Semi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robots
An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collisio...
Uložené v:
| Vydané v: | International journal of advanced manufacturing technology Ročník 89; číslo 5-8; s. 1401 - 1430 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Springer London
01.03.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0268-3768, 1433-3015 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only
m
terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of
m
, which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for
m
and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes. |
|---|---|
| AbstractList | An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only m terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of m, which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for m and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes. An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is highly important for industrial manipulators in charge of automatic picking and placing, welding, painting, etc. On the other hand, collision-free motion planning of serial manipulators becomes exponentially hard with the increase of number of joints, and so efficient methods like sampling-based ones are vastly used for most real-world problems. In this paper, we propose a new variation of sampling-based methods called semi-lazy probabilistic roadmap (SLPRM) for motion planning of industrial manipulators, which benefits from the advantages of the basic probabilistic roadmap (PRM) and lazy-PRM (LPRM) methods. Unlike the exhaustive and zero collision-checking policies implemented respectively in PRM and LPRM, the SLPRM collision-checks random configurations for only m terminal links (i.e., from end-effector backwards) of the manipulator in the roadmap construction phase. As a result, on one hand, the roadmap construction time reduces compared with PRM due to less collision checks, and on the other hand, query times decrease compared with LPRM due to a better quality of the initial roadmap. A central decision in SLPRM is to properly determine the value of m , which has a direct effect on its speed. For this purpose, a new parameter tuning approach based on a combination of Shannon’s Entropy and VIKOR methods is implemented to determine the best values for m and all other parameters of the algorithm. The proposed method has been tested and implemented in simulated and real workspace scenarios for an RV-E3J Mitsubishi industrial manipulator robot, and the results showed that the mean planning time of the SLPRM was shorter compared with that of the PRM and LPRM. To make the algorithm resilient and robust to internal faults and environmental variations such as positional errors, joint failures, and obstacle displacements, we have also proposed the resilient and robust SLPRM, which through concentrated sampling and roadmap-amending procedures, can handle unexpected failures and changes. |
| Author | Akbaripour, Hossein Masehian, Ellips |
| Author_xml | – sequence: 1 givenname: Hossein surname: Akbaripour fullname: Akbaripour, Hossein organization: Faculty of Industrial and Systems Engineering, Tarbiat Modares University – sequence: 2 givenname: Ellips surname: Masehian fullname: Masehian, Ellips email: masehian@modares.ac.ir organization: Faculty of Industrial and Systems Engineering, Tarbiat Modares University |
| BookMark | eNp9kU9v3CAQxVGUStn8-QC5IfVaEsA2w_ZWRW0TKVIOSc9ojHFCZIML-JB--rDaHqpK2ROg-b03M7xTchxicIRcCn4lOIfrzLkAzrhQbMuhZeqIbETbNKzhojsmGy6VZg0ofUJOc36ttBJKb0h5dLNnE_55o0uKPfZ-8rl4S1PEYcblK0W6YMLZFZdYWYMbvtDkcsVcKBTDUMl-zaVS5YUuE4bgwzOt_Esc6BgTnTH4ZZ2w1HtlY8nn5NOIU3YXf88z8uvH96ebW3b_8PPu5ts9sw3IwrBXIIRSoxZg-9HJsUFh3bbntkUBAK0W2g0auIOutxZQ1qdqO-tqyYrmjHze-9bVfq8uF_Ma1xRqSyPbLdfQdVoepKSSEtpOqUOU0JpXK-h0pcSesinmnNxoluRnTG9GcLMLyuyDMvX_zS4os3OG_zTWFyw-hpLQTweVcq_MtUt4dumfmT4UvQOKiqm4 |
| CitedBy_id | crossref_primary_10_1016_j_rcim_2021_102180 crossref_primary_10_1016_j_robot_2024_104633 crossref_primary_10_3390_robotics14050055 crossref_primary_10_1016_j_ifacol_2020_12_2706 crossref_primary_10_1109_ACCESS_2021_3058121 crossref_primary_10_1109_ACCESS_2021_3098044 crossref_primary_10_1155_2021_9589476 crossref_primary_10_1016_j_compag_2023_108183 crossref_primary_10_3390_pr11123302 crossref_primary_10_1016_j_jmapro_2022_07_005 crossref_primary_10_3390_machines11050513 crossref_primary_10_1017_S0263574723001479 crossref_primary_10_1109_ACCESS_2019_2961167 crossref_primary_10_1007_s12182_019_0305_y crossref_primary_10_1109_ACCESS_2020_3016525 crossref_primary_10_1109_TMECH_2021_3085943 crossref_primary_10_3390_su17094235 crossref_primary_10_1007_s41315_024_00330_5 crossref_primary_10_1007_s41315_024_00331_4 crossref_primary_10_1016_j_rcim_2021_102196 crossref_primary_10_1017_S0263574721000588 crossref_primary_10_1109_ACCESS_2022_3170583 crossref_primary_10_2478_amcs_2018_0038 crossref_primary_10_1016_j_neucom_2017_12_015 crossref_primary_10_1177_10775463241259296 crossref_primary_10_1007_s41315_023_00306_x crossref_primary_10_1016_j_measurement_2020_108128 crossref_primary_10_5194_ms_14_87_2023 crossref_primary_10_5194_ms_12_221_2021 crossref_primary_10_1007_s00521_018_3721_9 crossref_primary_10_1016_j_anucene_2023_110104 crossref_primary_10_1109_LRA_2018_2801462 crossref_primary_10_1007_s10846_023_02030_x crossref_primary_10_1016_j_cad_2020_102828 crossref_primary_10_1016_j_rcim_2020_102114 crossref_primary_10_1016_j_compag_2024_109567 crossref_primary_10_1007_s00170_017_0877_x crossref_primary_10_32604_cmes_2022_021451 crossref_primary_10_1007_s41315_023_00300_3 crossref_primary_10_1007_s00170_017_1167_3 |
| Cites_doi | 10.1109/SFCS.1985.65 10.1177/0278364911406761 10.1108/IR-04-2015-0077 10.1631/jzus.C0910525 10.1177/027836498600500106 10.1109/ROBOT.2003.1242285 10.1109/ROBOT.2000.844107 10.1109/RISSP.2003.1285681 10.1007/978-1-4615-4022-9 10.1109/CoASE.2014.6899491 10.1109/ROBOT.1999.772448 10.1016/B978-0-444-87806-9.50012-8 10.1007/s10589-013-9578-z 10.1109/ICSMC.2008.4811536 10.1109/SFCS.1987.1 10.1002/rob.20014 10.1109/IROS.2009.5354168 10.1016/j.asoc.2015.01.067 10.1029/WR016i001p00014 10.1109/ROBOT.1985.1087297 10.1177/0142331214532002 10.1016/j.rcim.2014.10.002 10.1016/j.mechmachtheory.2011.06.003 10.1002/9780470172506 10.1109/RoMoCo.2013.6614600 10.1109/70.508439 10.1109/MRA.2008.921543 10.1007/978-3-319-16595-0_9 10.1007/BF02187909 10.1109/TSMCB.2010.2098438 10.1109/AIM.2009.5229724 10.1016/j.cirp.2011.03.041 10.1109/TRO.2009.2035745 10.1002/9780470496916 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London 2016 Copyright Springer Science & Business Media 2017 The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved. Springer-Verlag London 2016. |
| Copyright_xml | – notice: Springer-Verlag London 2016 – notice: Copyright Springer Science & Business Media 2017 – notice: The International Journal of Advanced Manufacturing Technology is a copyright of Springer, (2016). All Rights Reserved. – notice: Springer-Verlag London 2016. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s00170-016-9074-6 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
| DatabaseTitleList | Engineering Database Engineering Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1433-3015 |
| EndPage | 1430 |
| ExternalDocumentID | 10_1007_s00170_016_9074_6 |
| GroupedDBID | -5B -5G -BR -EM -XW -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X 9M8 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z92 ZMTXR ZY4 _50 ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c372t-ab671166f817cbfe2f3a1ce9b0c4a17774818ed870e75bcc7a28ed645ce748c13 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396101100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-3768 |
| IngestDate | Tue Nov 04 23:34:58 EST 2025 Tue Nov 04 23:23:53 EST 2025 Tue Nov 04 16:24:45 EST 2025 Sat Nov 29 01:40:04 EST 2025 Tue Nov 18 21:08:12 EST 2025 Fri Feb 21 02:31:24 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5-8 |
| Keywords | Motion planning Collision checking strategy Parameter tuning Manipulator robot Semi-lazy probabilistic roadmap Robustness Resilience |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-ab671166f817cbfe2f3a1ce9b0c4a17774818ed870e75bcc7a28ed645ce748c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2262274566 |
| PQPubID | 2044010 |
| PageCount | 30 |
| ParticipantIDs | proquest_journals_2490875582 proquest_journals_2262274566 proquest_journals_1880755758 crossref_primary_10_1007_s00170_016_9074_6 crossref_citationtrail_10_1007_s00170_016_9074_6 springer_journals_10_1007_s00170_016_9074_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Heidelberg |
| PublicationTitle | International journal of advanced manufacturing technology |
| PublicationTitleAbbrev | Int J Adv Manuf Technol |
| PublicationYear | 2017 |
| Publisher | Springer London Springer Nature B.V |
| Publisher_xml | – name: Springer London – name: Springer Nature B.V |
| References | ByrneSNaeemWFergusonSImproved APF strategies for dual-arm local motion planningTrans Inst Meas Control2014371739010.1177/0142331214532002 Barbara F, Cyrill S, Nichola A, Wolfram B (2011) Efficient motion planning for manipulation robots in environments with deformable objects. In: Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 2180–2185 SunZZhangBChengLZhangWJApplication of the redundant servomotor approach to design of path generator with dynamic performance improvementMech Mach Theory201146111784179510.1016/j.mechmachtheory.2011.06.003 Simonin E, Diard J (2008) BBPRM: A behavior–based probabilistic roadmap method. In: Proc IEEE Int Conf Systems, Man and Cybernetics, p 1719–1724 Byrne S, Naeem W, Ferguson S (2013) An intelligent configuration-sampling based local motion planner for robotic manipulators. In: Workshop on Robot Motion and Control (RoMoCo), pp. 147–153 Canny J (1985) A Voronoi method for the piano-movers problem. In: Pro IEEE Robotics and Automation 530–535 Wang X, Shi Y, Ding D, Gu X (2015) Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Eng Optim:1–18 MasehianESedighizadehDMulti-objective robot motion planning using a particle swarm optimization modelJ Zhejiang Univ201011860761910.1631/jzus.C0910525 Sheng G, Jie Z, Heago C (2003) Genetic algorithm based on path planning of coordinated multi-robot manipulators. In: Proc IEEE Int Con on Robotics, Intelligent Systems and Signal Processing, pp. 763–767 Canny J (1987) A new algebraic method for robot motion planning and real geometry In: Proc IEEE 28th Annual Symposium on Foundations of Computer Science 39–48 Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 521–528 Huang S, Chao HH, Miranda AG, (2014) Motion planning of a 7-axis robot manipulator via Modified Tension Spline and convex optimization. In Proc IEEE Int Conf in Autom Sci and Eng (CASE), pp. 1278–1283 Talbi EG (2009) Metaheuristics: from design to implementation, Wiley Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc IEEE Int Conf on Robotics and Automation, pp. 4420–4426 Nof SY (1999) Handbook of industrial robotics, John Wiley & Sons Canny J, Donald B (1988) Simplified voronoi diagrams. Discrete Comput Geom 3(3):219–36 Geraerts RJ, Overmars MH (2004) Sampling techniques for probabilistic roadmap planners. In: Proc Intelligent Autonomous Systems, pp. 600–609 Huang Y, Gupta K (2009) Collision–probability constrained PRM for a manipulator with base pose uncertainty. In Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 1426–1432 Noori N, Noohi E, Moradi H, Bakhtiary AH, Ahmadabadi MN (2009) A probabilistic roadmap based planning algorithm for wheeled-tip robots manipulating polygonal objects. In: Proc IEEE Int Conf Advanced Intelligent Mechatronics, pp. 1040–1046 AkbaripourHMasehianEEfficient and robust parameter tuning for heuristic algorithmsInt J Ind Eng2013242143150 Amato NM, Bayazit OB, Dale LK (1998) OBPRM: an obstacle-based PRM for 3D workspaces. In: Agarwal P, Kavraki LE, Mason M (ed.) Robotics: The Algorithmic Perspective, AK Peters, pp. 156–168 ChakravortySKumarSGeneralized sampling-based motion plannersIEEE Trans Syst Man Cybern, Part B: Cybern201141385586610.1109/TSMCB.2010.2098438 Contreras-CruzMAAyala-RamirezVHernandez-BelmonteUHMobile robot path planning using artificial bee colony and evolutionary programmingAppl Soft Comput20153031932810.1016/j.asoc.2015.01.067 Devaurs D, Siméon T, Cortés J (2015) Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Algorithmic Foundations of Robotics, Springer International Publishing, pp. 143–159 Latombe JC (1991) Robot motion planning, Springer Science & Business Media KavrakiLEŠvestkaPLatombeJCOvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans Robot Autom199612456658010.1109/70.508439 Hwang YK, Ahuja N (1992) Gross motion planning—a survey. ACM Computing Surveys (CSUR) 24(3):219–291 GaoMChenDYangYHeZA fixed-distance planning algorithm for 6-DOF manipulatorsInd Robot: An Int J201542658659910.1108/IR-04-2015-0077 Montgomery DC (2005) Design and analysis of experiments, Wiley KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res198651909910.1177/027836498600500106 Wilmarth S, Amato NM, Stiller P (1999) MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 1024–1031 TaguchiGYokoyamaYTaguchi methods: design of experiments1993MillersburgAmerican Supplier Institute Press Lussier B, Chatila R, Ingrand F, Killijian MO, Powell D (2004) On fault tolerance and robustness in autonomous systems. In: Proc. 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments, pp. 351–358 MasehianEAmin-NaseriMRA Voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ Robot Syst200421627530010.1002/rob.20014 MasehianEAmin-NaseriMRSensor-based robot motion planning—a Tabu search approachIEEE Robot Autom Mag2008152485710.1109/MRA.2008.921543 KaramanSFrazzoliESampling-based algorithms for optimal motion planningInt J Robot Res201130784689410.1177/02783649114067611220.91006 ChosetHLynchKMHutchinsonSKantorGBurgardWKavrakiLEThrunSPrinciples of robot motion: theory, algorithms, and implementations2005Cambridge, MA, USAMIT Press1081.68700 BaumannMLeonardSCroftEALittleJJPath planning for improved visibility using a probabilistic road mapIEEE Trans Robot20102619520010.1109/TRO.2009.2035745 DucksteinLOpricovicSMultiobjective optimization in river basin developmentWater Resour Res1980161142010.1029/WR016i001p00014 ZhangWJVan LutterveltCAToward a resilient manufacturing systemCIRP Ann Manuf Technol201160146947210.1016/j.cirp.2011.03.041 Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean shortest paths. In: Proc IEEE 26th Annual Symposium on Foundations of Computer Science 155–164 Keil JM, Sack JR (1985) Minimum decomposition of polygonal objects. Comput Geom 197–216 KaltsoukalasKMakrisSChryssolourisGOn generating the motion of industrial robot manipulatorsRobot Comput Integr Manuf201532657110.1016/j.rcim.2014.10.002 SavsaniPJhalaRLSavsaniVJComparative study of different metaheuristics for the trajectory planning of a robotic armIEEE Syst J201499112 LaValle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Computer Science Dept, Iowa State Univ MasehianEAkbaripourHMohabati-KalejahiNLandscape analysis and efficient metaheuristics for solving the N-queens problemComput Optim Appl2013563735764312875610.1007/s10589-013-9578-z1287.90057 9074_CR19 9074_CR39 M Gao (9074_CR13) 2015; 42 E Masehian (9074_CR10) 2004; 21 E Masehian (9074_CR15) 2008; 15 M Baumann (9074_CR33) 2010; 26 E Masehian (9074_CR41) 2013; 56 E Masehian (9074_CR16) 2010; 11 G Taguchi (9074_CR40) 1993 H Akbaripour (9074_CR42) 2013; 24 9074_CR23 9074_CR45 9074_CR21 O Khatib (9074_CR8) 1986; 5 9074_CR26 9074_CR27 9074_CR24 9074_CR25 LE Kavraki (9074_CR20) 1996; 12 L Duckstein (9074_CR43) 1980; 16 Z Sun (9074_CR46) 2011; 46 S Chakravorty (9074_CR22) 2011; 41 9074_CR28 9074_CR29 9074_CR1 9074_CR3 H Choset (9074_CR37) 2005 9074_CR2 9074_CR5 9074_CR4 S Karaman (9074_CR30) 2011; 30 9074_CR7 9074_CR6 9074_CR9 S Byrne (9074_CR12) 2014; 37 K Kaltsoukalas (9074_CR36) 2015; 32 P Savsani (9074_CR17) 2014; 99 9074_CR11 9074_CR34 WJ Zhang (9074_CR44) 2011; 60 9074_CR31 9074_CR32 MA Contreras-Cruz (9074_CR18) 2015; 30 9074_CR38 9074_CR35 9074_CR14 |
| References_xml | – reference: Nof SY (1999) Handbook of industrial robotics, John Wiley & Sons – reference: Huang Y, Gupta K (2009) Collision–probability constrained PRM for a manipulator with base pose uncertainty. In Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 1426–1432 – reference: ChosetHLynchKMHutchinsonSKantorGBurgardWKavrakiLEThrunSPrinciples of robot motion: theory, algorithms, and implementations2005Cambridge, MA, USAMIT Press1081.68700 – reference: GaoMChenDYangYHeZA fixed-distance planning algorithm for 6-DOF manipulatorsInd Robot: An Int J201542658659910.1108/IR-04-2015-0077 – reference: KaltsoukalasKMakrisSChryssolourisGOn generating the motion of industrial robot manipulatorsRobot Comput Integr Manuf201532657110.1016/j.rcim.2014.10.002 – reference: LaValle SM (1998) Rapidly–exploring random trees: a new tool for path planning. Computer Science Dept, Iowa State Univ – reference: Barbara F, Cyrill S, Nichola A, Wolfram B (2011) Efficient motion planning for manipulation robots in environments with deformable objects. In: Proc IEEE/RSJ Int Conf Intel Rob Sys (IROS), pp. 2180–2185 – reference: Contreras-CruzMAAyala-RamirezVHernandez-BelmonteUHMobile robot path planning using artificial bee colony and evolutionary programmingAppl Soft Comput20153031932810.1016/j.asoc.2015.01.067 – reference: ChakravortySKumarSGeneralized sampling-based motion plannersIEEE Trans Syst Man Cybern, Part B: Cybern201141385586610.1109/TSMCB.2010.2098438 – reference: KaramanSFrazzoliESampling-based algorithms for optimal motion planningInt J Robot Res201130784689410.1177/02783649114067611220.91006 – reference: Keil JM, Sack JR (1985) Minimum decomposition of polygonal objects. Comput Geom 197–216 – reference: KhatibOReal-time obstacle avoidance for manipulators and mobile robotsInt J Robot Res198651909910.1177/027836498600500106 – reference: Wang X, Shi Y, Ding D, Gu X (2015) Double global optimum genetic algorithm–particle swarm optimization-based welding robot path planning. Eng Optim:1–18 – reference: Devaurs D, Siméon T, Cortés J (2015) Efficient sampling-based approaches to optimal path planning in complex cost spaces. In: Algorithmic Foundations of Robotics, Springer International Publishing, pp. 143–159 – reference: Asano T, Asano T, Guibas L, Hershberger J, Imai H (1985) Visibility-polygon search and euclidean shortest paths. In: Proc IEEE 26th Annual Symposium on Foundations of Computer Science 155–164 – reference: Canny J (1985) A Voronoi method for the piano-movers problem. In: Pro IEEE Robotics and Automation 530–535 – reference: Huang S, Chao HH, Miranda AG, (2014) Motion planning of a 7-axis robot manipulator via Modified Tension Spline and convex optimization. In Proc IEEE Int Conf in Autom Sci and Eng (CASE), pp. 1278–1283 – reference: Byrne S, Naeem W, Ferguson S (2013) An intelligent configuration-sampling based local motion planner for robotic manipulators. In: Workshop on Robot Motion and Control (RoMoCo), pp. 147–153 – reference: Simonin E, Diard J (2008) BBPRM: A behavior–based probabilistic roadmap method. In: Proc IEEE Int Conf Systems, Man and Cybernetics, p 1719–1724 – reference: Canny J, Donald B (1988) Simplified voronoi diagrams. Discrete Comput Geom 3(3):219–36 – reference: Latombe JC (1991) Robot motion planning, Springer Science & Business Media – reference: MasehianEAkbaripourHMohabati-KalejahiNLandscape analysis and efficient metaheuristics for solving the N-queens problemComput Optim Appl2013563735764312875610.1007/s10589-013-9578-z1287.90057 – reference: SunZZhangBChengLZhangWJApplication of the redundant servomotor approach to design of path generator with dynamic performance improvementMech Mach Theory201146111784179510.1016/j.mechmachtheory.2011.06.003 – reference: MasehianESedighizadehDMulti-objective robot motion planning using a particle swarm optimization modelJ Zhejiang Univ201011860761910.1631/jzus.C0910525 – reference: ByrneSNaeemWFergusonSImproved APF strategies for dual-arm local motion planningTrans Inst Meas Control2014371739010.1177/0142331214532002 – reference: Amato NM, Bayazit OB, Dale LK (1998) OBPRM: an obstacle-based PRM for 3D workspaces. In: Agarwal P, Kavraki LE, Mason M (ed.) Robotics: The Algorithmic Perspective, AK Peters, pp. 156–168 – reference: MasehianEAmin-NaseriMRSensor-based robot motion planning—a Tabu search approachIEEE Robot Autom Mag2008152485710.1109/MRA.2008.921543 – reference: SavsaniPJhalaRLSavsaniVJComparative study of different metaheuristics for the trajectory planning of a robotic armIEEE Syst J201499112 – reference: Wilmarth S, Amato NM, Stiller P (1999) MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 1024–1031 – reference: MasehianEAmin-NaseriMRA Voronoi diagram-visibility graph-potential field compound algorithm for robot path planningJ Robot Syst200421627530010.1002/rob.20014 – reference: AkbaripourHMasehianEEfficient and robust parameter tuning for heuristic algorithmsInt J Ind Eng2013242143150 – reference: Hwang YK, Ahuja N (1992) Gross motion planning—a survey. ACM Computing Surveys (CSUR) 24(3):219–291 – reference: Hsu D, Jiang T, Reif J, Sun Z (2003) The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc IEEE Int Conf on Robotics and Automation, pp. 4420–4426 – reference: KavrakiLEŠvestkaPLatombeJCOvermarsMHProbabilistic roadmaps for path planning in high-dimensional configuration spacesIEEE Trans Robot Autom199612456658010.1109/70.508439 – reference: BaumannMLeonardSCroftEALittleJJPath planning for improved visibility using a probabilistic road mapIEEE Trans Robot20102619520010.1109/TRO.2009.2035745 – reference: ZhangWJVan LutterveltCAToward a resilient manufacturing systemCIRP Ann Manuf Technol201160146947210.1016/j.cirp.2011.03.041 – reference: Bohlin R, Kavraki LE (2000) Path planning using lazy PRM. In: Proc IEEE Int Conf Robot Autom (ICRA), pp. 521–528 – reference: Canny J (1987) A new algebraic method for robot motion planning and real geometry In: Proc IEEE 28th Annual Symposium on Foundations of Computer Science 39–48 – reference: Lussier B, Chatila R, Ingrand F, Killijian MO, Powell D (2004) On fault tolerance and robustness in autonomous systems. In: Proc. 3rd IARP-IEEE/RAS-EURON joint workshop on technical challenges for dependable robots in human environments, pp. 351–358 – reference: Geraerts RJ, Overmars MH (2004) Sampling techniques for probabilistic roadmap planners. In: Proc Intelligent Autonomous Systems, pp. 600–609 – reference: TaguchiGYokoyamaYTaguchi methods: design of experiments1993MillersburgAmerican Supplier Institute Press – reference: Noori N, Noohi E, Moradi H, Bakhtiary AH, Ahmadabadi MN (2009) A probabilistic roadmap based planning algorithm for wheeled-tip robots manipulating polygonal objects. In: Proc IEEE Int Conf Advanced Intelligent Mechatronics, pp. 1040–1046 – reference: DucksteinLOpricovicSMultiobjective optimization in river basin developmentWater Resour Res1980161142010.1029/WR016i001p00014 – reference: Montgomery DC (2005) Design and analysis of experiments, Wiley – reference: Sheng G, Jie Z, Heago C (2003) Genetic algorithm based on path planning of coordinated multi-robot manipulators. In: Proc IEEE Int Con on Robotics, Intelligent Systems and Signal Processing, pp. 763–767 – reference: Talbi EG (2009) Metaheuristics: from design to implementation, Wiley – volume: 24 start-page: 143 issue: 2 year: 2013 ident: 9074_CR42 publication-title: Int J Ind Eng – ident: 9074_CR25 – ident: 9074_CR4 doi: 10.1109/SFCS.1985.65 – ident: 9074_CR21 – volume: 30 start-page: 846 issue: 7 year: 2011 ident: 9074_CR30 publication-title: Int J Robot Res doi: 10.1177/0278364911406761 – volume: 42 start-page: 586 issue: 6 year: 2015 ident: 9074_CR13 publication-title: Ind Robot: An Int J doi: 10.1108/IR-04-2015-0077 – volume: 11 start-page: 607 issue: 8 year: 2010 ident: 9074_CR16 publication-title: J Zhejiang Univ doi: 10.1631/jzus.C0910525 – volume: 5 start-page: 90 issue: 1 year: 1986 ident: 9074_CR8 publication-title: Int J Robot Res doi: 10.1177/027836498600500106 – ident: 9074_CR27 – ident: 9074_CR24 doi: 10.1109/ROBOT.2003.1242285 – ident: 9074_CR28 doi: 10.1109/ROBOT.2000.844107 – ident: 9074_CR14 doi: 10.1109/RISSP.2003.1285681 – ident: 9074_CR9 doi: 10.1007/978-1-4615-4022-9 – ident: 9074_CR11 doi: 10.1109/CoASE.2014.6899491 – ident: 9074_CR26 doi: 10.1109/ROBOT.1999.772448 – ident: 9074_CR7 doi: 10.1016/B978-0-444-87806-9.50012-8 – volume: 56 start-page: 735 issue: 3 year: 2013 ident: 9074_CR41 publication-title: Comput Optim Appl doi: 10.1007/s10589-013-9578-z – ident: 9074_CR29 doi: 10.1109/ICSMC.2008.4811536 – ident: 9074_CR6 doi: 10.1109/SFCS.1987.1 – ident: 9074_CR34 – ident: 9074_CR2 – volume: 21 start-page: 275 issue: 6 year: 2004 ident: 9074_CR10 publication-title: J Robot Syst doi: 10.1002/rob.20014 – ident: 9074_CR19 – ident: 9074_CR32 doi: 10.1109/IROS.2009.5354168 – volume: 30 start-page: 319 year: 2015 ident: 9074_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.01.067 – volume: 16 start-page: 14 issue: 1 year: 1980 ident: 9074_CR43 publication-title: Water Resour Res doi: 10.1029/WR016i001p00014 – ident: 9074_CR5 doi: 10.1109/ROBOT.1985.1087297 – volume: 37 start-page: 73 issue: 1 year: 2014 ident: 9074_CR12 publication-title: Trans Inst Meas Control doi: 10.1177/0142331214532002 – volume: 99 start-page: 1 year: 2014 ident: 9074_CR17 publication-title: IEEE Syst J – volume: 32 start-page: 65 year: 2015 ident: 9074_CR36 publication-title: Robot Comput Integr Manuf doi: 10.1016/j.rcim.2014.10.002 – volume: 46 start-page: 1784 issue: 11 year: 2011 ident: 9074_CR46 publication-title: Mech Mach Theory doi: 10.1016/j.mechmachtheory.2011.06.003 – ident: 9074_CR1 doi: 10.1002/9780470172506 – ident: 9074_CR35 doi: 10.1109/RoMoCo.2013.6614600 – volume-title: Principles of robot motion: theory, algorithms, and implementations year: 2005 ident: 9074_CR37 – volume: 12 start-page: 566 issue: 4 year: 1996 ident: 9074_CR20 publication-title: IEEE Trans Robot Autom doi: 10.1109/70.508439 – volume: 15 start-page: 48 issue: 2 year: 2008 ident: 9074_CR15 publication-title: IEEE Robot Autom Mag doi: 10.1109/MRA.2008.921543 – ident: 9074_CR45 – ident: 9074_CR23 doi: 10.1007/978-3-319-16595-0_9 – ident: 9074_CR3 doi: 10.1007/BF02187909 – volume: 41 start-page: 855 issue: 3 year: 2011 ident: 9074_CR22 publication-title: IEEE Trans Syst Man Cybern, Part B: Cybern doi: 10.1109/TSMCB.2010.2098438 – ident: 9074_CR31 doi: 10.1109/AIM.2009.5229724 – ident: 9074_CR39 – volume: 60 start-page: 469 issue: 1 year: 2011 ident: 9074_CR44 publication-title: CIRP Ann Manuf Technol doi: 10.1016/j.cirp.2011.03.041 – volume: 26 start-page: 95 issue: 1 year: 2010 ident: 9074_CR33 publication-title: IEEE Trans Robot doi: 10.1109/TRO.2009.2035745 – ident: 9074_CR38 doi: 10.1002/9780470496916 – volume-title: Taguchi methods: design of experiments year: 1993 ident: 9074_CR40 |
| SSID | ssj0016168 ssib034539549 ssib019759004 ssib029851711 |
| Score | 2.400224 |
| Snippet | An indispensable feature of a modern intelligent robot is its capability to plan short and safe motions in the presence of obstacles in its workspace, which is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1401 |
| SubjectTerms | Algorithms Automatic welding Barriers CAE) and Design Collision avoidance Computer simulation Computer-Aided Engineering (CAD End effectors Engineering Entropy (Information theory) Industrial and Production Engineering Manipulators Mechanical Engineering Media Management Motion planning Original Article Parameter robustness Path planning Planning Probabilistic methods Probability theory Road construction Robot arms Robustness Sampling Workspace |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPejBt1itkoMnNbDPJPUmYvFUxKr0tiTZLBTsg-5W0F_vTLrbVqmC3nbJ7Cs7Sb5hMt9HyLkwPE6lFzObpRCgZFHGZOoplupQKWWxKkE5sQnRbstut_lQ1nHn1W73KiXpZupZsZujeoHQlzMM6BhfJWuw2knUa3jsvFRO5DcFCmHOnCxoovr83InDKA6nqa0y1cB9Vy8HsYjE0Sar1OeyR35dvOaI9FsS1a1Nre1_fdUO2SqhKL2Z-s4uWbGDPbK5QFC4T4qO7ffYq_p4p6g849h4kdiZjocq7avRNVUUycP7uKmGFROYs68oBPBgBosZVYMULPUkLygqH9NRqZBEp7rVFAAzRf4NpyEGx2A7LPID8ty6e7q9Z6VOAzOhCAqmNIcO5jyTvjA6s0EWKt_YpvZMpHwBABNQgU1hZrAi1sYIFcApj2Jjocn44SGpDYYDe0Ro5kH4IgAjuYpXHWqNIWEGMWQcxgBX6sSrfkBiShJz1NJ4TWb0y65DE9y4hh2a8Dq5mF0ymjJ4_GbcqP5qUg7mPEHKOhEDrpVLmwHABhDbAy5e3oypVbhcBnVyWfnAws1_epXjP1mfkI0AAYfbHdcgtWI8sadk3bwVvXx85kbIJ1WuBYo priority: 102 providerName: Springer Nature |
| Title | Semi-lazy probabilistic roadmap: a parameter-tuned, resilient and robust path planning method for manipulator robots |
| URI | https://link.springer.com/article/10.1007/s00170-016-9074-6 https://www.proquest.com/docview/1880755758 https://www.proquest.com/docview/2262274566 https://www.proquest.com/docview/2490875582 |
| Volume | 89 |
| WOSCitedRecordID | wos000396101100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1433-3015 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: M7S dateStart: 19970201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1433-3015 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1433-3015 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016168 issn: 0268-3768 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB6VxwEOpbxEWhr5wKlgsY-svemlKlWiniJE2iq3le31SkjkQXaDBL-eGcebBAS59LLKyt7sJjO2v9kZfx_AmTQiydMg4bbIMUApWgVP80DxXMdKKUu7EpQTm5C9XjoYtK_9C7fSl1XWc6KbqPOxoXfklwgTIoygEH38mNxzUo2i7KqX0NiALWJJCF3pXr_2p7AtSRNz4W9Rm4Tol_4ct5J4nuXyWQcRuq1zGJakNPDSOgsaONJRJ9ESCk7hJBcv17ElOH2VT3XLVHfvf3_gJ_joASr7OfeoffhgRwewu0JbeAhV3w5v-Z16emSkR-M4eonumU3HKh-qyXemGFGKD6nUhlcznMkvGIb12A2XOKZGOfbUs7JipIfMJl43ic3VrBnCaEasHE5ZDD9j33FVHsHfbufPr9_cqzdwE8uo4koL_K-FKNJQGl3YqIhVaGxbB6alQomwE7GCzXG-sDLRxkgV4aloJcZikwnjY9gcjUf2BFgRYFAjETm5fbA61poCxQIjyyROEMQ0IKhtkRlPbU4KG3fZgpTZmS-jcjYyXyYa8G1xyWTO67Gu82ltsswP8TIjIjuZINpN32xemvPtZkq44uVp1IDz2mVWvvy9R_m8_l5fYCci3OGK5E5hs5rO7FfYNg_VbTltwtZVp3d903SjBI83_X_Pn9wS5g |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFgk4UD6KWGjBB7gAVmNnYydICFUtVauWFVKL1FtqO45UqfvBJgsqP4rfyIyT7BZUeuuB20Z2stnk2X6zM34P4JV2KinSKOG-LDBAKfslT4vI8MLGxhhPuxJMMJvQg0F6cpJ9WYJf3V4YKqvs5sQwURdjR_-RbyJNkBhBIfv4OPnGyTWKsqudhUYDiwN_8QNDturD_g6-39dS7n463t7jrasAd7GWNTdWaSGUKlOhnS29LGMjnM9s5PpGaKRDuIb5AnHsdWKd00bioeonzmOTEzFe9xasII2QWSgVPOrwKzJNHpxzfMuMjO8X4yfuJ3GTVWuzHEqErXoYBqU00NMu6xoFkdNgCSMUp_CVqz_XzQUZ_it_G5bF3dX_7YE-gPstAWdbzYh5CEt-9AjuXZJlfAz1kR-e8XPz84KR307QICY5azYdm2JoJu-ZYSSZPqRSIl7PcKV6x6a-wm64hDMzKrCnnVU1I79nNml9oVjj1s0wTGCkOhKc0_Az9h3X1Rp8vZGf_QSWR-ORfwqsjDBo08gMwz5fG1tLgXCJkXMSJ0jSehB17z53rXQ7OYic53PR6QCXnMr1CC656sGb-SmTRrfkus7rHUTydgqrchLq0wmy-fTK5gV8rm6mhDKensoevO0geuni_7qVZ9d_10u4s3f8-TA_3B8cPIe7kjhWKAhch-V6OvMbcNt9r8-q6YswMhmc3jRyfwN1SW4X |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL3aYJrGw9gGE2XA_LCnMav5tFPe0EYFYqqQYIi3yHZsCYmmVZMibb-ee52kfKibhPbWyjdt4lwn5-henwPwRRqRFlmQcusKJCgucTwrAsULHSulLO1KUN5sQo5G2dXV4Kz1Oa26bveuJNnsaSCVprLuTwvXX2x887IvSIMFJ3LHxUtYTaiPnuj6-WWXUOFAkinmIuGiATnR3yd0nKRxU-Zqyw4i9HvnkJdktPKyrgy67C8fv8ju0emTgqp_Tw3X__sK38HbFqKywyan3sMLW36AtQfChRtQn9vxNb9Rf34zcqTxKr0k-MxmE1WM1fSAKUai4mNqtuH1HJ_l3xgSewzDU2CqLDBSz6uakSMym7bOSazxs2YIpBnpcnhvMfyMsZO62oRfw6OL78e89W_gJpZRzZUWONlCuCyURjsbuViFxg50YBIVSgSeiBZsgU8MK1NtjFQRfhVJaiwOmTD-CCvlpLRbwFyAtEYidvI7YXWsNVFFh9wyjVOEMT0IupuRm1bcnDw2bvKFLLOf0Jwa2mhCc9GDr4tDpo2yx7-Cd7o7nLeLvMpJyk6miHezpcMIbCPk_IiXlw9TyRUPz6Ie7Hf58ODH_3Yq28-K_gyvz34M858no9NP8CYiTOIb6HZgpZ7N7S68Mrf1dTXb8wvnDnAsEVI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-lazy+probabilistic+roadmap%3A+a+parameter-tuned%2C+resilient+and+robust+path+planning+method+for+manipulator+robots&rft.jtitle=International+journal+of+advanced+manufacturing+technology&rft.au=Akbaripour%2C+Hossein&rft.au=Masehian%2C+Ellips&rft.date=2017-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0268-3768&rft.eissn=1433-3015&rft.volume=89&rft.issue=5-8&rft.spage=1401&rft.epage=1430&rft_id=info:doi/10.1007%2Fs00170-016-9074-6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-3768&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-3768&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-3768&client=summon |