Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models

Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Machine learning Ročník 114; číslo 11; s. 254
Hlavní autoři: Ai, Lun, Muggleton, Stephen H., Liang, Shi-Shun, Baldwin, Geoff S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.11.2025
Springer Nature B.V
Témata:
ISSN:0885-6125, 1573-0565
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, , which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
AbstractList Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, , which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, [Formula: see text], which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, [Formula: see text] successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. [Formula: see text] enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, [Formula: see text], which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, [Formula: see text] successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. [Formula: see text] enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, [Formula: see text], which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, [Formula: see text] successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. [Formula: see text] enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, $$BMLP_{active}$$ , which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, $$BMLP_{active}$$ successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. $$BMLP_{active}$$ enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based machine learning methods to drive biological discovery by guiding experimentation. Genome-scale metabolic network models (GEMs) - comprehensive representations of metabolic genes and reactions - are widely used to evaluate genetic engineering of biological systems. However, GEMs often fail to accurately predict the behaviour of genetically engineered cells, primarily due to incomplete annotations of gene interactions. The task of learning the intricate genetic interactions within GEMs presents computational and empirical challenges. To efficiently predict using GEM, we describe a novel approach called Boolean Matrix Logic Programming (BMLP) by leveraging Boolean matrices to evaluate large logic programs. We developed a new system, , which guides cost-effective experimentation and uses interpretable logic programs to encode a state-of-the-art GEM of a model bacterial organism. Notably, successfully learned the interaction between a gene pair with fewer training examples than random experimentation, overcoming the increase in experimental design space. enables rapid optimisation of metabolic models to reliably engineer biological systems for producing useful compounds. It offers a realistic approach to creating a self-driving lab for biological discovery, which would then facilitate microbial engineering for practical applications.
ArticleNumber 254
Author Baldwin, Geoff S.
Muggleton, Stephen H.
Ai, Lun
Liang, Shi-Shun
Author_xml – sequence: 1
  givenname: Lun
  surname: Ai
  fullname: Ai, Lun
  email: lun.ai15@imperial.ac.uk
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Stephen H.
  surname: Muggleton
  fullname: Muggleton, Stephen H.
  organization: Department of Computing, Imperial College London
– sequence: 3
  givenname: Shi-Shun
  surname: Liang
  fullname: Liang, Shi-Shun
  organization: Department of Life Sciences, Imperial College London
– sequence: 4
  givenname: Geoff S.
  surname: Baldwin
  fullname: Baldwin, Geoff S.
  organization: Department of Life Sciences, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41122544$$D View this record in MEDLINE/PubMed
BookMark eNp90UtvFSEUB3Biauxt9Qu4MCRu3KA8BgaW2vhKmrjRNQHmMJk6QIUZH99errdq4sIVyeF3Do__BTrLJQNCjxl9zigdXzRGjRkI5ZJQpZUm9B46MDkKQqWSZ-hAtZZEMS7P0UVrN5RS3t0DdD4wxrkchgMqr0pZwWWc3FaX73gt8xLwbS1zdSktecaxVOzCtnwF3GHNx1qJeIYMOO6575Tc8JKPlZKAtOBWwAk258vaZ2XYvpX6GacywdoeovvRrQ0e3a2X6NOb1x-v3pHrD2_fX728JkGMfCOe6chBKMOdlJ5HxSY_RgNaMS3E6IKHSCEOUxgcFW6SYvDSB6H9xMfRM3GJnp3m9qd82aFtNi0twLq6DGVvVnAltDFKqE6f_kNvyl5zv91RcSOoNKarJ3dq9wkme1uX5OoP-_srO-AnEGpprUL8Qxi1x7zsKS_b87K_8rK0N4lTU-s4z1D_nv2frp_W-5ja
Cites_doi 10.1038/s42254-022-00518-3
10.1098/rsta.2022.0046
10.1016/j.cell.2019.01.033
10.7551/mitpress/6090.001.0001
10.1038/s41467-018-07652-6
10.1007/BF03037227
10.1007/s10994-023-06351-8
10.1073/pnas.27.11.499
10.1007/s10994-015-5494-z
10.1093/nar/gkac831
10.1007/s10472-021-09767-x
10.1007/BF03037089
10.1007/3-540-62927-0
10.1038/s41467-019-11331-5
10.1007/s10994-023-06346-5
10.1007/3-540-65306-6_14
10.1109/69.43410
10.1613/jair.5714
10.1017/S1471068417000023
10.1093/nar/gkv1049
10.1007/s10994-018-5707-3
10.1109/SWAT.1971.4
10.1023/A:1022673506211
10.1371/journal.pcbi.1004838
10.1007/s10994-021-06089-1
10.2307/2267134
10.1126/sciadv.aav6971
10.1186/1475-2859-11-46
10.1007/978-3-642-33278-4
10.1038/s41586-023-06792-0
10.1007/s10994-020-05941-0
10.1038/s41467-023-40380-0
10.1038/s41578-023-00588-4
10.1155/2019/8304260
10.15252/msb.202311566
10.1093/bib/bbaa204
10.1016/j.copbio.2019.11.007
10.1038/s41467-018-04899-x
10.1371/journal.pone.0210558
10.1016/j.ecolmodel.2005.10.001
10.1017/CBO9781139854610
10.1371/journal.pgen.1007147
10.1007/3-540-44960-4_8
10.1126/science.1165620
10.2140/pjm.1955.5.285
10.1038/nature02236
10.1613/jair.1.11944
10.1186/1752-0509-7-74
10.1073/pnas.1517384113
10.1016/0004-3702(82)90040-6
10.1038/nbt.3956
10.1016/j.csbj.2021.08.004
10.1007/978-3-319-99960-9_3
10.1016/j.cell.2019.04.016
10.1126/science.aaf1420
10.1007/3-540-45583-3_3
10.1016/0020-0190(87)90114-1
10.24963/ijcai.2021/254
10.24963/ijcai.2018/270
10.24963/kr.2021/53
10.1145/321978.321991
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025.
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025.
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1007/s10994-025-06868-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Computer and Information Systems Abstracts
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
ExternalDocumentID 41122544
10_1007_s10994_025_06868_0
Genre Journal Article
GrantInformation_xml – fundername: UK Research and Innovation
  grantid: BB/W013770/1; EP/R022291/1
  funderid: http://dx.doi.org/10.13039/100014013
GroupedDBID -~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF-
PT4
QM1
QN7
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
88I
8AO
8FE
8FG
AAEWM
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGQPQ
AJBLW
AMVHM
ARCSS
AZQEC
BBWZM
BDATZ
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
I-F
ITG
ITH
K6V
K7-
KOW
M2P
MVM
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
Q2X
QF4
QO4
R4E
RNI
RZC
RZE
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
AGGLG
NPM
7SC
8FD
AESKC
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c372t-b18f2e3692a55b2f61db7f9e8618337acbef0ef4dc4a03ad534b5bc38bd277b13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595913900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Sat Oct 25 04:52:18 EDT 2025
Wed Nov 05 08:53:26 EST 2025
Wed Dec 10 13:20:00 EST 2025
Sat Nov 29 07:02:28 EST 2025
Wed Dec 10 10:39:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Synthetic biology
Matrix
Inductive logic programming
Active learning
Computational scientific discovery
Language English
License The Author(s) 2025.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-b18f2e3692a55b2f61db7f9e8618337acbef0ef4dc4a03ad534b5bc38bd277b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s10994-025-06868-0
PMID 41122544
PQID 3262930599
PQPubID 54194
ParticipantIDs proquest_miscellaneous_3263899636
proquest_journals_3262930599
pubmed_primary_41122544
crossref_primary_10_1007_s10994_025_06868_0
springer_journals_10_1007_s10994_025_06868_0
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationTitleAlternate Mach Learn
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 6868_CR11
P Rana (6868_CR55) 2020; 64
6868_CR53
A Tarski (6868_CR68) 1955; 5
L Todorovski (6868_CR69) 2006; 194
6868_CR58
T Sato (6868_CR62) 2023; 112
M Costanzo (6868_CR19) 2016; 353
RD King (6868_CR34) 2004; 427
F Li (6868_CR38) 2023; 51
MN Price (6868_CR54) 2018; 14
BO Palsson (6868_CR51) 2015
M Krenn (6868_CR36) 2022; 4
CS Peirce (6868_CR52) 1932
SY Choi (6868_CR13) 2015; 1–8
P Sen (6868_CR66) 2021; 22
SH Muggleton (6868_CR45) 1995; 13
A Cropper (6868_CR20) 2021; 111
J Schellenberger (6868_CR65) 2011
DB Bernstein (6868_CR6) 2023; 19
SH Muggleton (6868_CR46) 2023; 381
D Heckmann (6868_CR30) 2018; 9
6868_CR47
6868_CR4
ZA King (6868_CR35) 2016; 44
6868_CR9
SG Wu (6868_CR73) 2016; 12
T Oyetunde (6868_CR50) 2019; 14
D Cohn (6868_CR15) 1994; 15
C Hocquette (6868_CR31) 2018
T Wang (6868_CR72) 2018; 9
SH Muggleton (6868_CR44) 1991; 8
DA Boiko (6868_CR8) 2023; 624
M Costanzo (6868_CR18) 2019; 177
S Nienhuys-Cheng (6868_CR49) 1997
C Sakama (6868_CR60) 2021; 89
RD King (6868_CR33) 2009; 324
TM Mitchell (6868_CR42) 1982; 18
6868_CR32
SH Muggleton (6868_CR48) 2018; 107
Z Ren (6868_CR57) 2023; 8
IM Copilowish (6868_CR17) 1948; 13
L Faure (6868_CR26) 2023; 14
6868_CR70
D Conklin (6868_CR16) 1994; 16
L De Raedt (6868_CR23) 2015; 100
JM Monk (6868_CR43) 2017; 35
W Reisig (6868_CR56) 2013
6868_CR74
R Guimerà (6868_CR29) 2020; 6
T Sato (6868_CR61) 2017; 17
A Sahu (6868_CR59) 2021; 19
M Zampieri (6868_CR76) 2019; 10
W Cohen (6868_CR14) 2020; 67
6868_CR39
C Angione (6868_CR3) 2019; 2019
R Evans (6868_CR25) 2018; 61
C Shannon (6868_CR67) 1963
S Ceri (6868_CR12) 1989; 1
6868_CR22
6868_CR21
6868_CR64
6868_CR27
JW Lloyd (6868_CR40) 2012
GW Beadle (6868_CR5) 1941; 27
PW Langley (6868_CR37) 1987
6868_CR63
A Ebrahim (6868_CR24) 2013; 7
L Ai (6868_CR2) 2021; 110
MH Van Emden (6868_CR71) 1976; 23
L Ai (6868_CR1) 2023; 112
JH Yang (6868_CR75) 2019; 177
K Martínez-Gómez (6868_CR41) 2012; 11
A Blumer (6868_CR7) 1987; 24
SL Brunton (6868_CR10) 2016; 113
6868_CR28
References_xml – volume: 4
  start-page: 761
  year: 2022
  ident: 6868_CR36
  publication-title: Nature Reviews Physics
  doi: 10.1038/s42254-022-00518-3
– volume: 381
  start-page: 20220046
  issue: 2251
  year: 2023
  ident: 6868_CR46
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2022.0046
– ident: 6868_CR11
– volume: 177
  start-page: 85
  issue: 1
  year: 2019
  ident: 6868_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2019.01.033
– volume-title: Scientific Discovery: Computational Explorations of the Creative Process
  year: 1987
  ident: 6868_CR37
  doi: 10.7551/mitpress/6090.001.0001
– volume-title: Collected Papers of Charles Sanders Peirce
  year: 1932
  ident: 6868_CR52
– volume: 9
  start-page: 5252
  issue: 1
  year: 2018
  ident: 6868_CR30
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-07652-6
– start-page: 1290
  volume-title: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nature Protocols
  year: 2011
  ident: 6868_CR65
– volume: 13
  start-page: 245
  year: 1995
  ident: 6868_CR45
  publication-title: New Generation Computing
  doi: 10.1007/BF03037227
– volume: 112
  start-page: 3591
  year: 2023
  ident: 6868_CR1
  publication-title: Machine Learning
  doi: 10.1007/s10994-023-06351-8
– volume: 27
  start-page: 499
  issue: 11
  year: 1941
  ident: 6868_CR5
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.27.11.499
– volume: 16
  start-page: 203
  issue: 3
  year: 1994
  ident: 6868_CR16
  publication-title: Machine Learning
– volume: 100
  start-page: 5
  issue: 1
  year: 2015
  ident: 6868_CR23
  publication-title: Machine Learning
  doi: 10.1007/s10994-015-5494-z
– volume: 51
  start-page: D583
  issue: D1
  year: 2023
  ident: 6868_CR38
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkac831
– volume: 89
  start-page: 1133
  issue: 12
  year: 2021
  ident: 6868_CR60
  publication-title: Annals of Mathematics and Artificial Intelligence
  doi: 10.1007/s10472-021-09767-x
– volume: 8
  start-page: 295
  year: 1991
  ident: 6868_CR44
  publication-title: New Generation Computing
  doi: 10.1007/BF03037089
– volume-title: Foundations of Inductive Logic Programming
  year: 1997
  ident: 6868_CR49
  doi: 10.1007/3-540-62927-0
– volume: 10
  start-page: 3354
  issue: 1
  year: 2019
  ident: 6868_CR76
  publication-title: Nature Communications
  doi: 10.1038/s41467-019-11331-5
– volume: 112
  start-page: 2821
  issue: 8
  year: 2023
  ident: 6868_CR62
  publication-title: Machine Learning
  doi: 10.1007/s10994-023-06346-5
– ident: 6868_CR58
  doi: 10.1007/3-540-65306-6_14
– volume: 1
  start-page: 146
  issue: 1
  year: 1989
  ident: 6868_CR12
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/69.43410
– volume: 61
  start-page: 1
  year: 2018
  ident: 6868_CR25
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– volume: 17
  start-page: 244
  issue: 3
  year: 2017
  ident: 6868_CR61
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068417000023
– ident: 6868_CR39
– volume: 44
  start-page: D515
  issue: D1
  year: 2016
  ident: 6868_CR35
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1049
– ident: 6868_CR28
– volume: 107
  start-page: 1119
  year: 2018
  ident: 6868_CR48
  publication-title: Machine Learning
  doi: 10.1007/s10994-018-5707-3
– ident: 6868_CR27
  doi: 10.1109/SWAT.1971.4
– volume: 15
  start-page: 201
  issue: 2
  year: 1994
  ident: 6868_CR15
  publication-title: Machine Learning
  doi: 10.1023/A:1022673506211
– volume: 12
  start-page: e1004838
  issue: 4
  year: 2016
  ident: 6868_CR73
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1004838
– volume: 111
  start-page: 147
  year: 2021
  ident: 6868_CR20
  publication-title: Machine Learning
  doi: 10.1007/s10994-021-06089-1
– volume: 13
  start-page: 193
  issue: 4
  year: 1948
  ident: 6868_CR17
  publication-title: The Journal of Symbolic Logic
  doi: 10.2307/2267134
– volume: 6
  start-page: eaav6971
  issue: 5
  year: 2020
  ident: 6868_CR29
  publication-title: Science Advances
  doi: 10.1126/sciadv.aav6971
– volume: 11
  start-page: 46
  issue: 1
  year: 2012
  ident: 6868_CR41
  publication-title: Microbial Cell Factories
  doi: 10.1186/1475-2859-11-46
– volume-title: Understanding Petri Nets: Modeling Techniques, Analysis Methods
  year: 2013
  ident: 6868_CR56
  doi: 10.1007/978-3-642-33278-4
– volume: 624
  start-page: 570
  issue: 7992
  year: 2023
  ident: 6868_CR8
  publication-title: Nature
  doi: 10.1038/s41586-023-06792-0
– volume: 110
  start-page: 695
  year: 2021
  ident: 6868_CR2
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05941-0
– volume: 14
  start-page: 4669
  issue: 1
  year: 2023
  ident: 6868_CR26
  publication-title: Nature Communications
  doi: 10.1038/s41467-023-40380-0
– volume: 8
  start-page: 563
  issue: 9
  year: 2023
  ident: 6868_CR57
  publication-title: Nature Reviews Materials
  doi: 10.1038/s41578-023-00588-4
– volume-title: The Mathematical Theory of Communication
  year: 1963
  ident: 6868_CR67
– volume: 2019
  year: 2019
  ident: 6868_CR3
  publication-title: BioMed Research International
  doi: 10.1155/2019/8304260
– volume: 19
  issue: 12
  year: 2023
  ident: 6868_CR6
  publication-title: Molecular Systems Biology
  doi: 10.15252/msb.202311566
– volume: 22
  start-page: 1531
  issue: 2
  year: 2021
  ident: 6868_CR66
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbaa204
– volume: 64
  start-page: 85
  year: 2020
  ident: 6868_CR55
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2019.11.007
– volume: 1–8
  start-page: 2015
  year: 2015
  ident: 6868_CR13
  publication-title: BioMed Research International
– volume: 9
  start-page: 2475
  issue: 1
  year: 2018
  ident: 6868_CR72
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-04899-x
– volume: 14
  issue: 1
  year: 2019
  ident: 6868_CR50
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0210558
– volume: 194
  start-page: 3
  issue: 1
  year: 2006
  ident: 6868_CR69
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2005.10.001
– volume-title: Systems Biology: Constraint-based Reconstruction and Analysis
  year: 2015
  ident: 6868_CR51
  doi: 10.1017/CBO9781139854610
– volume: 14
  issue: 1
  year: 2018
  ident: 6868_CR54
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1007147
– ident: 6868_CR47
  doi: 10.1007/3-540-44960-4_8
– volume: 324
  start-page: 85
  issue: 5923
  year: 2009
  ident: 6868_CR33
  publication-title: Science
  doi: 10.1126/science.1165620
– volume: 5
  start-page: 85
  issue: 2
  year: 1955
  ident: 6868_CR68
  publication-title: Pacific Journal of Mathematics
  doi: 10.2140/pjm.1955.5.285
– volume: 427
  start-page: 247
  year: 2004
  ident: 6868_CR34
  publication-title: Nature
  doi: 10.1038/nature02236
– volume-title: Foundations of Logic Programming
  year: 2012
  ident: 6868_CR40
– volume: 67
  start-page: 285
  year: 2020
  ident: 6868_CR14
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.11944
– ident: 6868_CR70
– volume: 7
  start-page: 74
  issue: 1
  year: 2013
  ident: 6868_CR24
  publication-title: BMC Systems Biology
  doi: 10.1186/1752-0509-7-74
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  ident: 6868_CR10
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1517384113
– volume: 18
  start-page: 203
  year: 1982
  ident: 6868_CR42
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(82)90040-6
– volume: 35
  start-page: 904
  issue: 10
  year: 2017
  ident: 6868_CR43
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.3956
– volume: 19
  start-page: 4626
  year: 2021
  ident: 6868_CR59
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2021.08.004
– start-page: 38
  volume-title: Inductive Logic Programming
  year: 2018
  ident: 6868_CR31
  doi: 10.1007/978-3-319-99960-9_3
– ident: 6868_CR53
– ident: 6868_CR9
– volume: 177
  start-page: 1649
  issue: 6
  year: 2019
  ident: 6868_CR75
  publication-title: Cell
  doi: 10.1016/j.cell.2019.04.016
– volume: 353
  start-page: aaf1420
  issue: 6306
  year: 2016
  ident: 6868_CR19
  publication-title: Science
  doi: 10.1126/science.aaf1420
– ident: 6868_CR32
– ident: 6868_CR4
  doi: 10.1007/3-540-45583-3_3
– volume: 24
  start-page: 377
  issue: 6
  year: 1987
  ident: 6868_CR7
  publication-title: Information Processing Letters
  doi: 10.1016/0020-0190(87)90114-1
– ident: 6868_CR74
– ident: 6868_CR21
  doi: 10.24963/ijcai.2021/254
– ident: 6868_CR22
– ident: 6868_CR63
  doi: 10.24963/ijcai.2018/270
– ident: 6868_CR64
  doi: 10.24963/kr.2021/53
– volume: 23
  start-page: 733
  issue: 4
  year: 1976
  ident: 6868_CR71
  publication-title: Journal of the ACM
  doi: 10.1145/321978.321991
SSID ssj0002686
Score 2.4732084
Snippet Reasoning about hypotheses and updating knowledge through empirical observations are central to scientific discovery. In this work, we applied logic-based...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 254
SubjectTerms Annotations
Artificial Intelligence
Boolean
Computer Science
Control
Design of experiments
Design optimization
E coli
Experimentation
Experiments
Genes
Genetic engineering
Genomes
Hypotheses
Logic programming
Logic programs
Machine Learning
Mechatronics
Metabolism
Metabolites
Microorganisms
Natural Language Processing (NLP)
Robotics
Robots
Simulation and Modeling
Title Boolean matrix logic programming for active learning of gene functions in genome-scale metabolic network models
URI https://link.springer.com/article/10.1007/s10994-025-06868-0
https://www.ncbi.nlm.nih.gov/pubmed/41122544
https://www.proquest.com/docview/3262930599
https://www.proquest.com/docview/3263899636
Volume 114
WOSCitedRecordID wos001595913900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VyoFLt0ChKXRlpN6opV0_YufYoqIeEEKiRXuL7GRcIbEJ2ixVf37H3mQpoj3QSw6JZVue1-fY8w3AByOl9BTXuQ2q4EoKxx0qyVG6UGPA4NKvi-tzc3FhZ7Pisk8K64bb7sORZPLUfyS7JRpboWOhlNxy2qi_1JFtJu7Rr67X_lfkqb4jmY_mMX73qTJ_7-NxOHqCMZ-cj6awczb6vwm_hlc9zGSfVnqxAy-w2YXRUMKB9Ra9B-3ntr1F17B5pOr_xZInZP2lrTmNxgjUMpecIusrTPxgbWCkd8hiUEx6y26a-KadI-9I6MjmuCTtuqW-mtU9c5ZK7nRv4PvZl2-nX3lfg4FX0ogl91MbBMq8EE5rL0I-rb0JBdqcfIE0rvIYJhhUXSk3ka7WUnntK2l9LYzxU7kPm03b4FtgBMysNtOanlZpm7uK4IeLeEyFQoU6g5NBFOXdimqjfCBVjmtZ0lqWaS3LSQZHg7TK3uy6krAowZdIOZPB8fozGUw8BXENtvepTeQUzGWewcFKyuvhFKHPyNmWwcdBpA-d_3su757X_BC2RdSKlNF4BJvLxT2-h63q5_KmW4xhw8zsOKn0b8Yg7_w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VgEQvXV6loUCNxA0s7dpO4hxbBAJ1u0LiIW6RnYwREptUZKn68zv2JrtFwAEuOSSWbXlen2PPNwD7qZTSUlzn2qmMKykMN6gkR2lciQ6dCb8urofpaKRvbrLzNims6W67d0eSwVP_l-wWaGxF7AulJJrTRn1R-TI7fo9-cT3zvyIJ9R3JfGLu43ebKvNyH0_D0TOM-ex8NISdk977JrwCn1qYyb5P9WIVPmC1Br2uhANrLXod6h91fY-mYmNP1f-XBU_I2ktbYxqNEahlJjhF1laYuGW1Y6R3yHxQDHrL7ir_ph4jb0joyMY4Ie26p76q6T1zFkruNBtwdXJ8eXTK2xoMvJCpmHA70E6gTDJh4tgKlwxKm7oMdUK-QKamsOj66FRZKNOXpoylsrEtpLalSFM7kJ9hoaor_AKMgJmO00FJT61inZiC4IfxeEy5TLkygoNOFPnvKdVGPidV9muZ01rmYS3zfgTbnbTy1uyanLAowRdPORPB3uwzGYw_BTEV1o-hjecUTGQSweZUyrPhFKFPz9kWwWEn0nnnr89l623Nv8Hy6eWvYT48G_38Ch-F15CQ3bgNC5OHR9yBpeLP5K552A2K_Q9m9PH4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1VtKq4dMtXm5aCkbgVi13bSZwjtKxagVYIWsQtspNxhcQmiM1W_fkdO8lCRTkgLjkklm15ZjzP8cwbgN1USmnJr3PtVMaVFIYbVJKjNK5Eh86EXxcXJ-lkoi8vs9N7Wfwh2r2_kmxzGjxLU9Xs35Ru_17iW6C0FbEvmpJoTof2l4pOMj6o6-z8YrEXiyTUeiRTirn35V3azP_7-Nc1PcCbD-5KgwsaD54_-bfwpoOf7KDVlxV4gdUqDPrSDqyz9DWoD-v6Gk3Fpp7C_w8LOyTrgrmmNDIjsMtM2CxZV3niF6sdI31E5p1l0Gd2Vfk39RT5jJQB2RQb0rpr6qtq489ZKMUzW4ef46MfX77xrjYDL2QqGm5H2gmUSSZMHFvhklFpU5ehTmiPkKkpLLohOlUWygylKWOpbGwLqW0p0tSO5AYsVXWF74ERYNNxOirpqVWsE1MQLDEepymXKVdG8LkXS37TUnDkd2TLfi1zWss8rGU-jGCzl1zemeMsJ4xKsMZT0USws_hMhuRvR0yF9Ty08VyDiUwieNdKfDGcIlTqudwi2OvFe9f543P58LTm2_D69Os4P_k-Of4Iy8IrSEh63ISl5naOn-BV8bu5mt1uBR3_C43--tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boolean+matrix+logic+programming+for+active+learning+of+gene+functions+in+genome-scale+metabolic+network+models&rft.jtitle=Machine+learning&rft.au=Ai%2C+Lun&rft.au=Muggleton%2C+Stephen+H.&rft.au=Liang%2C+Shi-Shun&rft.au=Baldwin%2C+Geoff+S.&rft.date=2025-11-01&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=11&rft_id=info:doi/10.1007%2Fs10994-025-06868-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10994_025_06868_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon