Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high nu...
Gespeichert in:
| Veröffentlicht in: | International journal of legal medicine Jg. 133; H. 4; S. 1191 - 1205 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0937-9827, 1437-1596, 1437-1596 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future. |
|---|---|
| AbstractList | Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future. Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future. |
| Author | Auf der Mauer, Markus Säring, Dennis Pröve, Paul-Louis Herrmann, Jochen Groth, Michael Stanczus, Ben Morlock, Michael M. Jopp-van Well, Eilin |
| Author_xml | – sequence: 1 givenname: Paul-Louis surname: Pröve fullname: Pröve, Paul-Louis organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel – sequence: 2 givenname: Eilin surname: Jopp-van Well fullname: Jopp-van Well, Eilin organization: Department of Legal Medicine, University Medical Center Hamburg-Eppendorf (UKE) – sequence: 3 givenname: Ben surname: Stanczus fullname: Stanczus, Ben organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel – sequence: 4 givenname: Michael M. surname: Morlock fullname: Morlock, Michael M. organization: Institute of Biomechanics M3, Hamburg University of Technology (TUHH) – sequence: 5 givenname: Jochen surname: Herrmann fullname: Herrmann, Jochen organization: Pediatric Radiology Department, University Medical Center Hamburg-Eppendorf (UKE) – sequence: 6 givenname: Michael surname: Groth fullname: Groth, Michael organization: Pediatric Radiology Department, University Medical Center Hamburg-Eppendorf (UKE) – sequence: 7 givenname: Dennis surname: Säring fullname: Säring, Dennis organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel – sequence: 8 givenname: Markus orcidid: 0000-0002-5589-3681 surname: Auf der Mauer fullname: Auf der Mauer, Markus email: adm@fh-wedel.de organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30392059$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1q3TAQhUVJaW7SPkA3QZBNN04ly7KsZUiaH0gplHYtZHt068SWEo3cct8-cp1QCKQLMYL5zmFmzgHZ88EDIR85O-GMqc_IWMWrgvGm4FqKYveGbHglVMGlrvfIhun8102p9skB4i1jXNVKviP7ggldMqk3ZDidU5hsgp4ibCfwyaYheBocTb-A3nkA6kKkdgvUIgLiwtDBU3FOv36nw5Q7SGcc_JZ2wf8O47wY2JF6mOPfkv6EeIfvyVtnR4QPT_WQ_Lz48uPsqrj5dnl9dnpTdEKVqdCur2UDlbat5LLSrmlVVXHeQ985DbJ1LQgLqpdO1lAxXWZOtFZ0zOVnxSH5tPrex_AwAyYzDdjBOFoPYUZTcsGYrOtSZvT4BXob5phnX6iy0UIK3WTq6Ima2wl6cx_z0nFnno-YAbUCXQyIEZzphvWMKdphNJyZJS6zxmVyXGaJy-yykr9QPpv_T1OuGsys30L8N_Trokd4zahT |
| CitedBy_id | crossref_primary_10_1049_ipr2_12045 crossref_primary_10_3390_diagnostics15030257 crossref_primary_10_1007_s00414_022_02797_y crossref_primary_10_3390_biomedicines11072046 crossref_primary_10_1007_s00256_019_03284_z crossref_primary_10_1109_TIM_2023_3345906 crossref_primary_10_1371_journal_pone_0251388 crossref_primary_10_17816_fm16174 crossref_primary_10_1007_s00414_020_02465_z crossref_primary_10_1080_20961790_2020_1717029 crossref_primary_10_3390_math11041027 crossref_primary_10_1055_a_1313_7664 crossref_primary_10_1007_s00194_019_00346_3 crossref_primary_10_1007_s00330_023_09546_8 crossref_primary_10_1109_TCSS_2021_3132040 crossref_primary_10_1155_2022_2210820 crossref_primary_10_3390_electronics12030590 crossref_primary_10_1007_s00414_023_03148_1 |
| Cites_doi | 10.1109/3DV.2016.79 10.1109/CVPR.2016.90 10.1016/j.forsciint.2011.11.013 10.1007/s00330-017-4880-2 10.5244/C.30.124 10.1007/s00414-014-0987-z 10.1117/1.JMI.2.2.024001 10.1007/s00414-014-1020-2 10.1007/978-3-319-24574-4_28 10.1148/radiol.2243011259 10.1007/s12024-014-9559-2 10.1016/j.media.2017.07.005 10.1109/ISBI.2016.7493232 10.1109/TMI.2010.2046908 10.1007/s11517-011-0838-8 10.1007/978-3-642-54111-7_16 10.1016/j.compmedimag.2010.07.003 10.1073/pnas.1715832114 10.1007/s00194-010-0704-2 10.1007/s00414-014-0967-3 10.1007/978-3-319-46723-8_49 10.1007/s00194-010-0705-1 10.1016/j.forsciint.2016.10.002 10.1109/CVPR.2017.660 10.1007/s00414-018-1826-4 10.1016/j.forsciint.2015.12.006 10.1109/CVPR.2017.549 10.1109/72.572104 10.1007/978-3-319-10470-6_28 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 International Journal of Legal Medicine is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: International Journal of Legal Medicine is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 7X7 7XB 88E 8AM 8AO 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AFKRA ALSLI BENPR BGLVJ BGRYB CCPQU DWQXO FYUFA GHDGH HCIFZ K7. K9. L6V M0O M0S M1P M7S PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PTHSS Q9U 7X8 |
| DOI | 10.1007/s00414-018-1953-y |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Criminal Justice Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Technology Collection Criminology Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) SciTech Premium Collection ProQuest Criminal Justice (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Criminal Justice Database Health & Medical Collection (Alumni Edition) Medical Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health Research Premium Collection ProQuest Criminal Justice Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Social Science Premium Collection Engineering Database ProQuest One Social Sciences ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Criminology Collection ProQuest Health & Medical Complete ProQuest Criminal Justice (Alumni) Criminal Justice Periodicals (Alumni Edition) ProQuest Medical Library ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 1437-1596 |
| EndPage | 1205 |
| ExternalDocumentID | 30392059 10_1007_s00414_018_1953_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SA 2530/6-1; JO 1198/2-1 funderid: https://doi.org/10.13039/501100001659 – fundername: Deutsche Forschungsgemeinschaft grantid: SA 2530/6-1 – fundername: Deutsche Forschungsgemeinschaft grantid: JO 1198/2-1 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -~C .86 .VR 0-V 06C 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 44B 53G 5GY 5VS 67Z 6NX 7X7 88E 8AO 8FE 8FG 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABOCM ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADUOI ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AOCGG ARALO ARMRJ AXYYD AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BGRYB BPHCQ BSONS BVXVI CCPQU CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HISYW HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L6V LAS LLZTM M0O M1P M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF- PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R-Y R89 R9I RHO RHV RNS ROL RPX RRX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TN5 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7X Z82 Z83 Z84 Z87 Z8O Z8V Z8W Z8Y Z91 ZMTXR ZOVNA ~EX -Y2 .55 2.D 28- 2P1 2VQ 3O- 5QI AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ACUDM ACYUM ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EN4 GRRUI H13 KOW N2Q NDZJH O-J O9- PHGZM PHGZT PJZUB PPXIY PQGLB PRQQA RNI RZK S1Z S26 S28 SCLPG SDE T16 WK6 X7M ZXP 3V. CGR CUY CVF ECM EIF NPM RIG 7XB 8FK K7. K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c372t-9fd658e49ab51549f8b74411dedcf9e5bfbe3ae7d5f56e4092b513ba3c0f3c0a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473685700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0937-9827 1437-1596 |
| IngestDate | Fri Sep 05 13:40:22 EDT 2025 Thu Nov 20 04:31:37 EST 2025 Wed Feb 19 02:31:03 EST 2025 Tue Nov 18 22:08:45 EST 2025 Sat Nov 29 04:10:27 EST 2025 Fri Feb 21 02:41:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Knee Age estimation Segmentation Convolutional neural networks MRI |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-9fd658e49ab51549f8b74411dedcf9e5bfbe3ae7d5f56e4092b513ba3c0f3c0a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5589-3681 |
| PMID | 30392059 |
| PQID | 2128935398 |
| PQPubID | 47323 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2130056625 proquest_journals_2128935398 pubmed_primary_30392059 crossref_citationtrail_10_1007_s00414_018_1953_y crossref_primary_10_1007_s00414_018_1953_y springer_journals_10_1007_s00414_018_1953_y |
| PublicationCentury | 2000 |
| PublicationDate | 20190701 2019-7-00 2019-Jul |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 7 year: 2019 text: 20190701 day: 1 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | International journal of legal medicine |
| PublicationTitleAbbrev | Int J Legal Med |
| PublicationTitleAlternate | Int J Legal Med |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432 Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69 DedouitFAuriolJRousseauHRougéDCrubézyETelmonNAge assessment by magnetic resonance imaging of the knee: a preliminary studyForensic Sci Int20122171-323210.1016/j.forsciint.2011.11.013 Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14 Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF) SetionoRLiuHNeural-network feature selectorIEEE Trans Neural Netw199786546621:STN:280:DC%2BD1c%2FpvVeisA%3D%3D10.1109/72.572104 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine European Asylum Support Office (2013) Age assessment practice in Europe Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571 PeltDMSethianJAA mixed-scale dense convolutional neural network for image analysisProc Natl Acad Sci201811522542591:CAS:528:DC%2BC2sXitVequr7E10.1073/pnas.1715832114 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15 Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260 SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958 KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVForensic age estimation in living individuals using 3.0T MRI of the distal femurInt J Legal Med2014128350951410.1007/s00414-014-0967-3 DodinPMartel-PelletierJPelletierJ-PPAbramFA fully automated human knee 3D MRI bone segmentation using the ray casting techniqueMed Biol Eng Comput201149121413142410.1007/s11517-011-0838-8 Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation Saint-MartinPRérolleCDedouitFRousseauHRougéDTelmonNEvaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year thresholdInt J Legal Med201412867568310.1007/s00414-014-0987-z Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13 Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012) Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14 Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network Saint-MartinPRérolleCPucheuxJDedouitFTelmonNContribution of distal femur MRI to the determination of the 18-year limit in forensic age estimationInt J Legal Med2015129361962010.1007/s00414-014-1020-2 TustisonNJAvantsBBCookPAZhengYEganAYushkevichPAGeeJCN4ITK: improved N3 bias correctionIEEE Trans Med Imaging2010291310132010.1109/TMI.2010.2046908 GeserickGSchmelingAQualitätssicherung der Forensischen Altersdiagnostik bei Lebenden PersonenRechtsmedizin2011211222510.1007/s00194-010-0704-2 JiangJTrundlePRenJMedical image analysis with artificial neural networksComput Med Imaging Graph2010346176311:STN:280:DC%2BC3cbgsV2rtA%3D%3D10.1016/j.compmedimag.2010.07.003 Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMvan der LaakJAWMvan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456 PrasoonAPetersenKIgelCLauzeFDamENielsenMDeep feature learning for knee cartilage segmentation using a triplanar convolutional neural networkMedical Image Computing and Computer-Assisted Intervention – MICCAI 201320138150246253 Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8 SternDEbnerTBischofHGrasseggerSEhammerTUrschlerMFully automatic bone age estimation from left hand MR imagesMedical Image Computing and Computer-Assisted Intervention - MICCAI 20142014117222022710.1007/978-3-319-10470-6_28 KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVThe use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individualsForensic Sci Med Pathol201410330631310.1007/s12024-014-9559-2 Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2 LaorTChunGFHDardzinskiBJBeanJAWitteDPPosterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adultsRadiology200222466967410.1148/radiol.2243011259 Chollet F (2017) Deep Learning With python, vol 1. Manning Publications JoppESchröderIMaasRAdamGPüschelKProximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?Rechtsmedizin20102046446810.1007/s00194-010-0705-1 FanFZhangKPengZHui CuiJ-hHuNHua DengZ-hForensic age estimation of living persons from the knee: comparison of MRI with radiographsForensic Sci Int201626814515010.1016/j.forsciint.2016.10.002 Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 World Health Organization (2016) Ionizing radiation, health effects and protective measures NVIDIA GPU vs CPU? What is GPU Computing? Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14 1953_CR22 F Dedouit (1953_CR6) 2012; 217 1953_CR23 1953_CR25 1953_CR26 1953_CR27 1953_CR28 1953_CR29 P Dodin (1953_CR17) 2011; 49 1953_CR21 DM Pelt (1953_CR50) 2018; 115 T Laor (1953_CR10) 2002; 224 G Geserick (1953_CR2) 2011; 21 D Stern (1953_CR20) 2014; 117 F Fan (1953_CR12) 2016; 268 1953_CR33 1953_CR34 JA Krämer (1953_CR48) 2014; 10 1953_CR35 1953_CR36 1953_CR37 1953_CR38 1953_CR30 1953_CR31 1953_CR32 P Saint-Martin (1953_CR49) 2015; 129 E Jopp (1953_CR7) 2010; 20 P Saint-Martin (1953_CR46) 2014; 128 J Jiang (1953_CR14) 2010; 34 1953_CR45 1953_CR47 1953_CR40 1953_CR41 1953_CR42 1953_CR43 JA Krämer (1953_CR9) 2014; 128 1953_CR11 N Srivastava (1953_CR39) 2014; 15 1953_CR1 1953_CR13 1953_CR3 1953_CR4 1953_CR5 NJ Tustison (1953_CR24) 2010; 29 G Litjens (1953_CR15) 2017; 42 1953_CR18 A Prasoon (1953_CR44) 2013; 8150 R Setiono (1953_CR16) 1997; 8 1953_CR8 1953_CR19 |
| References_xml | – reference: Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432 – reference: Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 – reference: Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF) – reference: Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65 – reference: LaorTChunGFHDardzinskiBJBeanJAWitteDPPosterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adultsRadiology200222466967410.1148/radiol.2243011259 – reference: JiangJTrundlePRenJMedical image analysis with artificial neural networksComput Med Imaging Graph2010346176311:STN:280:DC%2BC3cbgsV2rtA%3D%3D10.1016/j.compmedimag.2010.07.003 – reference: Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation – reference: KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVThe use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individualsForensic Sci Med Pathol201410330631310.1007/s12024-014-9559-2 – reference: SetionoRLiuHNeural-network feature selectorIEEE Trans Neural Netw199786546621:STN:280:DC%2BD1c%2FpvVeisA%3D%3D10.1109/72.572104 – reference: Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14 – reference: KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVForensic age estimation in living individuals using 3.0T MRI of the distal femurInt J Legal Med2014128350951410.1007/s00414-014-0967-3 – reference: Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network – reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456 – reference: Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac – reference: Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260 – reference: Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation – reference: SternDEbnerTBischofHGrasseggerSEhammerTUrschlerMFully automatic bone age estimation from left hand MR imagesMedical Image Computing and Computer-Assisted Intervention - MICCAI 20142014117222022710.1007/978-3-319-10470-6_28 – reference: TustisonNJAvantsBBCookPAZhengYEganAYushkevichPAGeeJCN4ITK: improved N3 bias correctionIEEE Trans Med Imaging2010291310132010.1109/TMI.2010.2046908 – reference: Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14 – reference: Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8 – reference: European Asylum Support Office (2013) Age assessment practice in Europe – reference: Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15 – reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012) – reference: PeltDMSethianJAA mixed-scale dense convolutional neural network for image analysisProc Natl Acad Sci201811522542591:CAS:528:DC%2BC2sXitVequr7E10.1073/pnas.1715832114 – reference: Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351 – reference: PrasoonAPetersenKIgelCLauzeFDamENielsenMDeep feature learning for knee cartilage segmentation using a triplanar convolutional neural networkMedical Image Computing and Computer-Assisted Intervention – MICCAI 201320138150246253 – reference: Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich – reference: Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571 – reference: Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69 – reference: Saint-MartinPRérolleCDedouitFRousseauHRougéDTelmonNEvaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year thresholdInt J Legal Med201412867568310.1007/s00414-014-0987-z – reference: JoppESchröderIMaasRAdamGPüschelKProximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?Rechtsmedizin20102046446810.1007/s00194-010-0705-1 – reference: NVIDIA GPU vs CPU? What is GPU Computing? – reference: Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2 – reference: Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine – reference: Saint-MartinPRérolleCPucheuxJDedouitFTelmonNContribution of distal femur MRI to the determination of the 18-year limit in forensic age estimationInt J Legal Med2015129361962010.1007/s00414-014-1020-2 – reference: LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMvan der LaakJAWMvan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005 – reference: Chollet F (2017) Deep Learning With python, vol 1. Manning Publications – reference: Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation – reference: Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14 – reference: FanFZhangKPengZHui CuiJ-hHuNHua DengZ-hForensic age estimation of living persons from the knee: comparison of MRI with radiographsForensic Sci Int201626814515010.1016/j.forsciint.2016.10.002 – reference: World Health Organization (2016) Ionizing radiation, health effects and protective measures – reference: Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14 – reference: Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13 – reference: DodinPMartel-PelletierJPelletierJ-PPAbramFA fully automated human knee 3D MRI bone segmentation using the ray casting techniqueMed Biol Eng Comput201149121413142410.1007/s11517-011-0838-8 – reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 – reference: GeserickGSchmelingAQualitätssicherung der Forensischen Altersdiagnostik bei Lebenden PersonenRechtsmedizin2011211222510.1007/s00194-010-0704-2 – reference: Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis – reference: DedouitFAuriolJRousseauHRougéDCrubézyETelmonNAge assessment by magnetic resonance imaging of the knee: a preliminary studyForensic Sci Int20122171-323210.1016/j.forsciint.2011.11.013 – ident: 1953_CR34 doi: 10.1109/3DV.2016.79 – ident: 1953_CR27 doi: 10.1109/CVPR.2016.90 – volume: 217 start-page: 232 issue: 1-3 year: 2012 ident: 1953_CR6 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2011.11.013 – ident: 1953_CR13 doi: 10.1007/s00330-017-4880-2 – ident: 1953_CR28 – ident: 1953_CR38 – ident: 1953_CR40 – ident: 1953_CR33 doi: 10.5244/C.30.124 – volume: 128 start-page: 675 year: 2014 ident: 1953_CR46 publication-title: Int J Legal Med doi: 10.1007/s00414-014-0987-z – ident: 1953_CR18 doi: 10.1117/1.JMI.2.2.024001 – ident: 1953_CR25 – volume: 129 start-page: 619 issue: 3 year: 2015 ident: 1953_CR49 publication-title: Int J Legal Med doi: 10.1007/s00414-014-1020-2 – ident: 1953_CR19 doi: 10.1007/978-3-319-24574-4_28 – volume: 224 start-page: 669 year: 2002 ident: 1953_CR10 publication-title: Radiology doi: 10.1148/radiol.2243011259 – volume: 10 start-page: 306 issue: 3 year: 2014 ident: 1953_CR48 publication-title: Forensic Sci Med Pathol doi: 10.1007/s12024-014-9559-2 – volume: 42 start-page: 60 year: 2017 ident: 1953_CR15 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – ident: 1953_CR21 doi: 10.1109/ISBI.2016.7493232 – ident: 1953_CR29 – volume: 29 start-page: 1310 year: 2010 ident: 1953_CR24 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2046908 – volume: 49 start-page: 1413 issue: 12 year: 2011 ident: 1953_CR17 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0838-8 – ident: 1953_CR41 – ident: 1953_CR8 – ident: 1953_CR45 doi: 10.1007/978-3-642-54111-7_16 – ident: 1953_CR5 – ident: 1953_CR1 – volume: 34 start-page: 617 year: 2010 ident: 1953_CR14 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2010.07.003 – ident: 1953_CR32 – ident: 1953_CR36 – ident: 1953_CR26 – ident: 1953_CR4 – ident: 1953_CR42 – volume: 115 start-page: 254 issue: 2 year: 2018 ident: 1953_CR50 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1715832114 – volume: 21 start-page: 22 issue: 1 year: 2011 ident: 1953_CR2 publication-title: Rechtsmedizin doi: 10.1007/s00194-010-0704-2 – volume: 128 start-page: 509 issue: 3 year: 2014 ident: 1953_CR9 publication-title: Int J Legal Med doi: 10.1007/s00414-014-0967-3 – ident: 1953_CR35 doi: 10.1007/978-3-319-46723-8_49 – volume: 20 start-page: 464 year: 2010 ident: 1953_CR7 publication-title: Rechtsmedizin doi: 10.1007/s00194-010-0705-1 – volume: 8150 start-page: 246 year: 2013 ident: 1953_CR44 publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 – volume: 268 start-page: 145 year: 2016 ident: 1953_CR12 publication-title: Forensic Sci Int doi: 10.1016/j.forsciint.2016.10.002 – ident: 1953_CR30 doi: 10.1109/CVPR.2017.660 – ident: 1953_CR37 – ident: 1953_CR23 doi: 10.1007/s00414-018-1826-4 – ident: 1953_CR11 doi: 10.1016/j.forsciint.2015.12.006 – volume: 15 start-page: 1929 year: 2014 ident: 1953_CR39 publication-title: J Mach Learn Res – ident: 1953_CR31 doi: 10.1109/CVPR.2017.549 – ident: 1953_CR3 – ident: 1953_CR22 – ident: 1953_CR43 – ident: 1953_CR47 – volume: 8 start-page: 654 year: 1997 ident: 1953_CR16 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.572104 – volume: 117 start-page: 220 issue: 2 year: 2014 ident: 1953_CR20 publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014 doi: 10.1007/978-3-319-10470-6_28 |
| SSID | ssj0017675 |
| Score | 2.3655946 |
| Snippet | Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1191 |
| SubjectTerms | 3-D technology Adolescent Adolescents Adults Age Age Determination by Skeleton - methods Artificial neural networks Automation Bones Cartilage, Articular - diagnostic imaging Cartilage, Articular - pathology Chronology Datasets Documentation Encoders-Decoders Estimation Forensic Medicine Humans Image Processing, Computer-Assisted - methods Image segmentation Knee Knee Joint - diagnostic imaging Knee Joint - pathology Legal medicine Medical Law Medicine Medicine & Public Health Networks Neural networks Original Article Segmentation Teenagers Training Ultrasonic imaging Young Adult Young adults |
| SummonAdditionalLinks | – databaseName: Criminal Justice Database dbid: M0O link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61tIdKCPoCwqMyUk-trJp4E8cnhHioF2iFWolbFMdjtAISILtI_HvGjhNUIbj0EOVgO7E04_E3nvE3AF-V8fTHQnCLAvnEpI6bKp1wZWwti4lTonCh2IQ6OSnOzvTveODWxbTKwSYGQ23b2p-R_yATS1trJnWxe33DfdUoH12NJTRewxsCyrlP6TsWv8YogicqCVx7UnFdpGqIaoqeRHTH51-QD6Uzye__3ZeegM0ngdKw_xwt_-_M38NSRJ5sr1eVD_AKm4-w2B_bsf420ieY7s1nLYFYtKzD86t4MalhrWOEFNlFg8gI5jKyQqwaST3ZtGHygB2fsukVtXTMZ9OfM5_RHjWbfuyZM8Mr5J13n-Hv0eGf_Z88VmPgtVTpjGtnCa3gRFckXvIqXWEUYakdi7Z2GjPjDMoKlc1cliO5jSn1k6aStXD0VHIFFpq2wTVgWa5yY3IaX-Tk31mDoqiznMaF8oI6ATHIoqwjVbmvmHFZjiTLQXwlia_04ivvE_g2DrnueTpe6rw5SKqMS7YrH8WUwPbYTIvNR1CqBtu57-PZ_XPyGRNY7RVj_BthAZ0SWE3g-6Apjx9_dirrL09lA94RQtN9fvAmLMxu57gFb-u72bS7_RK0_QFlSQVl priority: 102 providerName: ProQuest |
| Title | Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks |
| URI | https://link.springer.com/article/10.1007/s00414-018-1953-y https://www.ncbi.nlm.nih.gov/pubmed/30392059 https://www.proquest.com/docview/2128935398 https://www.proquest.com/docview/2130056625 |
| Volume | 133 |
| WOSCitedRecordID | wos000473685700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1437-1596 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017675 issn: 0937-9827 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BQWjSNBiwLRtUnrQnkKUQN7H9yDYQLy2osKlvUZycq2ojnUg7qf_9zs4HQrBJ4yGOIn_Esu_i3-XOPwN8ksbRH4chLzBEPjCR5SaLBlyaIhdqYGWorD9sQo5GajLRV80-7qqNdm9dkv5L3W12c9RQLmKCrB4dC75ahw1a7ZTTxvH198514NhJPMGekFyrSLauzKeaeLgYPUKYj7yjftE5335Wd3fgVYMx2WktFK9hDctd2Bo2XvRdeFn_q2P1FqQ9mJ0uF3NCrliwCqe3zW6kks0tI3jIfpSIjLAto08PyzomTzYrmfjKhmM2u6WcirkQ-ilzYeyNOFMfHF2mv_lg82ofvp2f3Xy54M0RDDwXMlpwbQuCKDjQGc0pmZJWGUkA6qTAIrcaY2MNigxlEds4QbIVIyonTCby0NKViTfQK-clvgMWJzIxJqH6KiGjrjAYqjxOqJ4_U1AHELZzkeYNP7k7JuNn2jEr-yFNaUhTN6TpKoCjrsqvmpzjX4UP2glOGz2tUlq4CbDFQqsAPnbZpGHObZKVOF-6Mo7SPyFDMYC3tWB0byMAoCNCqAEct1Jw3_hfu_L-v0p_gBeE0nQdI3wAvcXdEg9hM_-9mFV3fViXE-lT1YeNz2ejqzE9DcNLl8rrvleOP2PhBAY |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQS4rNAoICR4AKy6sabOD4gVFGqVu0uCBWptxDH42oFTUqz22r_FL-RsfNRoYreeuAQ5RA78W6ex28y4zcAr5Xx8sdCcIsC-cjEjpsiHnFlbCmzkVMic6HYhJpMsoMD_WUJfvd7YXxaZW8Tg6G2dem_ka-RiaWlNZE6-3D8i_uqUT662pfQaGGxi4szctma9zub9H7fxPHWp_2P27yrKsBLqeIZ187SqosjXdAwyTtymVHECdYt2tJpTIwzKAtUNnFJiuT-xNROmkKWwtFRSLrvNbjudfV8qYix-DxELbwwStD2k4rrLFZ9FFW0oqXrPt-DfDadSL74ex28QG4vBGbDerd193_7p-7BnY5Zs412KtyHJawewO32syRrd1s9hOnGfFYTSUfLGjw86jZeVax2jJgw-1EhMqLxjKwsKwbRUjatmNxk469sekRXGuZ3Cxwyn7HfzVx6sFcGDaeQV9-swLcr-bWPYLmqK3wCLElVakxK_bOU_FdrUGRlklK_UD5RRyD6d5-XnRS7rwjyMx9EpANccoJL7uGSLyJ4O3Q5bnVILmu82iMj70xSk5_DIoJXw2UyJj5CVFRYz30bX70gJZ84gsctEIenEdfRMZHxCN71yDy_-T-H8vTyobyEm9v74718b2ey-wxuERvVbS70KizPTub4HG6Up7Npc_IizDQG368asH8AzKxk1w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAS4rOFQAEjlQuV1TRO4viAUMWyoiqsqgJSb2kcj6sVNGmb3aL9a_w6xs5HhSp664HDag-xEyd5Hr_JjN8ArEvt5I_DkBsMkcc6slwXUcylNqXIYivDzPpiE3IyyQ4O1N4S_O73wri0yt4mekNt6tJ9I98kE0tLayJUtmm7tIi90fj9ySl3FaRcpLUvp9FCZBcXv8h9a97tjOhdv4mi8cdvHz7xrsIAL4WMZlxZQyswxqqgIZOnZDMtiR9sGTSlVZhoq1EUKE1ikxTJFYqondCFKENLv0LQeW_ATRkTT_Bpg1-HCIYTSfE6f0JylUWyj6iGrYDplsv9IP9NJYIv_l4TLxHdS0Fav_aN7__PT-0B3OsYN9tup8hDWMLqEdxtP1eydhfWY5huz2c1kXc0rMGj425DVsVqy4ghsx8VIiN6z8j6smIQM2XTiokR-7LPpsd0pGFuF8ERc5n83YymCzvFUP_n8-2bFfh-LXe7CstVXeFTYEkqU61T6p-l5NcajWFWJin182UVVQBhj4O87CTaXaWQn_kgLu2hkxN0cgedfBHA26HLSatPclXjtR4leWeqmvwCIgG8Hg6TkXGRo6LCeu7auKoGKfnKATxpQTlcjTiQioikB7DRo_Ti5P8cyrOrh_IKbhNO8887k93ncIdIqmpTpNdgeXY2xxdwqzyfTZuzl37SMTi8brz-Af4XbbM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+the+knee+for+age+assessment+in+3D+MR+images+using+convolutional+neural+networks&rft.jtitle=International+journal+of+legal+medicine&rft.au=Pr%C3%B6ve%2C+Paul-Louis&rft.au=Jopp-van+Well%2C+Eilin&rft.au=Stanczus%2C+Ben&rft.au=Morlock%2C+Michael+M&rft.date=2019-07-01&rft.issn=1437-1596&rft.eissn=1437-1596&rft.volume=133&rft.issue=4&rft.spage=1191&rft_id=info:doi/10.1007%2Fs00414-018-1953-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-9827&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-9827&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-9827&client=summon |