasman.2018.03.015 – ident: 4010_CR10 doi: 10.1016/B978-0-444-63578-5.50125-0 – volume: 57 start-page: 2120 issue: 8 year: 2011 ident: 4010_CR26 publication-title: AIChE J doi: 10.1002/aic.12419 – volume: 148 start-page: 79 year: 2018 ident: 4010_CR11 publication-title: Energy doi: 10.1016/j.energy.2018.01.120 – volume: 52 start-page: 35 issue: 1 year: 2004 ident: 4010_CR8 publication-title: Oper Res doi: 10.1287/opre.1030.0065 – volume: 61 start-page: 31 issue: 12 year: 2009 ident: 4010_CR37 publication-title: J Petrol Technol doi: 10.2118/1209-0031-JPT – ident: 4010_CR16 – volume: 26 start-page: 35 issue: 1 year: 1995 ident: 4010_CR34 publication-title: Decis Sci doi: 10.1111/j.1540-5915.1995.tb00836.x – volume: 37 start-page: 4 issue: 1_suppl year: 2019 ident: 4010_CR2 publication-title: Waste Manag Res doi: 10.1177/0734242X18807001 – volume: 138 start-page: 423 year: 2015 ident: 4010_CR20 publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.10.039 – volume: 45 start-page: 165 year: 2017 ident: 4010_CR23 publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2017.04.035 – volume: 123 start-page: 49 year: 2019 ident: 4010_CR44 publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2018.12.021 – volume: 21 start-page: 1154 issue: 5 year: 1973 ident: 4010_CR39 publication-title: Oper Res doi: 10.1287/opre.21.5.1154 – volume-title: Robust optimization year: 2009 ident: 4010_CR6 doi: 10.1515/9781400831050 – volume: 16 start-page: 88 issue: 1 year: 2018 ident: 4010_CR17 publication-title: Int J Artif Intell – volume: 1 start-page: 11 issue: 1 year: 2018 ident: 4010_CR19 publication-title: Int J Appl Optim Stud – volume: 233 start-page: 1065 year: 2019 ident: 4010_CR36 publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.09.148 – volume: 90 start-page: 393 year: 2018 ident: 4010_CR29 publication-title: Transp Res Part C Emerg Technol doi: 10.1016/j.trc.2018.03.013 – volume: 9 start-page: 5 issue: 4 year: 1973 ident: 4010_CR27 publication-title: J Purch doi: 10.1111/j.1745-493X.1973.tb00271.x – ident: 4010_CR1 doi: 10.1007/978-3-642-12067-1_24 – year: 2019 ident: 4010_CR41 publication-title: Computing doi: 10.1007/s00607-018-00693-1 – ident: 4010_CR22 doi: 10.1016/B978-0-444-59506-5.50128-0 – volume: 23 start-page: 769 issue: 4 year: 1998 ident: 4010_CR3 publication-title: Math Oper Res doi: 10.1287/moor.23.4.769 – volume: 88 start-page: 411 issue: 3 year: 2000 ident: 4010_CR5 publication-title: Math Program doi: 10.1007/PL00011380 – volume: 88 start-page: 254 year: 2015 ident: 4010_CR28 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2015.07.004 – volume: 46 start-page: 144 year: 2012 ident: 4010_CR9 publication-title: Energy Policy doi: 10.1016/j.enpol.2012.03.045 – volume: 50 start-page: 10298 issue: 17 year: 2011 ident: 4010_CR21 publication-title: Ind Eng Chem Res doi: 10.1021/ie200275m – volume: 11 start-page: 5508 issue: 8 year: 2011 ident: 4010_CR33 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.05.008 – volume: 61 start-page: 1041 year: 2017 ident: 4010_CR38 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.02.034 – volume: 4 start-page: 14 issue: 1 year: 2006 ident: 4010_CR14 publication-title: Oil Gas Energy Law J – volume: 43 start-page: 264 issue: 2 year: 1995 ident: 4010_CR30 publication-title: Oper Res doi: 10.1287/opre.43.2.264 – volume: 35 start-page: 79 year: 2014 ident: 4010_CR42 publication-title: Energy J doi: 10.5547/01956574.35.1.5 – volume: 22 start-page: 23 issue: 1 year: 1986 ident: 4010_CR32 publication-title: J Purch Mater Manag – volume: 22 start-page: 23 issue: 1 year: 1986 ident: 4010_CR31 publication-title: J Purch Mater Manag – volume: 130 start-page: 370 year: 2019 ident: 4010_CR15 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.02.040 – volume: 182 start-page: 154 year: 2016 ident: 4010_CR24 publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.130 – volume: 25 start-page: 1 issue: 1 year: 1999 ident: 4010_CR4 publication-title: Oper Res Lett doi: 10.1016/S0167-6377(99)00016-4 – volume: 39 start-page: 4097 issue: 7 year: 2011 ident: 4010_CR25 publication-title: Energy Policy doi: 10.1016/j.enpol.2011.03.067 – volume: 133 start-page: 424 year: 2017 ident: 4010_CR43 publication-title: Energy doi: 10.1016/j.energy.2017.05.090 |
| SSID | ssj0021753 |
| Score | 2.5369184 |
| Snippet | A constant development of gas utilization in domestic households, industry, and power plants has slowly transformed gaseous petrol into a noteworthy wellspring... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7885 |
| SubjectTerms | Algorithms Artificial Intelligence Case studies Computational Intelligence Control Costs Crude oil prices Decision making Discount rates Energy Engineering Focus Heuristic methods Households Integer programming International relations Inventory Linear programming Liquefied natural gas Manufacturers Mathematical Logic and Foundations Mathematical models Mathematical programming Mechatronics Mixed integer Optimization Parameter sensitivity Power plants Profitability Profits Purchasing contracts Robotics Robustness Suppliers Supply & demand Supply chains Transportation planning |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7o9KAHp1NxOiUHb1pok_5IjiJOD2PI1LFbaZsEB64bayf635tkaf2BCnpuEsrLS96X5L3vAzilrnSl1Bk1gnrm6sZhaRo4gculdHXJnpFOGPaifp-ORuzWFoUVVbZ79SRpduq62E1TlegkKn2Zr59ww1VYU-GOasGGwd2wPmZZ7kkFBBR2VAHXlsp8P8bncPSOMb88i5po023-7z-3YcuiS3SxdIcdWBF5C5qVcgOyC7kFmx9oCHeBD6bpoijRVG0fE1uXiZKco8n4RXDHMEqo3hqQJnNkM7omqisyOjpI4V7U61-jQiuEvqLsMRnnaGbVkJCVrNmDh-7V_eWNY9UXnIxEuHRSHAnmZ5L4IiMEB0IhP5b6TEW8hIXY5ZwHAieZ56URZcoVQmV6ztJIRkFIA072oZFPc3EASJDAFUyddMJA-FgSSgVzsQwT5qeECdkGr5qEOLPU5Foh4ymuSZWNUWNl1NgYNQ7bcFb3mS2JOX5t3anmNraLtIgx86hGXIS24byay_fPP492-LfmR7CB9Snd3N10oFHOF-IY1rPnclzMT4zzvgHC-ecB priority: 102 providerName: Springer Nature |
| Title | Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem |
| URI | https://link.springer.com/article/10.1007/s00500-019-04010-6 https://www.proquest.com/docview/2918066338 |
| Volume | 24 |
| WOSCitedRecordID | wos000530547900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-7479 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1433-7479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021753 issn: 1432-7643 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGlh4P8qj8sAGEYkdJ_aEAFGQqKqqQIVYoiS2RSWalqYg-PfYrtMKJFhYsiQ5Jbqz7_O9PoAj5itfKVNRI1lgQzcezzLqUV8o5ZuWPUud0G3GrRZ7fORtF3ArXVlltSfajVoMchMjP8U8YMY9EnY2fPUMa5TJrjoKjXlYNFMSDHVDmz5ND1xuCqWGBBpFatfrmmZs65wZfGJKskxqwCSEo--OaYY2fyRIrd9prP73i9dgxSFOdD4xkXWYk8UGrFZsDsgt7g3Y-RYcRNMquU0QnUH2Vo7RQG8vfde3idJCoH7vQwrPTpzQkgxgTUfIVXz19d8gy7ODNC5GzdY1Kg2D6CfKn9NegYaOLQk5SpsteGhc3V_eeI6dwctJjMdehmPJw1yRUOaEYCo1MuRZyLVHTHmEfSEElTjNgyCLGdemEmmFCJ7FKqYRo4Jsw0IxKOQuIEmoL7k-CUVUhlgRxiT3sYpSHmaES1WDoFJNkrvR5YZB4yWZDl226ky0OhOrziSqwfH0neFkcMefTx9UOkzcIi6TmQJrcFJZwez279L2_pa2D8vYnNptLOcAFsajN3kIS_n7uFeO6rB4cdVqd-owfxt7dWvQ-tq5634B--r5rA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhX8rqA5wgIrGz2AeEELtaKoQAcQtJbItKNC1N2X6Kb8R2nVYgwY0D5yQj2XmeGc_2ADapK10pdUWNoJ4J3TgsTQMncLmUrm7ZM9QJt7WoXqd3d-xyCD7KXhhdVlnqRKOoeSvTMfJdzDyqzSOh--0nR7NG6exqSaHRg0VVvL-qK1uxd36k_u8WxifH14dnjmUVcDIS4a6T4kgwP5PEFxkhOBDKo2Gpz5QmT1iIXc55IHCSeV4aUaaWGCozyFkaySgIacCJkjsMoz6hkT5X1cjpX_Ds1EvlgiivVZl626RjWvX0oBVdAqZTEToBHX41hAPv9ltC1ti5k6n_tkPTMGk9anTQOwIzMCTyWZgq2SqQVV6zsPgl-In6VYBzwK9a6XPRRS2lPpu2LxUlOUfNxpvgjpmooSRphzzpIFvR1lS7hwyPEFJ-P6rVT1GhGVLfUfaQNHLUtmxQyFL2zMPNn-zCAozkrVwsARIkcAVTN70wED6WhFLBXCzDhPkpYUJWwCuhEGd2NLtmCHmM-0OlDXxiBZ_YwCcOK7Dd_6bdG0zy69urJWZiq6SKeACYCuyUqBs8_lna8u_SNmD87PqiFtfO69UVmMA6QmHiVqsw0u08izUYy166jaKzbo4Pgvu_RuMnCHxSJA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54Q_TBecXp1Dz4psU26SV5FHUqjjG8DN9K2yQ4cN3Yqui_N8nSbYoK4nOTUHKSnO8k53wfwCF1pSulzqgR1DNXNw5L08AJXC6lq0v2jHRCuxE1m_TxkbWmqvhNtnv5JDmqadAsTXlx0ufyZFz4pmlLdEKVvtjXz7nhLMz7OpFex-t37XHIZXkoFShQOFI5X1s28_0Yn13TBG9-eSI1nqde-f8_r8KKRZ3odLRM1mBG5OtQKRUdkN3g67A8RU-4Afy2l74MC9RTx0rX1muiJOeo23kT3DFME6q3BqrJANlMr67qioy-DlJ4GDWal2iolUPfUfaUdHLUtypJyErZbMJD_eL-7MqxqgxORiJcOCmOBPMzSXyREYIDoRAhS32mPGHCQuxyzgOBk8zz0ogytURCZQbO0khGQUgDTrZgLu_lYhuQIIErmIqAwkD4WBJKBXOxDBPmp4QJWQWvNEicWcpyrZzxHI_Jls2kxmpSYzOpcViFo3Gf_oiw49fWtdLOsd28wxgzj2okRmgVjku7Tj7_PNrO35ofwGLrvB43rps3u7CEdSBvrndqMFcMXsQeLGSvRWc42Ddr-gMrfPLJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+optimization+and+mixed-integer+linear+programming+model+for+LNG+supply+chain+planning+problem&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Sangaiah%2C+Arun+Kumar&rft.au=Tirkolaee%2C+Erfan+Babaee&rft.au=Goli%2C+Alireza&rft.au=Dehnavi-Arani%2C+Saeed&rft.date=2020-06-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=24&rft.issue=11&rft.spage=7885&rft.epage=7905&rft_id=info:doi/10.1007%2Fs00500-019-04010-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_019_04010_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |