Self-adaptive Equilibrium Optimizer for solving global, combinatorial, engineering, and Multi-Objective problems

This paper proposes a self-adaptive Equilibrium Optimizer (self-EO) to perform better global, combinatorial, engineering, and multi-objective optimization problems. The new self-EO algorithm integrates four effective exploring phases, which address the potential shortcomings of the original EO. We v...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 195; s. 116552
Hlavní autoři: Houssein, Essam H., Çelik, Emre, Mahdy, Mohamed A., Ghoniem, Rania M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Ltd 01.06.2022
Elsevier BV
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a self-adaptive Equilibrium Optimizer (self-EO) to perform better global, combinatorial, engineering, and multi-objective optimization problems. The new self-EO algorithm integrates four effective exploring phases, which address the potential shortcomings of the original EO. We validate the performances of the proposed algorithm over a large spectrum of optimization problems, i.e., ten functions of the CEC’20 benchmark, three engineering optimization problems, two combinatorial optimization problems, and three multi-objective problems. We compare the self-EO results to those obtained with nine other metaheuristic algorithms (MAs), including the original EO. We employ different metrics to analyze the results thoroughly. The self-EO analyses suggest that the self-EO algorithm has a greater ability to locate the optimal region, a better trade-off between exploring and exploiting mechanisms, and a faster convergence rate to (near)-optimal solutions than other algorithms. Indeed, the self-EO algorithm reaches better results than the other algorithms for most of the tested functions. •An enhanced algorithm called the self-EO that employs three strategies is proposed.•Self-EO efficiency and performance are verified on several benchmarks.•CEC’20 suite and 3 engineering problems are used for algorithm validation.•Two combinatorial problems, and ten CEC’20 multi-objective problems are solved.•Self-EO performance is analyzed with many metrics and compared to 30 algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2022.116552