Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces

Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Medical & biological engineering & computing Ročník 55; číslo 10; s. 1809 - 1818
Hlavní autoři: Dong, Enzeng, Li, Changhai, Li, Liting, Du, Shengzhi, Belkacem, Abdelkader Nasreddine, Chen, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2017
Springer Nature B.V
Témata:
ISSN:0140-0118, 1741-0444, 1741-0444
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0140-0118
1741-0444
1741-0444
DOI:10.1007/s11517-017-1611-4