Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces
Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed...
Uložené v:
| Vydané v: | Medical & biological engineering & computing Ročník 55; číslo 10; s. 1809 - 1818 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2017
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0140-0118, 1741-0444, 1741-0444 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Pattern classification algorithm is the crucial step in developing brain–computer interface (BCI) applications. In this paper, a hierarchical support vector machine (HSVM) algorithm is proposed to address an EEG-based four-class motor imagery classification task. Wavelet packet transform is employed to decompose raw EEG signals. Thereafter, EEG signals with effective frequency sub-bands are grouped and reconstructed. EEG feature vectors are extracted from the reconstructed EEG signals with one versus the rest common spatial patterns (OVR-CSP) and one versus one common spatial patterns (OVO-CSP). Then, a two-layer HSVM algorithm is designed for the classification of these EEG feature vectors, where “OVO” classifiers are used in the first layer and “OVR” in the second layer. A public dataset (BCI Competition IV-II-a)is employed to validate the proposed method. Fivefold cross-validation results demonstrate that the average accuracy of classification in the first layer and the second layer is 67.5 ± 17.7% and 60.3 ± 14.7%, respectively. The average accuracy of the classification is 64.4 ± 16.7% overall. These results show that the proposed method is effective for four-class motor imagery classification. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0140-0118 1741-0444 1741-0444 |
| DOI: | 10.1007/s11517-017-1611-4 |