Semi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robots

An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collisio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of advanced manufacturing technology Ročník 89; číslo 5-8; s. 1401 - 1430
Hlavní autori: Akbaripour, Hossein, Masehian, Ellips
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Springer London 01.03.2017
Springer Nature B.V
Predmet:
ISSN:0268-3768, 1433-3015
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only m terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of m , which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for m and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes.
AbstractList An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only m terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of m, which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for m and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes.
An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only m terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of m , which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for m and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes.
Author Akbaripour, Hossein
Masehian, Ellips
Author_xml – sequence: 1
  givenname: Hossein
  surname: Akbaripour
  fullname: Akbaripour, Hossein
  organization: Faculty of Industrial and Systems Engineering, Tarbiat Modares University
– sequence: 2
  givenname: Ellips
  surname: Masehian
  fullname: Masehian, Ellips
  email: masehian@modares.ac.ir
  organization: Faculty of Industrial and Systems Engineering, Tarbiat Modares University
BookMark eNp9kU9v3CAQxVGUStn8-QC5IfVaEsA2w_ZWRW0TKVIOSc9ojHFCZIML-JB--rDaHqpK2ROg-b03M7xTchxicIRcCn4lOIfrzLkAzrhQbMuhZeqIbETbNKzhojsmGy6VZg0ofUJOc36ttBJKb0h5dLNnE_55o0uKPfZ-8rl4S1PEYcblK0W6YMLZFZdYWYMbvtDkcsVcKBTDUMl-zaVS5YUuE4bgwzOt_Esc6BgTnTH4ZZ2w1HtlY8nn5NOIU3YXf88z8uvH96ebW3b_8PPu5ts9sw3IwrBXIIRSoxZg-9HJsUFh3bbntkUBAK0W2g0auIOutxZQ1qdqO-tqyYrmjHze-9bVfq8uF_Ma1xRqSyPbLdfQdVoepKSSEtpOqUOU0JpXK-h0pcSesinmnNxoluRnTG9GcLMLyuyDMvX_zS4os3OG_zTWFyw-hpLQTweVcq_MtUt4dumfmT4UvQOKiqm4
CitedBy_id crossref_primary_10_1016_j_rcim_2021_102180
crossref_primary_10_1016_j_robot_2024_104633
crossref_primary_10_3390_robotics14050055
crossref_primary_10_1016_j_ifacol_2020_12_2706
crossref_primary_10_1109_ACCESS_2021_3058121
crossref_primary_10_1109_ACCESS_2021_3098044
crossref_primary_10_1155_2021_9589476
crossref_primary_10_1016_j_compag_2023_108183
crossref_primary_10_3390_pr11123302
crossref_primary_10_1016_j_jmapro_2022_07_005
crossref_primary_10_3390_machines11050513
crossref_primary_10_1017_S0263574723001479
crossref_primary_10_1109_ACCESS_2019_2961167
crossref_primary_10_1007_s12182_019_0305_y
crossref_primary_10_1109_ACCESS_2020_3016525
crossref_primary_10_1109_TMECH_2021_3085943
crossref_primary_10_3390_su17094235
crossref_primary_10_1007_s41315_024_00330_5
crossref_primary_10_1007_s41315_024_00331_4
crossref_primary_10_1016_j_rcim_2021_102196
crossref_primary_10_1017_S0263574721000588
crossref_primary_10_1109_ACCESS_2022_3170583
crossref_primary_10_2478_amcs_2018_0038
crossref_primary_10_1016_j_neucom_2017_12_015
crossref_primary_10_1177_10775463241259296
crossref_primary_10_1007_s41315_023_00306_x
crossref_primary_10_1016_j_measurement_2020_108128
crossref_primary_10_5194_ms_14_87_2023
crossref_primary_10_5194_ms_12_221_2021
crossref_primary_10_1007_s00521_018_3721_9
crossref_primary_10_1016_j_anucene_2023_110104
crossref_primary_10_1109_LRA_2018_2801462
crossref_primary_10_1007_s10846_023_02030_x
crossref_primary_10_1016_j_cad_2020_102828
crossref_primary_10_1016_j_rcim_2020_102114
crossref_primary_10_1016_j_compag_2024_109567
crossref_primary_10_1007_s00170_017_0877_x
crossref_primary_10_32604_cmes_2022_021451
crossref_primary_10_1007_s41315_023_00300_3
crossref_primary_10_1007_s00170_017_1167_3
Cites_doi 10.1109/SFCS.1985.65
10.1177/0278364911406761
10.1108/IR-04-2015-0077
10.1631/jzus.C0910525
10.1177/027836498600500106
10.1109/ROBOT.2003.1242285
10.1109/ROBOT.2000.844107
10.1109/RISSP.2003.1285681
10.1007/978-1-4615-4022-9
10.1109/CoASE.2014.6899491
10.1109/ROBOT.1999.772448
10.1016/B978-0-444-87806-9.50012-8
10.1007/s10589-013-9578-z
10.1109/ICSMC.2008.4811536
10.1109/SFCS.1987.1
10.1002/rob.20014
10.1109/IROS.2009.5354168
10.1016/j.asoc.2015.01.067
10.1029/WR016i001p00014
10.1109/ROBOT.1985.1087297
10.1177/0142331214532002
10.1016/j.rcim.2014.10.002
10.1016/j.mechmachtheory.2011.06.003
10.1002/9780470172506
10.1109/RoMoCo.2013.6614600
10.1109/70.508439
10.1109/MRA.2008.921543
10.1007/978-3-319-16595-0_9
10.1007/BF02187909
10.1109/TSMCB.2010.2098438
10.1109/AIM.2009.5229724
10.1016/j.cirp.2011.03.041
10.1109/TRO.2009.2035745
10.1002/9780470496916
ContentType Journal Article
Copyright Springer-Verlag London 2016
Copyright Springer Science & Business Media 2017
The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.
Springer-Verlag London 2016.
Copyright_xml – notice: Springer-Verlag London 2016
– notice: Copyright Springer Science & Business Media 2017
– notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved.
– notice: Springer-Verlag London 2016.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1007/s00170-016-9074-6
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList Engineering Database
Engineering Database


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1433-3015
EndPage 1430
ExternalDocumentID 10_1007_s00170_016_9074_6
GroupedDBID -5B
-5G
-BR
-EM
-XW
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z92
ZMTXR
ZY4
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c372t-ab671166f817cbfe2f3a1ce9b0c4a17774818ed870e75bcc7a28ed645ce748c13
IEDL.DBID M7S
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396101100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-3768
IngestDate Tue Nov 04 23:34:58 EST 2025
Tue Nov 04 23:23:53 EST 2025
Tue Nov 04 16:24:45 EST 2025
Sat Nov 29 01:40:04 EST 2025
Tue Nov 18 21:08:12 EST 2025
Fri Feb 21 02:31:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-8
Keywords Motion planning
Collision checking strategy
Parameter tuning
Manipulator robot
Semi-lazy probabilistic roadmap
Robustness
Resilience
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-ab671166f817cbfe2f3a1ce9b0c4a17774818ed870e75bcc7a28ed645ce748c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2262274566
PQPubID 2044010
PageCount 30
ParticipantIDs proquest_journals_2490875582
proquest_journals_2262274566
proquest_journals_1880755758
crossref_primary_10_1007_s00170_016_9074_6
crossref_citationtrail_10_1007_s00170_016_9074_6
springer_journals_10_1007_s00170_016_9074_6
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle International journal of advanced manufacturing technology
PublicationTitleAbbrev Int J Adv Manuf Technol
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References ByrneSNaeemWFergusonSImproved APF strategies for dual-arm local motion planningTrans Inst Meas Control2014371739010.1177/0142331214532002
Barbara F, Cyrill S, Nichola A, Wolfram B (2011) Efficient motion planning for manipulation robots in environments with deformable objects. In: Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 2180–2185
SunZZhangBChengLZhangWJApplication of the redundant servomotor approach to design of path generator with dynamic performance improvementMech Mach Theory201146111784179510.1016/j.mechmachtheory.2011.06.003
Simonin E, Diard J (2008) BBPRM: A behavior–based probabilistic roadmap method. In: Proc IEEE Int Conf Systems, Man and Cybernetics, p 1719–1724
Byrne S, Naeem W, Ferguson S (2013) An intelligent configuration-sampling based local motion planner for robotic manipulators. In: Workshop on Robot Motion and Control (RoMoCo), pp. 147–153
Canny J (1985) A Voronoi method for the piano-movers problem. In: Pro IEEE Robotics and Automation 530–535
Wang X, Shi Y, Ding D, Gu X (2015) Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Eng Optim:1–18
MasehianESedighizadehDMulti-objective robot motion planning using a particle swarm optimization modelJ Zhejiang Univ201011860761910.1631/jzus.C0910525
Sheng G, Jie Z, Heago C (2003) Genetic algorithm based on path planning of coordinated multi-robot manipulators. In: Proc IEEE Int Con on Robotics, Intelligent Systems and Signal Processing, pp. 763–767
Canny J (1987) A new algebraic method for robot motion planning and real geometry In: Proc IEEE 28th Annual Symposium on Foundations of Computer Science 39–48
Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 521–528
Huang S, Chao HH, Miranda AG, (2014) Motion planning of a 7-axis robot manipulator via Modified Tension Spline and convex optimization. In Proc IEEE Int Conf in Autom Sci and Eng (CASE), pp. 1278–1283
Talbi EG (2009) Metaheuristics: from design to implementation, Wiley
Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc IEEE Int Conf on Robotics and Automation, pp. 4420–4426
Nof SY (1999) Handbook of industrial robotics, John Wiley & Sons
Canny J, Donald B (1988) Simplified voronoi diagrams. Discrete Comput Geom 3(3):219–36
Geraerts RJ, Overmars MH (2004) Sampling techniques for probabilistic roadmap planners. In: Proc Intelligent Autonomous Systems, pp. 600–609
Huang Y, Gupta K (2009) Collision–probability constrained PRM for a manipulator with base pose uncertainty. In Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 1426–1432
Noori N, Noohi E, Moradi H, Bakhtiary AH, Ahmadabadi MN (2009) A probabilistic roadmap based planning algorithm for wheeled-tip robots manipulating polygonal objects. In: Proc IEEE Int Conf Advanced Intelligent Mechatronics, pp. 1040–1046
AkbaripourHMasehianEEfficient and robust parameter tuning for heuristic algorithmsInt J Ind Eng2013242143150
Amato NM, Bayazit OB, Dale LK (1998) OBPRM: an obstacle-based PRM for 3D workspaces. In: Agarwal P, Kavraki LE, Mason M (ed.) Robotics: The Algorithmic Perspective, AK Peters, pp. 156–168
ChakravortySKumarSGeneralized sampling-based motion plannersIEEE Trans Syst Man Cybern, Part B: Cybern201141385586610.1109/TSMCB.2010.2098438
Contreras-CruzMAAyala-RamirezVHernandez-BelmonteUHMobile robot path planning using artificial bee colony and evolutionary programmingAppl Soft Comput20153031932810.1016/j.asoc.2015.01.067
Devaurs D, Siméon T, Cortés J (2015) Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Algorithmic Foundations of Robotics, Springer International Publishing, pp. 143–159
Latombe JC (1991) Robot motion planning, Springer Science & Business Media
KavrakiLEŠvestkaPLatombeJCOvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans Robot Autom199612456658010.1109/70.508439
Hwang YK, Ahuja N (1992) Gross motion planning—a survey. ACM Computing Surveys (CSUR) 24(3):219–291
GaoMChenDYangYHeZA fixed-distance planning algorithm for 6-DOF manipulatorsInd Robot: An Int J201542658659910.1108/IR-04-2015-0077
Montgomery DC (2005) Design and analysis of experiments, Wiley
KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res198651909910.1177/027836498600500106
Wilmarth S, Amato NM, Stiller P (1999) MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 1024–1031
TaguchiGYokoyamaYTaguchi methods: design of experiments1993MillersburgAmerican Supplier Institute Press
Lussier B, Chatila R, Ingrand F, Killijian MO, Powell D (2004) On fault tolerance and robustness in autonomous systems. In: Proc. 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments, pp. 351–358
MasehianEAmin-NaseriMRA Voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ Robot Syst200421627530010.1002/rob.20014
MasehianEAmin-NaseriMRSensor-based robot motion planning—a Tabu search approachIEEE Robot Autom Mag2008152485710.1109/MRA.2008.921543
KaramanSFrazzoliESampling-based algorithms for optimal motion planningInt J Robot Res201130784689410.1177/02783649114067611220.91006
ChosetHLynchKMHutchinsonSKantorGBurgardWKavrakiLEThrunSPrinciples of robot motion: theory, algorithms, and implementations2005Cambridge, MA, USAMIT Press1081.68700
BaumannMLeonardSCroftEALittleJJPath planning for improved visibility using a probabilistic road mapIEEE Trans Robot20102619520010.1109/TRO.2009.2035745
DucksteinLOpricovicSMultiobjective optimization in river basin developmentWater Resour Res1980161142010.1029/WR016i001p00014
ZhangWJVan LutterveltCAToward a resilient manufacturing systemCIRP Ann Manuf Technol201160146947210.1016/j.cirp.2011.03.041
Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean shortest paths. In: Proc IEEE 26th Annual Symposium on Foundations of Computer Science 155–164
Keil JM, Sack JR (1985) Minimum decomposition of polygonal objects. Comput Geom 197–216
KaltsoukalasKMakrisSChryssolourisGOn generating the motion of industrial robot manipulatorsRobot Comput Integr Manuf201532657110.1016/j.rcim.2014.10.002
SavsaniPJhalaRLSavsaniVJComparative study of different metaheuristics for the trajectory planning of a robotic armIEEE Syst J201499112
LaValle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Computer Science Dept, Iowa State Univ
MasehianEAkbaripourHMohabati-KalejahiNLandscape analysis and efficient metaheuristics for solving the N-queens problemComput Optim Appl2013563735764312875610.1007/s10589-013-9578-z1287.90057
9074_CR19
9074_CR39
M Gao (9074_CR13) 2015; 42
E Masehian (9074_CR10) 2004; 21
E Masehian (9074_CR15) 2008; 15
M Baumann (9074_CR33) 2010; 26
E Masehian (9074_CR41) 2013; 56
E Masehian (9074_CR16) 2010; 11
G Taguchi (9074_CR40) 1993
H Akbaripour (9074_CR42) 2013; 24
9074_CR23
9074_CR45
9074_CR21
O Khatib (9074_CR8) 1986; 5
9074_CR26
9074_CR27
9074_CR24
9074_CR25
LE Kavraki (9074_CR20) 1996; 12
L Duckstein (9074_CR43) 1980; 16
Z Sun (9074_CR46) 2011; 46
S Chakravorty (9074_CR22) 2011; 41
9074_CR28
9074_CR29
9074_CR1
9074_CR3
H Choset (9074_CR37) 2005
9074_CR2
9074_CR5
9074_CR4
S Karaman (9074_CR30) 2011; 30
9074_CR7
9074_CR6
9074_CR9
S Byrne (9074_CR12) 2014; 37
K Kaltsoukalas (9074_CR36) 2015; 32
P Savsani (9074_CR17) 2014; 99
9074_CR11
9074_CR34
WJ Zhang (9074_CR44) 2011; 60
9074_CR31
9074_CR32
MA Contreras-Cruz (9074_CR18) 2015; 30
9074_CR38
9074_CR35
9074_CR14
References_xml – reference: Nof SY (1999) Handbook of industrial robotics, John Wiley & Sons
– reference: Huang Y, Gupta K (2009) Collision–probability constrained PRM for a manipulator with base pose uncertainty. In Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 1426–1432
– reference: ChosetHLynchKMHutchinsonSKantorGBurgardWKavrakiLEThrunSPrinciples of robot motion: theory, algorithms, and implementations2005Cambridge, MA, USAMIT Press1081.68700
– reference: GaoMChenDYangYHeZA fixed-distance planning algorithm for 6-DOF manipulatorsInd Robot: An Int J201542658659910.1108/IR-04-2015-0077
– reference: KaltsoukalasKMakrisSChryssolourisGOn generating the motion of industrial robot manipulatorsRobot Comput Integr Manuf201532657110.1016/j.rcim.2014.10.002
– reference: LaValle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Computer Science Dept, Iowa State Univ
– reference: Barbara F, Cyrill S, Nichola A, Wolfram B (2011) Efficient motion planning for manipulation robots in environments with deformable objects. In: Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 2180–2185
– reference: Contreras-CruzMAAyala-RamirezVHernandez-BelmonteUHMobile robot path planning using artificial bee colony and evolutionary programmingAppl Soft Comput20153031932810.1016/j.asoc.2015.01.067
– reference: ChakravortySKumarSGeneralized sampling-based motion plannersIEEE Trans Syst Man Cybern, Part B: Cybern201141385586610.1109/TSMCB.2010.2098438
– reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningInt J Robot Res201130784689410.1177/02783649114067611220.91006
– reference: Keil JM, Sack JR (1985) Minimum decomposition of polygonal objects. Comput Geom 197–216
– reference: KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res198651909910.1177/027836498600500106
– reference: Wang X, Shi Y, Ding D, Gu X (2015) Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Eng Optim:1–18
– reference: Devaurs D, Siméon T, Cortés J (2015) Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Algorithmic Foundations of Robotics, Springer International Publishing, pp. 143–159
– reference: Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean shortest paths. In: Proc IEEE 26th Annual Symposium on Foundations of Computer Science 155–164
– reference: Canny J (1985) A Voronoi method for the piano-movers problem. In: Pro IEEE Robotics and Automation 530–535
– reference: Huang S, Chao HH, Miranda AG, (2014) Motion planning of a 7-axis robot manipulator via Modified Tension Spline and convex optimization. In Proc IEEE Int Conf in Autom Sci and Eng (CASE), pp. 1278–1283
– reference: Byrne S, Naeem W, Ferguson S (2013) An intelligent configuration-sampling based local motion planner for robotic manipulators. In: Workshop on Robot Motion and Control (RoMoCo), pp. 147–153
– reference: Simonin E, Diard J (2008) BBPRM: A behavior–based probabilistic roadmap method. In: Proc IEEE Int Conf Systems, Man and Cybernetics, p 1719–1724
– reference: Canny J, Donald B (1988) Simplified voronoi diagrams. Discrete Comput Geom 3(3):219–36
– reference: Latombe JC (1991) Robot motion planning, Springer Science & Business Media
– reference: MasehianEAkbaripourHMohabati-KalejahiNLandscape analysis and efficient metaheuristics for solving the N-queens problemComput Optim Appl2013563735764312875610.1007/s10589-013-9578-z1287.90057
– reference: SunZZhangBChengLZhangWJApplication of the redundant servomotor approach to design of path generator with dynamic performance improvementMech Mach Theory201146111784179510.1016/j.mechmachtheory.2011.06.003
– reference: MasehianESedighizadehDMulti-objective robot motion planning using a particle swarm optimization modelJ Zhejiang Univ201011860761910.1631/jzus.C0910525
– reference: ByrneSNaeemWFergusonSImproved APF strategies for dual-arm local motion planningTrans Inst Meas Control2014371739010.1177/0142331214532002
– reference: Amato NM, Bayazit OB, Dale LK (1998) OBPRM: an obstacle-based PRM for 3D workspaces. In: Agarwal P, Kavraki LE, Mason M (ed.) Robotics: The Algorithmic Perspective, AK Peters, pp. 156–168
– reference: MasehianEAmin-NaseriMRSensor-based robot motion planning—a Tabu search approachIEEE Robot Autom Mag2008152485710.1109/MRA.2008.921543
– reference: SavsaniPJhalaRLSavsaniVJComparative study of different metaheuristics for the trajectory planning of a robotic armIEEE Syst J201499112
– reference: Wilmarth S, Amato NM, Stiller P (1999) MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 1024–1031
– reference: MasehianEAmin-NaseriMRA Voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ Robot Syst200421627530010.1002/rob.20014
– reference: AkbaripourHMasehianEEfficient and robust parameter tuning for heuristic algorithmsInt J Ind Eng2013242143150
– reference: Hwang YK, Ahuja N (1992) Gross motion planning—a survey. ACM Computing Surveys (CSUR) 24(3):219–291
– reference: Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc IEEE Int Conf on Robotics and Automation, pp. 4420–4426
– reference: KavrakiLEŠvestkaPLatombeJCOvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans Robot Autom199612456658010.1109/70.508439
– reference: BaumannMLeonardSCroftEALittleJJPath planning for improved visibility using a probabilistic road mapIEEE Trans Robot20102619520010.1109/TRO.2009.2035745
– reference: ZhangWJVan LutterveltCAToward a resilient manufacturing systemCIRP Ann Manuf Technol201160146947210.1016/j.cirp.2011.03.041
– reference: Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 521–528
– reference: Canny J (1987) A new algebraic method for robot motion planning and real geometry In: Proc IEEE 28th Annual Symposium on Foundations of Computer Science 39–48
– reference: Lussier B, Chatila R, Ingrand F, Killijian MO, Powell D (2004) On fault tolerance and robustness in autonomous systems. In: Proc. 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments, pp. 351–358
– reference: Geraerts RJ, Overmars MH (2004) Sampling techniques for probabilistic roadmap planners. In: Proc Intelligent Autonomous Systems, pp. 600–609
– reference: TaguchiGYokoyamaYTaguchi methods: design of experiments1993MillersburgAmerican Supplier Institute Press
– reference: Noori N, Noohi E, Moradi H, Bakhtiary AH, Ahmadabadi MN (2009) A probabilistic roadmap based planning algorithm for wheeled-tip robots manipulating polygonal objects. In: Proc IEEE Int Conf Advanced Intelligent Mechatronics, pp. 1040–1046
– reference: DucksteinLOpricovicSMultiobjective optimization in river basin developmentWater Resour Res1980161142010.1029/WR016i001p00014
– reference: Montgomery DC (2005) Design and analysis of experiments, Wiley
– reference: Sheng G, Jie Z, Heago C (2003) Genetic algorithm based on path planning of coordinated multi-robot manipulators. In: Proc IEEE Int Con on Robotics, Intelligent Systems and Signal Processing, pp. 763–767
– reference: Talbi EG (2009) Metaheuristics: from design to implementation, Wiley
– volume: 24
  start-page: 143
  issue: 2
  year: 2013
  ident: 9074_CR42
  publication-title: Int J Ind Eng
– ident: 9074_CR25
– ident: 9074_CR4
  doi: 10.1109/SFCS.1985.65
– ident: 9074_CR21
– volume: 30
  start-page: 846
  issue: 7
  year: 2011
  ident: 9074_CR30
  publication-title: Int J Robot Res
  doi: 10.1177/0278364911406761
– volume: 42
  start-page: 586
  issue: 6
  year: 2015
  ident: 9074_CR13
  publication-title: Ind Robot: An Int J
  doi: 10.1108/IR-04-2015-0077
– volume: 11
  start-page: 607
  issue: 8
  year: 2010
  ident: 9074_CR16
  publication-title: J Zhejiang Univ
  doi: 10.1631/jzus.C0910525
– volume: 5
  start-page: 90
  issue: 1
  year: 1986
  ident: 9074_CR8
  publication-title: Int J Robot Res
  doi: 10.1177/027836498600500106
– ident: 9074_CR27
– ident: 9074_CR24
  doi: 10.1109/ROBOT.2003.1242285
– ident: 9074_CR28
  doi: 10.1109/ROBOT.2000.844107
– ident: 9074_CR14
  doi: 10.1109/RISSP.2003.1285681
– ident: 9074_CR9
  doi: 10.1007/978-1-4615-4022-9
– ident: 9074_CR11
  doi: 10.1109/CoASE.2014.6899491
– ident: 9074_CR26
  doi: 10.1109/ROBOT.1999.772448
– ident: 9074_CR7
  doi: 10.1016/B978-0-444-87806-9.50012-8
– volume: 56
  start-page: 735
  issue: 3
  year: 2013
  ident: 9074_CR41
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-013-9578-z
– ident: 9074_CR29
  doi: 10.1109/ICSMC.2008.4811536
– ident: 9074_CR6
  doi: 10.1109/SFCS.1987.1
– ident: 9074_CR34
– ident: 9074_CR2
– volume: 21
  start-page: 275
  issue: 6
  year: 2004
  ident: 9074_CR10
  publication-title: J Robot Syst
  doi: 10.1002/rob.20014
– ident: 9074_CR19
– ident: 9074_CR32
  doi: 10.1109/IROS.2009.5354168
– volume: 30
  start-page: 319
  year: 2015
  ident: 9074_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.01.067
– volume: 16
  start-page: 14
  issue: 1
  year: 1980
  ident: 9074_CR43
  publication-title: Water Resour Res
  doi: 10.1029/WR016i001p00014
– ident: 9074_CR5
  doi: 10.1109/ROBOT.1985.1087297
– volume: 37
  start-page: 73
  issue: 1
  year: 2014
  ident: 9074_CR12
  publication-title: Trans Inst Meas Control
  doi: 10.1177/0142331214532002
– volume: 99
  start-page: 1
  year: 2014
  ident: 9074_CR17
  publication-title: IEEE Syst J
– volume: 32
  start-page: 65
  year: 2015
  ident: 9074_CR36
  publication-title: Robot Comput Integr Manuf
  doi: 10.1016/j.rcim.2014.10.002
– volume: 46
  start-page: 1784
  issue: 11
  year: 2011
  ident: 9074_CR46
  publication-title: Mech Mach Theory
  doi: 10.1016/j.mechmachtheory.2011.06.003
– ident: 9074_CR1
  doi: 10.1002/9780470172506
– ident: 9074_CR35
  doi: 10.1109/RoMoCo.2013.6614600
– volume-title: Principles of robot motion: theory, algorithms, and implementations
  year: 2005
  ident: 9074_CR37
– volume: 12
  start-page: 566
  issue: 4
  year: 1996
  ident: 9074_CR20
  publication-title: IEEE Trans Robot Autom
  doi: 10.1109/70.508439
– volume: 15
  start-page: 48
  issue: 2
  year: 2008
  ident: 9074_CR15
  publication-title: IEEE Robot Autom Mag
  doi: 10.1109/MRA.2008.921543
– ident: 9074_CR45
– ident: 9074_CR23
  doi: 10.1007/978-3-319-16595-0_9
– ident: 9074_CR3
  doi: 10.1007/BF02187909
– volume: 41
  start-page: 855
  issue: 3
  year: 2011
  ident: 9074_CR22
  publication-title: IEEE Trans Syst Man Cybern, Part B: Cybern
  doi: 10.1109/TSMCB.2010.2098438
– ident: 9074_CR31
  doi: 10.1109/AIM.2009.5229724
– ident: 9074_CR39
– volume: 60
  start-page: 469
  issue: 1
  year: 2011
  ident: 9074_CR44
  publication-title: CIRP Ann Manuf Technol
  doi: 10.1016/j.cirp.2011.03.041
– volume: 26
  start-page: 95
  issue: 1
  year: 2010
  ident: 9074_CR33
  publication-title: IEEE Trans Robot
  doi: 10.1109/TRO.2009.2035745
– ident: 9074_CR38
  doi: 10.1002/9780470496916
– volume-title: Taguchi methods: design of experiments
  year: 1993
  ident: 9074_CR40
SSID ssj0016168
ssib034539549
ssib019759004
ssib029851711
Score 2.400224
Snippet An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1401
SubjectTerms Algorithms
Automatic welding
Barriers
CAE) and Design
Collision avoidance
Computer simulation
Computer-Aided Engineering (CAD
End effectors
Engineering
Entropy (Information theory)
Industrial and Production Engineering
Manipulators
Mechanical Engineering
Media Management
Motion planning
Original Article
Parameter robustness
Path planning
Planning
Probabilistic methods
Probability theory
Road construction
Robot arms
Robustness
Sampling
Workspace
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoMnNbDPJPUmYvFUxKr0tiTZLBTsg-5W0F_vTLrbVqmC3nbJ7Cs7Sb5hMt9HyLkwPE6lFzObpRCgZFHGZOoplupQKWWxKkE5sQnRbstut_lQ1nHn1W73KiXpZupZsZujeoHQlzMM6BhfJWuw2knUa3jsvFRO5DcFCmHOnCxoovr83InDKA6nqa0y1cB9Vy8HsYjE0Sar1OeyR35dvOaI9FsS1a1Nre1_fdUO2SqhKL2Z-s4uWbGDPbK5QFC4T4qO7ffYq_p4p6g849h4kdiZjocq7avRNVUUycP7uKmGFROYs68oBPBgBosZVYMULPUkLygqH9NRqZBEp7rVFAAzRf4NpyEGx2A7LPID8ty6e7q9Z6VOAzOhCAqmNIcO5jyTvjA6s0EWKt_YpvZMpHwBABNQgU1hZrAi1sYIFcApj2Jjocn44SGpDYYDe0Ro5kH4IgAjuYpXHWqNIWEGMWQcxgBX6sSrfkBiShJz1NJ4TWb0y65DE9y4hh2a8Dq5mF0ymjJ4_GbcqP5qUg7mPEHKOhEDrpVLmwHABhDbAy5e3oypVbhcBnVyWfnAws1_epXjP1mfkI0AAYfbHdcgtWI8sadk3bwVvXx85kbIJ1WuBYo
  priority: 102
  providerName: Springer Nature
Title Semi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robots
URI https://link.springer.com/article/10.1007/s00170-016-9074-6
https://www.proquest.com/docview/1880755758
https://www.proquest.com/docview/2262274566
https://www.proquest.com/docview/2490875582
Volume 89
WOSCitedRecordID wos000396101100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: M7S
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3015
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016168
  issn: 0268-3768
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6VxwEOpbxEWhr5wKlgsY-svemlKlWiniJE2iq3le31SkjkQXaDBL-eGcebBAS59LLKyt7sJjO2v9kZfx_AmTQiydMg4bbIMUApWgVP80DxXMdKKUu7EpQTm5C9XjoYtK_9C7fSl1XWc6KbqPOxoXfklwgTIoygEH38mNxzUo2i7KqX0NiALWJJCF3pXr_2p7AtSRNz4W9Rm4Tol_4ct5J4nuXyWQcRuq1zGJakNPDSOgsaONJRJ9ESCk7hJBcv17ElOH2VT3XLVHfvf3_gJ_joASr7OfeoffhgRwewu0JbeAhV3w5v-Z16emSkR-M4eonumU3HKh-qyXemGFGKD6nUhlcznMkvGIb12A2XOKZGOfbUs7JipIfMJl43ic3VrBnCaEasHE5ZDD9j33FVHsHfbufPr9_cqzdwE8uo4koL_K-FKNJQGl3YqIhVaGxbB6alQomwE7GCzXG-sDLRxkgV4aloJcZikwnjY9gcjUf2BFgRYFAjETm5fbA61poCxQIjyyROEMQ0IKhtkRlPbU4KG3fZgpTZmS-jcjYyXyYa8G1xyWTO67Gu82ltsswP8TIjIjuZINpN32xemvPtZkq44uVp1IDz2mVWvvy9R_m8_l5fYCci3OGK5E5hs5rO7FfYNg_VbTltwtZVp3d903SjBI83_X_Pn9wS5g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgk4UD6KWGjBB7gAVmNnYydICFUtVauWFVKL1FtqO45UqfvBJgsqP4rfyIyT7BZUeuuB20Z2stnk2X6zM34P4JV2KinSKOG-LDBAKfslT4vI8MLGxhhPuxJMMJvQg0F6cpJ9WYJf3V4YKqvs5sQwURdjR_-RbyJNkBhBIfv4OPnGyTWKsqudhUYDiwN_8QNDturD_g6-39dS7n463t7jrasAd7GWNTdWaSGUKlOhnS29LGMjnM9s5PpGaKRDuIb5AnHsdWKd00bioeonzmOTEzFe9xasII2QWSgVPOrwKzJNHpxzfMuMjO8X4yfuJ3GTVWuzHEqErXoYBqU00NMu6xoFkdNgCSMUp_CVqz_XzQUZ_it_G5bF3dX_7YE-gPstAWdbzYh5CEt-9AjuXZJlfAz1kR-e8XPz84KR307QICY5azYdm2JoJu-ZYSSZPqRSIl7PcKV6x6a-wm64hDMzKrCnnVU1I79nNml9oVjj1s0wTGCkOhKc0_Az9h3X1Rp8vZGf_QSWR-ORfwqsjDBo08gMwz5fG1tLgXCJkXMSJ0jSehB17z53rXQ7OYic53PR6QCXnMr1CC656sGb-SmTRrfkus7rHUTydgqrchLq0wmy-fTK5gV8rm6mhDKensoevO0geuni_7qVZ9d_10u4s3f8-TA_3B8cPIe7kjhWKAhch-V6OvMbcNt9r8-q6YswMhmc3jRyfwN1SW4X
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL3aYJrGw9gGE2XA_LCnMav5tFPe0EYFYqqQYIi3yHZsCYmmVZMibb-ee52kfKibhPbWyjdt4lwn5-henwPwRRqRFlmQcusKJCgucTwrAsULHSulLO1KUN5sQo5G2dXV4Kz1Oa26bveuJNnsaSCVprLuTwvXX2x887IvSIMFJ3LHxUtYTaiPnuj6-WWXUOFAkinmIuGiATnR3yd0nKRxU-Zqyw4i9HvnkJdktPKyrgy67C8fv8ju0emTgqp_Tw3X__sK38HbFqKywyan3sMLW36AtQfChRtQn9vxNb9Rf34zcqTxKr0k-MxmE1WM1fSAKUai4mNqtuH1HJ_l3xgSewzDU2CqLDBSz6uakSMym7bOSazxs2YIpBnpcnhvMfyMsZO62oRfw6OL78e89W_gJpZRzZUWONlCuCyURjsbuViFxg50YBIVSgSeiBZsgU8MK1NtjFQRfhVJaiwOmTD-CCvlpLRbwFyAtEYidvI7YXWsNVFFh9wyjVOEMT0IupuRm1bcnDw2bvKFLLOf0Jwa2mhCc9GDr4tDpo2yx7-Cd7o7nLeLvMpJyk6miHezpcMIbCPk_IiXlw9TyRUPz6Ie7Hf58ODH_3Yq28-K_gyvz34M858no9NP8CYiTOIb6HZgpZ7N7S68Mrf1dTXb8wvnDnAsEVI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-lazy+probabilistic+roadmap%3A+a+parameter-tuned%2C+resilient+and+robust+path+planning+method+for+manipulator+robots&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Akbaripour%2C+Hossein&rft.au=Masehian%2C+Ellips&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=89&rft.issue=5-8&rft.spage=1401&rft.epage=1430&rft_id=info:doi/10.1007%2Fs00170-016-9074-6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon