Zero-shot learning for action recognition using synthesized features

The major disadvantage of supervised methods for action recognition is the need for a large amount of annotated data, where the data is matched to its label accurately. To address this issue, Zero-Shot Learning (ZSL) is introduced. Zero short learning primarily uses data that is synthesized to compe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 390; S. 117 - 130
Hauptverfasser: Mishra, Ashish, Pandey, Anubha, Murthy, Hema A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 21.05.2020
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The major disadvantage of supervised methods for action recognition is the need for a large amount of annotated data, where the data is matched to its label accurately. To address this issue, Zero-Shot Learning (ZSL) is introduced. Zero short learning primarily uses data that is synthesized to compensate for lack of training examples. In this paper, two different approaches are proposed for the synthesis of artificial examples for novel classes; namely, inverse autoregressive flow (IAF) based generative model and bi-directional adversarial GAN(Bi-dir GAN). A consequence of the proposed approach is a transductive setting using a semi-supervised variational autoencoder, where the unlabelled data from unseen classes are used to train the model. This enables the generation of novel class examples from textual descriptions. The proposed models perform well in the following settings, namely, i) Standard setting(ZSL), where the test data comes only from unseen classes, and ii) Generalized setting(GZSL), where the test data comes from both seen and unseen classes. In the case of the generalized setting, examples with pseudo labels are generated for unseen classes. Experiments are performed on three baseline datasets, UCF101, HMDB51, and Olympic. In comparison with state-of-the-art approaches, both the proposed models, IAF based generative model and Bi-dir GAN model outperform in UCF101, and Olympic datasets in all the settings and achieve comparative results in HMDB51.
AbstractList The major disadvantage of supervised methods for action recognition is the need for a large amount of annotated data, where the data is matched to its label accurately. To address this issue, Zero-Shot Learning (ZSL) is introduced. Zero short learning primarily uses data that is synthesized to compensate for lack of training examples. In this paper, two different approaches are proposed for the synthesis of artificial examples for novel classes; namely, inverse autoregressive flow (IAF) based generative model and bi-directional adversarial GAN(Bi-dir GAN). A consequence of the proposed approach is a transductive setting using a semi-supervised variational autoencoder, where the unlabelled data from unseen classes are used to train the model. This enables the generation of novel class examples from textual descriptions. The proposed models perform well in the following settings, namely, i) Standard setting(ZSL), where the test data comes only from unseen classes, and ii) Generalized setting(GZSL), where the test data comes from both seen and unseen classes. In the case of the generalized setting, examples with pseudo labels are generated for unseen classes. Experiments are performed on three baseline datasets, UCF101, HMDB51, and Olympic. In comparison with state-of-the-art approaches, both the proposed models, IAF based generative model and Bi-dir GAN model outperform in UCF101, and Olympic datasets in all the settings and achieve comparative results in HMDB51.
Author Pandey, Anubha
Mishra, Ashish
Murthy, Hema A.
Author_xml – sequence: 1
  givenname: Ashish
  surname: Mishra
  fullname: Mishra, Ashish
  email: mishra@cse.iitm.ac.in
– sequence: 2
  givenname: Anubha
  surname: Pandey
  fullname: Pandey, Anubha
– sequence: 3
  givenname: Hema A.
  surname: Murthy
  fullname: Murthy, Hema A.
BookMark eNqFkE1LAzEQhoNUsFX_gYf9A7tmkm6SehCkfkLBi168hDSZbVPaRJJUqL_erfXkQU_zwvC8zDwjMggxICEXQBugIC5XTcCtjZuGUUYbCg2V6ogMQUlWK6bEgAzphLU148BOyCjnFaUggU2G5PYNU6zzMpZqjSYFHxZVF1NlbPExVAltXAT_nbd5v8y7UJaY_Se6qkNTtgnzGTnuzDrj-c88Ja_3dy_Tx3r2_PA0vZnVlktWajNH6Rw4pcZyzriireAAyIyg2EoFjHedsJJbp4ToqDBAxXzStmqsLHcC-Sm5OvTaFHNO2Gnri9kfV5Lxaw1U733olT740HsfmoLuffTw-Bf8nvzGpN1_2PUBw_6xD49JZ-sxWHS-l1O0i_7vgi91GX9k
CitedBy_id crossref_primary_10_1007_s10489_020_02075_7
crossref_primary_10_1109_LSP_2022_3200605
crossref_primary_10_1007_s11042_024_19711_w
crossref_primary_10_1109_TCSVT_2023_3262754
crossref_primary_10_3233_IDT_24027
crossref_primary_10_1016_j_neucom_2021_01_036
crossref_primary_10_1007_s10489_023_04808_w
crossref_primary_10_1007_s11263_023_01846_2
crossref_primary_10_1007_s10462_024_10934_9
crossref_primary_10_1016_j_neucom_2020_09_065
crossref_primary_10_1016_j_neucom_2021_04_031
crossref_primary_10_1016_j_knosys_2024_112283
crossref_primary_10_1016_j_eswa_2023_122538
crossref_primary_10_3233_IDT_240297
crossref_primary_10_1016_j_eswa_2024_125150
crossref_primary_10_1016_j_neucom_2024_128385
crossref_primary_10_1007_s10044_021_00992_y
crossref_primary_10_1016_j_neucom_2021_03_070
crossref_primary_10_3390_app15073737
crossref_primary_10_1007_s42979_023_01803_3
crossref_primary_10_3390_mca28020061
crossref_primary_10_1155_2022_2142935
Cites_doi 10.1109/TPAMI.2013.140
10.1007/s11263-017-1027-5
10.1007/s11263-016-0983-5
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.01.078
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 130
ExternalDocumentID 10_1016_j_neucom_2020_01_078
S0925231220301302
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c372t-abe7dd1d8847b238056311e2a60e578123ff6c73cd866f06a106b955848c3d6e3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531729000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:38:48 EST 2025
Sat Nov 29 07:11:19 EST 2025
Fri Feb 23 02:47:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transductive ZSL setting
Inverse autoregressive flow
Generalized zero shot learning
Bi-directional generative adversarial network
Inductive ZSL setting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c372t-abe7dd1d8847b238056311e2a60e578123ff6c73cd866f06a106b955848c3d6e3
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_01_078
crossref_primary_10_1016_j_neucom_2020_01_078
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_01_078
PublicationCentury 2000
PublicationDate 2020-05-21
PublicationDateYYYYMMDD 2020-05-21
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-21
  day: 21
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lampert, Nickisch, Harmeling (bib0014) 2014; 36
Radovanović, Nanopoulos, Ivanović (bib0021) 2010; 11
Zhang, Saligrama (bib0032) 2015
Kodirov, Xiang, Fu, Gong (bib0009) 2015
Gaure, Gupta, Verma, Rai (bib0027) 2017
M. Bishay, G. Zoumpourlis, I. Patras D.P. Kingma, M. Welling, TARN: Temporal Attentive Relation Network for Few-Shot and Zero-Shot Action Recognition, arXiv preprint arXiv
K. Soomro, A.R. Zamir, M. Shah, UCF101: A dataset of 101 human actions classes from videos in the wild, arXiv preprint arXiv
Mandal, Narayan, Dwivedi, Gupta, Ahmed, Khan, Shao (bib0040) 2019
Qin, Liu, Shao, Shen, Ni, Chen, Wang (bib0039) 2017
Guo, Ding, Han, Gao (bib0028) 2017
Wang, Ye, Gupta (bib0036) 2018
Zhu, Long, Guan, Newsam, Shao (bib0037) 2018
Changpinyo, Chao, Gong, Sha (bib0029) 2016
Romera-Paredes, Torr (bib0010) 2015
Kodirov, Xiang, Gong (bib0048) 2017
Xu, Hospedales, Gong (bib0016) 2017; 123
He, Zhang, Ren, Sun (bib0025) 2016
Xu, Hospedales, Gong (bib0006) 2015
(2013).
Kingma, Mohamed, Rezende, Welling (bib0026) 2014
Bucher, Herbin, Jurie (bib0042) 2017
(2019).
Xian, Schiele, Akata (bib0003) 2017
Mikolov, Sutskever, Chen, Corrado, Dean (bib0004) 2013
Kuehne, Jhuang, Garrote, Poggio, Serre (bib0046) 2011
Wang, Kläser, Schmid, Cheng-Lin (bib0053) 2011
Verma, Rai (bib0018) 2017
Tran, Bourdev, Fergus, Torresani, Paluri (bib0047) 2015
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0023) 2014
Wang, Chen (bib0008) 2017; 124
Mishra, Krishna Reddy, Mittal, Murthy (bib0030) 2018
Kodirov, Xiang, Gong (bib0007) 2017
Simonyan, Zisserman (bib0052) 2014
Xu, Hospedales, Gong (bib0015) 2016
Felix, Kumar, Reid, Carneiro (bib0034) 2018
Roitberg, Martinez, Haurilet, Stiefelhagen (bib0038) 2018
Xian, Lorenz, Schiele, Akata (bib0049) 2018
Palatucci, Pomerleau, Hinton, Mitchell (bib0001) 2009
Pennington, Socher, Manning (bib0005) 2014
Akata, Reed, Walter, Lee, Schiele (bib0013) 2015
Wang, Schmid (bib0054) 2013
M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G.S. Corrado, J. Dean, Zero-shot learning by convex combination of semantic embeddings, arXiv preprint arXiv
Hu, Yang, Liang, Salakhutdinov, Xing (bib0044) 2017
(2014).
Kingma, Salimans, Jozefowicz, Chen, Sutskever, Welling (bib0024) 2016
Xian, Lorenz, Schiele, Akata (bib0033) 2018
(2012).
Zhang, Saligrama (bib0031) 2016
Lampert, Nickisch, Harmeling (bib0002) 2009
Kumar Verma, Arora, Mishra, Rai (bib0035) 2018
Germain, Gregor, Murray, Larochelle (bib0043) 2015
G. Dinu, A. Lazaridou, M. Baroni, Improving zero-shot learning by mitigating the hubness problem, arXiv preprint arXiv
Liu, Kuipers, Savarese (bib0011) 2011
Wang, Pu, Verma, Fan, Zhang, Chen, Rai, Carin (bib0017) 2018
Felix, Kumar, Reid, Carneiro (bib0050) 2018
Mishra, Verma, Reddy, Arulkumar, Rai, Mittal (bib0019) 2018
Mikolov (10.1016/j.neucom.2020.01.078_bib0004) 2013
Felix (10.1016/j.neucom.2020.01.078_bib0050) 2018
He (10.1016/j.neucom.2020.01.078_bib0025) 2016
Changpinyo (10.1016/j.neucom.2020.01.078_bib0029) 2016
Wang (10.1016/j.neucom.2020.01.078_bib0008) 2017; 124
Felix (10.1016/j.neucom.2020.01.078_bib0034) 2018
Palatucci (10.1016/j.neucom.2020.01.078_bib0001) 2009
Kuehne (10.1016/j.neucom.2020.01.078_bib0046) 2011
Wang (10.1016/j.neucom.2020.01.078_bib0054) 2013
Xu (10.1016/j.neucom.2020.01.078_bib0015) 2016
Verma (10.1016/j.neucom.2020.01.078_bib0018) 2017
Lampert (10.1016/j.neucom.2020.01.078_bib0002) 2009
10.1016/j.neucom.2020.01.078_bib0022
10.1016/j.neucom.2020.01.078_bib0020
Zhu (10.1016/j.neucom.2020.01.078_bib0037) 2018
Xu (10.1016/j.neucom.2020.01.078_bib0016) 2017; 123
Kingma (10.1016/j.neucom.2020.01.078_bib0026) 2014
Gaure (10.1016/j.neucom.2020.01.078_bib0027) 2017
Tran (10.1016/j.neucom.2020.01.078_bib0047) 2015
Mandal (10.1016/j.neucom.2020.01.078_bib0040) 2019
Wang (10.1016/j.neucom.2020.01.078_bib0017) 2018
Goodfellow (10.1016/j.neucom.2020.01.078_bib0023) 2014
Mishra (10.1016/j.neucom.2020.01.078_bib0030) 2018
Wang (10.1016/j.neucom.2020.01.078_bib0053) 2011
10.1016/j.neucom.2020.01.078_bib0012
Liu (10.1016/j.neucom.2020.01.078_bib0011) 2011
Xian (10.1016/j.neucom.2020.01.078_bib0003) 2017
Kodirov (10.1016/j.neucom.2020.01.078_bib0009) 2015
Lampert (10.1016/j.neucom.2020.01.078_bib0014) 2014; 36
Guo (10.1016/j.neucom.2020.01.078_bib0028) 2017
Qin (10.1016/j.neucom.2020.01.078_bib0039) 2017
Xu (10.1016/j.neucom.2020.01.078_bib0006) 2015
Bucher (10.1016/j.neucom.2020.01.078_bib0042) 2017
Zhang (10.1016/j.neucom.2020.01.078_bib0031) 2016
Wang (10.1016/j.neucom.2020.01.078_bib0036) 2018
10.1016/j.neucom.2020.01.078_bib0045
Xian (10.1016/j.neucom.2020.01.078_bib0049) 2018
Kumar Verma (10.1016/j.neucom.2020.01.078_bib0035) 2018
Simonyan (10.1016/j.neucom.2020.01.078_bib0052) 2014
Akata (10.1016/j.neucom.2020.01.078_bib0013) 2015
10.1016/j.neucom.2020.01.078_bib0041
Hu (10.1016/j.neucom.2020.01.078_bib0044) 2017
Pennington (10.1016/j.neucom.2020.01.078_bib0005) 2014
Romera-Paredes (10.1016/j.neucom.2020.01.078_bib0010) 2015
Zhang (10.1016/j.neucom.2020.01.078_bib0032) 2015
Kodirov (10.1016/j.neucom.2020.01.078_bib0048) 2017
Radovanović (10.1016/j.neucom.2020.01.078_bib0021) 2010; 11
Kodirov (10.1016/j.neucom.2020.01.078_bib0007) 2017
Mishra (10.1016/j.neucom.2020.01.078_bib0019) 2018
Kingma (10.1016/j.neucom.2020.01.078_bib0024) 2016
Roitberg (10.1016/j.neucom.2020.01.078_bib0038) 2018
Germain (10.1016/j.neucom.2020.01.078_bib0043) 2015
Xian (10.1016/j.neucom.2020.01.078_bib0033) 2018
References_xml – start-page: 3337
  year: 2011
  end-page: 3344
  ident: bib0011
  article-title: Recognizing human actions by attributes
  publication-title: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2556
  year: 2011
  end-page: 2563
  ident: bib0046
  article-title: HMDB: a large video database for human motion recognition
  publication-title: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV)
– start-page: 2188
  year: 2018
  end-page: 2196
  ident: bib0030
  article-title: A generative model for zero shot learning using conditional variational autoencoders
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– reference: (2012).
– start-page: 6034
  year: 2016
  end-page: 6042
  ident: bib0031
  article-title: Zero-shot learning via joint latent similarity embedding
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 372
  year: 2018
  end-page: 380
  ident: bib0019
  article-title: A generative approach to zero-shot and few-shot action recognition
  publication-title: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 63
  year: 2015
  end-page: 67
  ident: bib0006
  article-title: Semantic embedding space for zero-shot action recognition
  publication-title: Proceedings of, 2015 IEEE International Conference on the Image Processing (ICIP)
– start-page: 951
  year: 2009
  end-page: 958
  ident: bib0002
  article-title: Learning to detect unseen object classes by between-class attribute transfer
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009
– start-page: 5542
  year: 2018
  end-page: 5551
  ident: bib0049
  article-title: Feature generating networks for zero-shot learning
  publication-title: Proceedings of the CVPR
– start-page: 3174
  year: 2017
  end-page: 3183
  ident: bib0007
  article-title: Semantic autoencoder for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 11
  start-page: 2487
  year: 2010
  end-page: 2531
  ident: bib0021
  article-title: Hubs in space: popular nearest neighbors in high-dimensional data
  publication-title: J. Mach. Learn. Res.
– start-page: 4281
  year: 2018
  end-page: 4289
  ident: bib0035
  article-title: Generalized zero-shot learning via synthesized examples
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 792
  year: 2017
  end-page: 808
  ident: bib0018
  article-title: A simple exponential family framework for zero-shot learning
  publication-title: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– reference: M. Bishay, G. Zoumpourlis, I. Patras D.P. Kingma, M. Welling, TARN: Temporal Attentive Relation Network for Few-Shot and Zero-Shot Action Recognition, arXiv preprint arXiv:
– year: 2017
  ident: bib0042
  article-title: Generating visual representations for zero-shot classification
  publication-title: Proceedings of the International Conference on Computer Vision (ICCV) Workshops: TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision
– volume: 36
  start-page: 453
  year: 2014
  end-page: 465
  ident: bib0014
  article-title: Attribute-based classification for zero-shot visual object categorization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1587
  year: 2017
  end-page: 1596
  ident: bib0044
  article-title: Toward controlled generation of text
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1774
  year: 2017
  end-page: 1780
  ident: bib0028
  article-title: Synthesizing samples fro zero-shot learning
  publication-title: IJCAI
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0023
  article-title: Generative adversarial nets
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 2927
  year: 2015
  end-page: 2936
  ident: bib0013
  article-title: Evaluation of output embeddings for fine-grained image classification
  publication-title: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: G. Dinu, A. Lazaridou, M. Baroni, Improving zero-shot learning by mitigating the hubness problem, arXiv preprint arXiv:
– start-page: 6857
  year: 2018
  end-page: 6866
  ident: bib0036
  article-title: Zero-shot recognition via semantic embeddings and knowledge graphs
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1532
  year: 2014
  end-page: 1543
  ident: bib0005
  article-title: Glove: global vectors for word representation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural language processing (EMNLP)
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:
– start-page: 3581
  year: 2014
  end-page: 3589
  ident: bib0026
  article-title: Semi-supervised learning with deep generative models
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– year: 2018
  ident: bib0038
  article-title: Towards a fair evaluation of zero-shot action recognition using external data
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 2452
  year: 2015
  end-page: 2460
  ident: bib0009
  article-title: Unsupervised domain adaptation for zero-shot learning
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 881
  year: 2015
  end-page: 889
  ident: bib0043
  article-title: Made: masked autoencoder for distribution estimation
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 3
  year: 2017
  end-page: 12
  ident: bib0027
  article-title: A probabilistic framework for zero-shot multi-label learning
  publication-title: Proceedings of the the Conference on Uncertainty in Artificial Intelligence (UAI)
– volume: 123
  start-page: 309
  year: 2017
  end-page: 333
  ident: bib0016
  article-title: Transductive zero-shot action recognition by word-vector embedding
  publication-title: Int. J. Comput. Vis.
– start-page: 5327
  year: 2016
  end-page: 5336
  ident: bib0029
  article-title: Synthesized classifiers for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0040
  article-title: Out-of-distribution detection for generalized zero-shot action recognition
  publication-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: (2019).
– volume: 124
  start-page: 356
  year: 2017
  end-page: 383
  ident: bib0008
  article-title: Zero-shot visual recognition via bidirectional latent embedding
  publication-title: Int. J. Comput. Vis.
– start-page: 343
  year: 2016
  end-page: 359
  ident: bib0015
  article-title: Multi-task zero-shot action recognition with prioritised data augmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– year: 2018
  ident: bib0017
  article-title: Zero-shot learning via class-conditioned deep generative models
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-18), Louisiana, USA.
– reference: M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G.S. Corrado, J. Dean, Zero-shot learning by convex combination of semantic embeddings, arXiv preprint arXiv:
– start-page: 21
  year: 2018
  end-page: 37
  ident: bib0050
  article-title: Multi-modal cycle-consistent generalized zero-shot learning
  publication-title: Proceedings of the ECCV
– start-page: 21
  year: 2018
  end-page: 37
  ident: bib0034
  article-title: Multi-modal cycle-consistent generalized zero-shot learning
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 1410
  year: 2009
  end-page: 1418
  ident: bib0001
  article-title: Zero-shot learning with semantic output codes
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 4582
  year: 2017
  end-page: 4591
  ident: bib0003
  article-title: Zero-shot learning-the good, the bad and the ugly
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2833
  year: 2017
  end-page: 2842
  ident: bib0039
  article-title: Zero-shot action recognition with error-correcting output codes
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3111
  year: 2013
  end-page: 3119
  ident: bib0004
  article-title: Distributed representations of words and phrases and their compositionality
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 4743
  year: 2016
  end-page: 4751
  ident: bib0024
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– reference: (2014).
– start-page: 4489
  year: 2015
  end-page: 4497
  ident: bib0047
  article-title: Learning spatiotemporal features with 3D convolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3174
  year: 2017
  end-page: 3183
  ident: bib0048
  article-title: Semantic autoencoder for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 3169
  year: 2011
  end-page: 3176
  ident: bib0053
  article-title: Action recognition by dense trajectories
  publication-title: Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, CVPR 2011
– start-page: 2152
  year: 2015
  end-page: 2161
  ident: bib0010
  article-title: An embarrassingly simple approach to zero-shot learning
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 9436
  year: 2018
  end-page: 9445
  ident: bib0037
  article-title: Towards universal representation for unseen action recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: K. Soomro, A.R. Zamir, M. Shah, UCF101: A dataset of 101 human actions classes from videos in the wild, arXiv preprint arXiv:
– reference: (2013).
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0025
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 4166
  year: 2015
  end-page: 4174
  ident: bib0032
  article-title: Zero-shot learning via semantic similarity embedding
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3551
  year: 2013
  end-page: 3558
  ident: bib0054
  article-title: Action recognition with improved trajectories
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 5542
  year: 2018
  end-page: 5551
  ident: bib0033
  article-title: Feature generating networks for zero-shot learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 568
  year: 2014
  end-page: 576
  ident: bib0052
  article-title: Two-stream convolutional networks for action recognition in videos
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– start-page: 2188
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0030
  article-title: A generative model for zero shot learning using conditional variational autoencoders
– start-page: 9436
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0037
  article-title: Towards universal representation for unseen action recognition
– start-page: 2833
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0039
  article-title: Zero-shot action recognition with error-correcting output codes
– start-page: 4489
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0047
  article-title: Learning spatiotemporal features with 3D convolutional networks
– year: 2019
  ident: 10.1016/j.neucom.2020.01.078_bib0040
  article-title: Out-of-distribution detection for generalized zero-shot action recognition
– start-page: 951
  year: 2009
  ident: 10.1016/j.neucom.2020.01.078_bib0002
  article-title: Learning to detect unseen object classes by between-class attribute transfer
– start-page: 21
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0034
  article-title: Multi-modal cycle-consistent generalized zero-shot learning
– start-page: 1774
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0028
  article-title: Synthesizing samples fro zero-shot learning
– start-page: 63
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0006
  article-title: Semantic embedding space for zero-shot action recognition
– start-page: 792
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0018
  article-title: A simple exponential family framework for zero-shot learning
– year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0017
  article-title: Zero-shot learning via class-conditioned deep generative models
– ident: 10.1016/j.neucom.2020.01.078_bib0022
– start-page: 2672
  year: 2014
  ident: 10.1016/j.neucom.2020.01.078_bib0023
  article-title: Generative adversarial nets
– start-page: 5542
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0033
  article-title: Feature generating networks for zero-shot learning
– start-page: 3174
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0048
  article-title: Semantic autoencoder for zero-shot learning
– volume: 11
  start-page: 2487
  issue: Sep
  year: 2010
  ident: 10.1016/j.neucom.2020.01.078_bib0021
  article-title: Hubs in space: popular nearest neighbors in high-dimensional data
  publication-title: J. Mach. Learn. Res.
– start-page: 2452
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0009
  article-title: Unsupervised domain adaptation for zero-shot learning
– start-page: 2556
  year: 2011
  ident: 10.1016/j.neucom.2020.01.078_bib0046
  article-title: HMDB: a large video database for human motion recognition
– start-page: 881
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0043
  article-title: Made: masked autoencoder for distribution estimation
– start-page: 1410
  year: 2009
  ident: 10.1016/j.neucom.2020.01.078_bib0001
  article-title: Zero-shot learning with semantic output codes
– start-page: 4281
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0035
  article-title: Generalized zero-shot learning via synthesized examples
– start-page: 372
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0019
  article-title: A generative approach to zero-shot and few-shot action recognition
– start-page: 21
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0050
  article-title: Multi-modal cycle-consistent generalized zero-shot learning
– start-page: 4743
  year: 2016
  ident: 10.1016/j.neucom.2020.01.078_bib0024
  article-title: Improved variational inference with inverse autoregressive flow
– volume: 36
  start-page: 453
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2020.01.078_bib0014
  article-title: Attribute-based classification for zero-shot visual object categorization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.140
– start-page: 4582
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0003
  article-title: Zero-shot learning-the good, the bad and the ugly
– year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0042
  article-title: Generating visual representations for zero-shot classification
– start-page: 5327
  year: 2016
  ident: 10.1016/j.neucom.2020.01.078_bib0029
  article-title: Synthesized classifiers for zero-shot learning
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2020.01.078_bib0025
  article-title: Deep residual learning for image recognition
– start-page: 343
  year: 2016
  ident: 10.1016/j.neucom.2020.01.078_bib0015
  article-title: Multi-task zero-shot action recognition with prioritised data augmentation
– start-page: 3581
  year: 2014
  ident: 10.1016/j.neucom.2020.01.078_bib0026
  article-title: Semi-supervised learning with deep generative models
– start-page: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0027
  article-title: A probabilistic framework for zero-shot multi-label learning
– start-page: 3337
  year: 2011
  ident: 10.1016/j.neucom.2020.01.078_bib0011
  article-title: Recognizing human actions by attributes
– start-page: 3174
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0007
  article-title: Semantic autoencoder for zero-shot learning
– start-page: 6857
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0036
  article-title: Zero-shot recognition via semantic embeddings and knowledge graphs
– start-page: 1587
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0044
  article-title: Toward controlled generation of text
– volume: 124
  start-page: 356
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0008
  article-title: Zero-shot visual recognition via bidirectional latent embedding
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-017-1027-5
– start-page: 4166
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0032
  article-title: Zero-shot learning via semantic similarity embedding
– start-page: 3551
  year: 2013
  ident: 10.1016/j.neucom.2020.01.078_bib0054
  article-title: Action recognition with improved trajectories
– ident: 10.1016/j.neucom.2020.01.078_bib0012
– start-page: 3169
  year: 2011
  ident: 10.1016/j.neucom.2020.01.078_bib0053
  article-title: Action recognition by dense trajectories
– start-page: 1532
  year: 2014
  ident: 10.1016/j.neucom.2020.01.078_bib0005
  article-title: Glove: global vectors for word representation
– start-page: 6034
  year: 2016
  ident: 10.1016/j.neucom.2020.01.078_bib0031
  article-title: Zero-shot learning via joint latent similarity embedding
– volume: 123
  start-page: 309
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.01.078_bib0016
  article-title: Transductive zero-shot action recognition by word-vector embedding
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-016-0983-5
– start-page: 2152
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0010
  article-title: An embarrassingly simple approach to zero-shot learning
– ident: 10.1016/j.neucom.2020.01.078_bib0045
– start-page: 5542
  year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0049
  article-title: Feature generating networks for zero-shot learning
– start-page: 3111
  year: 2013
  ident: 10.1016/j.neucom.2020.01.078_bib0004
  article-title: Distributed representations of words and phrases and their compositionality
– start-page: 2927
  year: 2015
  ident: 10.1016/j.neucom.2020.01.078_bib0013
  article-title: Evaluation of output embeddings for fine-grained image classification
– ident: 10.1016/j.neucom.2020.01.078_bib0041
– ident: 10.1016/j.neucom.2020.01.078_bib0020
– start-page: 568
  year: 2014
  ident: 10.1016/j.neucom.2020.01.078_bib0052
  article-title: Two-stream convolutional networks for action recognition in videos
– year: 2018
  ident: 10.1016/j.neucom.2020.01.078_bib0038
  article-title: Towards a fair evaluation of zero-shot action recognition using external data
SSID ssj0017129
Score 2.4971967
Snippet The major disadvantage of supervised methods for action recognition is the need for a large amount of annotated data, where the data is matched to its label...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117
SubjectTerms Bi-directional generative adversarial network
Generalized zero shot learning
Inductive ZSL setting
Inverse autoregressive flow
Transductive ZSL setting
Title Zero-shot learning for action recognition using synthesized features
URI https://dx.doi.org/10.1016/j.neucom.2020.01.078
Volume 390
WOSCitedRecordID wos000531729000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbQlgMXKC9RCsgHbshVYmdj-xiVVgVBLxS04hI5tqPdqs1Wmywq_fUdP5KNWMRL4hJZUbw78nyZfB7PA6HXWiYZB-US19aWZEzXpJoaRWDnkFHlPlC-lt6XD_z0VMxmsj_RbX07Ad404vpaXv1XVcM9ULZLnf0LdQ8_CjdgDEqHK6gdrn-k-K92tSTtfNn1HSFipGToCT4EDMF47f0E7fcGSGC7uAHqWVtf57MdU1ZfvkP75g_RrVBcuuoKxkFpcCN8XLTzVfDRtnMYb46mGhO84kWzruZqpOAuKPjEXqo3xcHY_UD9yTnduB-282KCc5HCUywGSNtgWgWnPml9bHtZ6BUarWca0jjjhzgNBzZbNj64G84PGrt2AT9OKF95NbQC-qF69icnipOEur0fc2VHdyifSjFBO8W7o9n74ciJpzQUZoyi93mWPhhw-79-zmNG3ORsF92PmwpcBDA8RHds8wg96Bt24Gi_H6O3AzZwjw0M2MABG3iEDeyxgUfYwD02nqDPx0dnhyckttEgmnHaEVVZbkxqBBCRChgaUF6WppaqPLFgr4G61HWuOdNG5Hmd5CpN8kpOgZkKzUxu2VM0aZaNfYZAHKmENZzSWmbSZEpQllF4r7mSU5nWe4j1i1LqWGPetTq5KPtgwvMyLGXplrJM0hKWcg-RYdZVqLHym-d5v95l5ImB_5UAkV_OfP7PM_fRvQ36X6BJt1rbl-iu_tYt2tWriKVbMnWNUw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zero-shot+learning+for+action+recognition+using+synthesized+features&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Mishra%2C+Ashish&rft.au=Pandey%2C+Anubha&rft.au=Murthy%2C+Hema+A.&rft.date=2020-05-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=390&rft.spage=117&rft.epage=130&rft_id=info:doi/10.1016%2Fj.neucom.2020.01.078&rft.externalDocID=S0925231220301302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon