Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks

Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of legal medicine Jg. 133; H. 4; S. 1191 - 1205
Hauptverfasser: Pröve, Paul-Louis, Jopp-van Well, Eilin, Stanczus, Ben, Morlock, Michael M., Herrmann, Jochen, Groth, Michael, Säring, Dennis, Auf der Mauer, Markus
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2019
Springer Nature B.V
Schlagworte:
ISSN:0937-9827, 1437-1596, 1437-1596
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.
AbstractList Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.
Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree of the growth plates in the knee joint correlates with chronological age of adolescents and young adults. To verify this hypothesis, a high number of datasets need to be analysed. An approach which enables an automated detection and analysis of the bone structures may be necessary to handle large datasets. The purpose of this study was to develop a fully automatic 2D knee segmentation based on 3D MR images using convolutional neural networks. A total of 76 datasets were available and divided into a training set (74%), a validation set (13%) and a test set (13%). Multiple preprocessing steps were applied to correct image intensity values and to reduce the image size. Image augmentation was employed to virtually increase the dataset size for training. The proposed architecture for the segmentation task resembles the encoder-decoder model type used for the U-Net. The trained network achieved a dice similarity coefficient score of 98% compared to the manual segmentations and an intersection over union of 96%. The precision and recall of the model were balanced, and the error was only 1.2%. No overfitting was observed during training. As a proof of concept, the predicted segmentations were used for the age estimation of 145 subjects. Initial results show the potential of this approach attaining a mean absolute error of 0.48 ± 0.32 years for a test set of 14 subjects. The proposed automated segmentation can contribute to faster, reproducible and potentially more reliable age estimation in the future.
Author Auf der Mauer, Markus
Säring, Dennis
Pröve, Paul-Louis
Herrmann, Jochen
Groth, Michael
Stanczus, Ben
Morlock, Michael M.
Jopp-van Well, Eilin
Author_xml – sequence: 1
  givenname: Paul-Louis
  surname: Pröve
  fullname: Pröve, Paul-Louis
  organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel
– sequence: 2
  givenname: Eilin
  surname: Jopp-van Well
  fullname: Jopp-van Well, Eilin
  organization: Department of Legal Medicine, University Medical Center Hamburg-Eppendorf (UKE)
– sequence: 3
  givenname: Ben
  surname: Stanczus
  fullname: Stanczus, Ben
  organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel
– sequence: 4
  givenname: Michael M.
  surname: Morlock
  fullname: Morlock, Michael M.
  organization: Institute of Biomechanics M3, Hamburg University of Technology (TUHH)
– sequence: 5
  givenname: Jochen
  surname: Herrmann
  fullname: Herrmann, Jochen
  organization: Pediatric Radiology Department, University Medical Center Hamburg-Eppendorf (UKE)
– sequence: 6
  givenname: Michael
  surname: Groth
  fullname: Groth, Michael
  organization: Pediatric Radiology Department, University Medical Center Hamburg-Eppendorf (UKE)
– sequence: 7
  givenname: Dennis
  surname: Säring
  fullname: Säring, Dennis
  organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel
– sequence: 8
  givenname: Markus
  orcidid: 0000-0002-5589-3681
  surname: Auf der Mauer
  fullname: Auf der Mauer, Markus
  email: adm@fh-wedel.de
  organization: Department of Medical and Industrial Image Processing, University of Applied Sciences of Wedel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30392059$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3TAQhUVJaW7SPkA3QZBNN04ly7KsZUiaH0gplHYtZHt068SWEo3cct8-cp1QCKQLMYL5zmFmzgHZ88EDIR85O-GMqc_IWMWrgvGm4FqKYveGbHglVMGlrvfIhun8102p9skB4i1jXNVKviP7ggldMqk3ZDidU5hsgp4ibCfwyaYheBocTb-A3nkA6kKkdgvUIgLiwtDBU3FOv36nw5Q7SGcc_JZ2wf8O47wY2JF6mOPfkv6EeIfvyVtnR4QPT_WQ_Lz48uPsqrj5dnl9dnpTdEKVqdCur2UDlbat5LLSrmlVVXHeQ985DbJ1LQgLqpdO1lAxXWZOtFZ0zOVnxSH5tPrex_AwAyYzDdjBOFoPYUZTcsGYrOtSZvT4BXob5phnX6iy0UIK3WTq6Ima2wl6cx_z0nFnno-YAbUCXQyIEZzphvWMKdphNJyZJS6zxmVyXGaJy-yykr9QPpv_T1OuGsys30L8N_Trokd4zahT
CitedBy_id crossref_primary_10_1049_ipr2_12045
crossref_primary_10_3390_diagnostics15030257
crossref_primary_10_1007_s00414_022_02797_y
crossref_primary_10_3390_biomedicines11072046
crossref_primary_10_1007_s00256_019_03284_z
crossref_primary_10_1109_TIM_2023_3345906
crossref_primary_10_1371_journal_pone_0251388
crossref_primary_10_17816_fm16174
crossref_primary_10_1007_s00414_020_02465_z
crossref_primary_10_1080_20961790_2020_1717029
crossref_primary_10_3390_math11041027
crossref_primary_10_1055_a_1313_7664
crossref_primary_10_1007_s00194_019_00346_3
crossref_primary_10_1007_s00330_023_09546_8
crossref_primary_10_1109_TCSS_2021_3132040
crossref_primary_10_1155_2022_2210820
crossref_primary_10_3390_electronics12030590
crossref_primary_10_1007_s00414_023_03148_1
Cites_doi 10.1109/3DV.2016.79
10.1109/CVPR.2016.90
10.1016/j.forsciint.2011.11.013
10.1007/s00330-017-4880-2
10.5244/C.30.124
10.1007/s00414-014-0987-z
10.1117/1.JMI.2.2.024001
10.1007/s00414-014-1020-2
10.1007/978-3-319-24574-4_28
10.1148/radiol.2243011259
10.1007/s12024-014-9559-2
10.1016/j.media.2017.07.005
10.1109/ISBI.2016.7493232
10.1109/TMI.2010.2046908
10.1007/s11517-011-0838-8
10.1007/978-3-642-54111-7_16
10.1016/j.compmedimag.2010.07.003
10.1073/pnas.1715832114
10.1007/s00194-010-0704-2
10.1007/s00414-014-0967-3
10.1007/978-3-319-46723-8_49
10.1007/s00194-010-0705-1
10.1016/j.forsciint.2016.10.002
10.1109/CVPR.2017.660
10.1007/s00414-018-1826-4
10.1016/j.forsciint.2015.12.006
10.1109/CVPR.2017.549
10.1109/72.572104
10.1007/978-3-319-10470-6_28
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
International Journal of Legal Medicine is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: International Journal of Legal Medicine is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
0-V
3V.
7X7
7XB
88E
8AM
8AO
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ALSLI
BENPR
BGLVJ
BGRYB
CCPQU
DWQXO
FYUFA
GHDGH
HCIFZ
K7.
K9.
L6V
M0O
M0S
M1P
M7S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PTHSS
Q9U
7X8
DOI 10.1007/s00414-018-1953-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Criminal Justice Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central
Technology Collection
Criminology Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Criminal Justice (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Criminal Justice Database
Health & Medical Collection (Alumni Edition)
Medical Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health Research Premium Collection
ProQuest Criminal Justice
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Social Science Premium Collection
Engineering Database
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Criminology Collection
ProQuest Health & Medical Complete
ProQuest Criminal Justice (Alumni)
Criminal Justice Periodicals (Alumni Edition)
ProQuest Medical Library
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Technology Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1437-1596
EndPage 1205
ExternalDocumentID 30392059
10_1007_s00414_018_1953_y
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SA 2530/6-1; JO 1198/2-1
  funderid: https://doi.org/10.13039/501100001659
– fundername: Deutsche Forschungsgemeinschaft
  grantid: SA 2530/6-1
– fundername: Deutsche Forschungsgemeinschaft
  grantid: JO 1198/2-1
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
.86
.VR
0-V
06C
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
44B
53G
5GY
5VS
67Z
6NX
7X7
88E
8AO
8FE
8FG
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABOCM
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADUOI
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARALO
ARMRJ
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BGRYB
BPHCQ
BSONS
BVXVI
CCPQU
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HISYW
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L6V
LAS
LLZTM
M0O
M1P
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF-
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R-Y
R89
R9I
RHO
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TN5
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z84
Z87
Z8O
Z8V
Z8W
Z8Y
Z91
ZMTXR
ZOVNA
~EX
-Y2
.55
2.D
28-
2P1
2VQ
3O-
5QI
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ACUDM
ACYUM
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EN4
GRRUI
H13
KOW
N2Q
NDZJH
O-J
O9-
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PRQQA
RNI
RZK
S1Z
S26
S28
SCLPG
SDE
T16
WK6
X7M
ZXP
3V.
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7XB
8FK
K7.
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c372t-9fd658e49ab51549f8b74411dedcf9e5bfbe3ae7d5f56e4092b513ba3c0f3c0a3
IEDL.DBID RSV
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473685700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0937-9827
1437-1596
IngestDate Fri Sep 05 13:40:22 EDT 2025
Thu Nov 20 04:31:37 EST 2025
Wed Feb 19 02:31:03 EST 2025
Tue Nov 18 22:08:45 EST 2025
Sat Nov 29 04:10:27 EST 2025
Fri Feb 21 02:41:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Knee
Age estimation
Segmentation
Convolutional neural networks
MRI
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c372t-9fd658e49ab51549f8b74411dedcf9e5bfbe3ae7d5f56e4092b513ba3c0f3c0a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5589-3681
PMID 30392059
PQID 2128935398
PQPubID 47323
PageCount 15
ParticipantIDs proquest_miscellaneous_2130056625
proquest_journals_2128935398
pubmed_primary_30392059
crossref_citationtrail_10_1007_s00414_018_1953_y
crossref_primary_10_1007_s00414_018_1953_y
springer_journals_10_1007_s00414_018_1953_y
PublicationCentury 2000
PublicationDate 20190701
2019-7-00
2019-Jul
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 7
  year: 2019
  text: 20190701
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle International journal of legal medicine
PublicationTitleAbbrev Int J Legal Med
PublicationTitleAlternate Int J Legal Med
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432
Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69
DedouitFAuriolJRousseauHRougéDCrubézyETelmonNAge assessment by magnetic resonance imaging of the knee: a preliminary studyForensic Sci Int20122171-323210.1016/j.forsciint.2011.11.013
Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14
Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF)
SetionoRLiuHNeural-network feature selectorIEEE Trans Neural Netw199786546621:STN:280:DC%2BD1c%2FpvVeisA%3D%3D10.1109/72.572104
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine
European Asylum Support Office (2013) Age assessment practice in Europe
Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis
Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich
Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571
PeltDMSethianJAA mixed-scale dense convolutional neural network for image analysisProc Natl Acad Sci201811522542591:CAS:528:DC%2BC2sXitVequr7E10.1073/pnas.1715832114
Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15
Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260
SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958
KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVForensic age estimation in living individuals using 3.0T MRI of the distal femurInt J Legal Med2014128350951410.1007/s00414-014-0967-3
DodinPMartel-PelletierJPelletierJ-PPAbramFA fully automated human knee 3D MRI bone segmentation using the ray casting techniqueMed Biol Eng Comput201149121413142410.1007/s11517-011-0838-8
Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation
Saint-MartinPRérolleCDedouitFRousseauHRougéDTelmonNEvaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year thresholdInt J Legal Med201412867568310.1007/s00414-014-0987-z
Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13
Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion
Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14
Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network
Saint-MartinPRérolleCPucheuxJDedouitFTelmonNContribution of distal femur MRI to the determination of the 18-year limit in forensic age estimationInt J Legal Med2015129361962010.1007/s00414-014-1020-2
TustisonNJAvantsBBCookPAZhengYEganAYushkevichPAGeeJCN4ITK: improved N3 bias correctionIEEE Trans Med Imaging2010291310132010.1109/TMI.2010.2046908
GeserickGSchmelingAQualitätssicherung der Forensischen Altersdiagnostik bei Lebenden PersonenRechtsmedizin2011211222510.1007/s00194-010-0704-2
JiangJTrundlePRenJMedical image analysis with artificial neural networksComput Med Imaging Graph2010346176311:STN:280:DC%2BC3cbgsV2rtA%3D%3D10.1016/j.compmedimag.2010.07.003
Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation
LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMvan der LaakJAWMvan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456
PrasoonAPetersenKIgelCLauzeFDamENielsenMDeep feature learning for knee cartilage segmentation using a triplanar convolutional neural networkMedical Image Computing and Computer-Assisted Intervention – MICCAI 201320138150246253
Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac
Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8
SternDEbnerTBischofHGrasseggerSEhammerTUrschlerMFully automatic bone age estimation from left hand MR imagesMedical Image Computing and Computer-Assisted Intervention - MICCAI 20142014117222022710.1007/978-3-319-10470-6_28
KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVThe use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individualsForensic Sci Med Pathol201410330631310.1007/s12024-014-9559-2
Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2
LaorTChunGFHDardzinskiBJBeanJAWitteDPPosterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adultsRadiology200222466967410.1148/radiol.2243011259
Chollet F (2017) Deep Learning With python, vol 1. Manning Publications
JoppESchröderIMaasRAdamGPüschelKProximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?Rechtsmedizin20102046446810.1007/s00194-010-0705-1
FanFZhangKPengZHui CuiJ-hHuNHua DengZ-hForensic age estimation of living persons from the knee: comparison of MRI with radiographsForensic Sci Int201626814515010.1016/j.forsciint.2016.10.002
Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation
Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65
Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
World Health Organization (2016) Ionizing radiation, health effects and protective measures
NVIDIA GPU vs CPU? What is GPU Computing?
Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14
1953_CR22
F Dedouit (1953_CR6) 2012; 217
1953_CR23
1953_CR25
1953_CR26
1953_CR27
1953_CR28
1953_CR29
P Dodin (1953_CR17) 2011; 49
1953_CR21
DM Pelt (1953_CR50) 2018; 115
T Laor (1953_CR10) 2002; 224
G Geserick (1953_CR2) 2011; 21
D Stern (1953_CR20) 2014; 117
F Fan (1953_CR12) 2016; 268
1953_CR33
1953_CR34
JA Krämer (1953_CR48) 2014; 10
1953_CR35
1953_CR36
1953_CR37
1953_CR38
1953_CR30
1953_CR31
1953_CR32
P Saint-Martin (1953_CR49) 2015; 129
E Jopp (1953_CR7) 2010; 20
P Saint-Martin (1953_CR46) 2014; 128
J Jiang (1953_CR14) 2010; 34
1953_CR45
1953_CR47
1953_CR40
1953_CR41
1953_CR42
1953_CR43
JA Krämer (1953_CR9) 2014; 128
1953_CR11
N Srivastava (1953_CR39) 2014; 15
1953_CR1
1953_CR13
1953_CR3
1953_CR4
1953_CR5
NJ Tustison (1953_CR24) 2010; 29
G Litjens (1953_CR15) 2017; 42
1953_CR18
A Prasoon (1953_CR44) 2013; 8150
R Setiono (1953_CR16) 1997; 8
1953_CR8
1953_CR19
References_xml – reference: Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical image computing and computer-assisted intervention – MICCAI 2016, vol 9901, pp 424–432
– reference: Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
– reference: Kubilay S (2016) Ablauf des deutschen Asylverfahrens, tech. rep. Bundesamt für Migration und Flüchtlinge (BAMF)
– reference: Säring D, Auf der Mauer M, Jopp E (2014) Klassifikation des Verschlussgrades der Epiphyse der proximalen Tibia zur Altersbestimmung. In: Informatik aktuell. Springer, Berlin, pp 60–65
– reference: LaorTChunGFHDardzinskiBJBeanJAWitteDPPosterior distal femoral and proximal tibial metaphyseal stripes at mr imaging in children and young adultsRadiology200222466967410.1148/radiol.2243011259
– reference: JiangJTrundlePRenJMedical image analysis with artificial neural networksComput Med Imaging Graph2010346176311:STN:280:DC%2BC3cbgsV2rtA%3D%3D10.1016/j.compmedimag.2010.07.003
– reference: Lin G, Milan A, Shen C, Reid I (2016) RefineNet: multi-path refinement networks for high-resolution semantic segmentation
– reference: KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVThe use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individualsForensic Sci Med Pathol201410330631310.1007/s12024-014-9559-2
– reference: SetionoRLiuHNeural-network feature selectorIEEE Trans Neural Netw199786546621:STN:280:DC%2BD1c%2FpvVeisA%3D%3D10.1109/72.572104
– reference: Badrinarayanan V, Kendall A, Cipolla R (2015) SegNet: A deep convolutional encoder-decoder architecture for image segmentation. pp 1–14
– reference: KrämerJASchmidtSJürgensKULentschigMSchmelingAViethVForensic age estimation in living individuals using 3.0T MRI of the distal femurInt J Legal Med2014128350951410.1007/s00414-014-0967-3
– reference: Zhao H, Shi J, Qi X, Wang X, Jia J (2016) Pyramid scene parsing network
– reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of machine learning research, vol 37, pp 448–456
– reference: Jopp E (2007) Methoden zur Alters- und Geschlechtsbestimmung auf dem Pruefstand - eine rechtsmedizinische empirische Studie. Kovac
– reference: Ekizoglu O, Hocaoglu E, Inci E, Can IO, Aksoy S, Kazimoglu C (2016) Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique, vol 260
– reference: Chen L-C, Papandreou G, Schroff F, Adam H (2017) Rethinking atrous convolution for semantic image segmentation
– reference: SternDEbnerTBischofHGrasseggerSEhammerTUrschlerMFully automatic bone age estimation from left hand MR imagesMedical Image Computing and Computer-Assisted Intervention - MICCAI 20142014117222022710.1007/978-3-319-10470-6_28
– reference: TustisonNJAvantsBBCookPAZhengYEganAYushkevichPAGeeJCN4ITK: improved N3 bias correctionIEEE Trans Med Imaging2010291310132010.1109/TMI.2010.2046908
– reference: Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by exponential linear units (ELUs). pp 1–14
– reference: Ottow C, Schulz R, Pfeiffer H, Heindel W, Schmeling A, Vieth V (2017) Forensic age estimation by magnetic resonance imaging of the knee: the definite relevance in bony fusion of the distal femoral- and the proximal tibial epiphyses using closest-to-bone T1 TSE sequence, European Radiology, pp 1–8
– reference: European Asylum Support Office (2013) Age assessment practice in Europe
– reference: Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd international conference for learning representations, pp 1–15
– reference: Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25 (NIPS 2012)
– reference: PeltDMSethianJAA mixed-scale dense convolutional neural network for image analysisProc Natl Acad Sci201811522542591:CAS:528:DC%2BC2sXitVequr7E10.1073/pnas.1715832114
– reference: Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation, vol 9351
– reference: PrasoonAPetersenKIgelCLauzeFDamENielsenMDeep feature learning for knee cartilage segmentation using a triplanar convolutional neural networkMedical Image Computing and Computer-Assisted Intervention – MICCAI 201320138150246253
– reference: Britting-Reimer E (2015) Altersbestimmung in Deutschland und im Europäischen Vergleich
– reference: Milletari F, Navab N, Ahmadi S-A (2016) V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International conference on 3D vision (3DV), IEEE, pp 565–571
– reference: Stern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes. In: Wang Q, Shi Y, Suk H-I, Suzuki K (eds) Machine learning in medical imaging. Springer International Publishing, Cham, pp 61–69
– reference: Saint-MartinPRérolleCDedouitFRousseauHRougéDTelmonNEvaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis—a preliminary study focusing on the 18-year thresholdInt J Legal Med201412867568310.1007/s00414-014-0987-z
– reference: JoppESchröderIMaasRAdamGPüschelKProximale Tibiaepiphyse im Magnetresonanztomogramm: Neue Möglichkeit zur Altersbestimmung bei Lebenden?Rechtsmedizin20102046446810.1007/s00194-010-0705-1
– reference: NVIDIA GPU vs CPU? What is GPU Computing?
– reference: Dam EB, Lillholm M, Marques J, Nielsen M (2015) Automatic segmentation of high- and low-field knee MRIs using knee image quantification with data from the osteoarthritis initiative, vol 2
– reference: Auf der Mauer M, Säring D, Stanczus B, Herrmann J, Groth M, Jopp-van Well E (2018) A 2-year follow-up MRI study for the evaluation of an age estimation method based on knee bone development. International Journal of Legal Medicine
– reference: Saint-MartinPRérolleCPucheuxJDedouitFTelmonNContribution of distal femur MRI to the determination of the 18-year limit in forensic age estimationInt J Legal Med2015129361962010.1007/s00414-014-1020-2
– reference: LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMvan der LaakJAWMvan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005
– reference: Chollet F (2017) Deep Learning With python, vol 1. Manning Publications
– reference: Nekrasov V, Ju J, Choi J (2016) Global Deconvolutional Networks for Semantic segmentation
– reference: Stern D, Urschler M (2016) From individual hand bone age estimates to fully automated age estimation via learning-based information fusion
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. ICLR 2015, pp 1–14
– reference: FanFZhangKPengZHui CuiJ-hHuNHua DengZ-hForensic age estimation of living persons from the knee: comparison of MRI with radiographsForensic Sci Int201626814515010.1016/j.forsciint.2016.10.002
– reference: World Health Organization (2016) Ionizing radiation, health effects and protective measures
– reference: Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2016) DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. pp 1–14
– reference: Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K (2016) SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. pp 1–13
– reference: DodinPMartel-PelletierJPelletierJ-PPAbramFA fully automated human knee 3D MRI bone segmentation using the ray casting techniqueMed Biol Eng Comput201149121413142410.1007/s11517-011-0838-8
– reference: SrivastavaNHintonGKrizhevskyASutskeverISalakhutdinovRDropout: a simple way to prevent neural networks from overfittingJ Mach Learn Res20141519291958
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
– reference: GeserickGSchmelingAQualitätssicherung der Forensischen Altersdiagnostik bei Lebenden PersonenRechtsmedizin2011211222510.1007/s00194-010-0704-2
– reference: Jopp E (2013) Die Abschlussphase des menschlichen Wachstums Longitudinale Ganzkörper- und Unterschenkelmessungen (Knemometrie) an jungen Erwachsenen zur Bestimmung des biologischen Alters und für forensische Zwecke. PhD thesis
– reference: DedouitFAuriolJRousseauHRougéDCrubézyETelmonNAge assessment by magnetic resonance imaging of the knee: a preliminary studyForensic Sci Int20122171-323210.1016/j.forsciint.2011.11.013
– ident: 1953_CR34
  doi: 10.1109/3DV.2016.79
– ident: 1953_CR27
  doi: 10.1109/CVPR.2016.90
– volume: 217
  start-page: 232
  issue: 1-3
  year: 2012
  ident: 1953_CR6
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2011.11.013
– ident: 1953_CR13
  doi: 10.1007/s00330-017-4880-2
– ident: 1953_CR28
– ident: 1953_CR38
– ident: 1953_CR40
– ident: 1953_CR33
  doi: 10.5244/C.30.124
– volume: 128
  start-page: 675
  year: 2014
  ident: 1953_CR46
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-014-0987-z
– ident: 1953_CR18
  doi: 10.1117/1.JMI.2.2.024001
– ident: 1953_CR25
– volume: 129
  start-page: 619
  issue: 3
  year: 2015
  ident: 1953_CR49
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-014-1020-2
– ident: 1953_CR19
  doi: 10.1007/978-3-319-24574-4_28
– volume: 224
  start-page: 669
  year: 2002
  ident: 1953_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2243011259
– volume: 10
  start-page: 306
  issue: 3
  year: 2014
  ident: 1953_CR48
  publication-title: Forensic Sci Med Pathol
  doi: 10.1007/s12024-014-9559-2
– volume: 42
  start-page: 60
  year: 2017
  ident: 1953_CR15
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– ident: 1953_CR21
  doi: 10.1109/ISBI.2016.7493232
– ident: 1953_CR29
– volume: 29
  start-page: 1310
  year: 2010
  ident: 1953_CR24
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2046908
– volume: 49
  start-page: 1413
  issue: 12
  year: 2011
  ident: 1953_CR17
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0838-8
– ident: 1953_CR41
– ident: 1953_CR8
– ident: 1953_CR45
  doi: 10.1007/978-3-642-54111-7_16
– ident: 1953_CR5
– ident: 1953_CR1
– volume: 34
  start-page: 617
  year: 2010
  ident: 1953_CR14
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2010.07.003
– ident: 1953_CR32
– ident: 1953_CR36
– ident: 1953_CR26
– ident: 1953_CR4
– ident: 1953_CR42
– volume: 115
  start-page: 254
  issue: 2
  year: 2018
  ident: 1953_CR50
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1715832114
– volume: 21
  start-page: 22
  issue: 1
  year: 2011
  ident: 1953_CR2
  publication-title: Rechtsmedizin
  doi: 10.1007/s00194-010-0704-2
– volume: 128
  start-page: 509
  issue: 3
  year: 2014
  ident: 1953_CR9
  publication-title: Int J Legal Med
  doi: 10.1007/s00414-014-0967-3
– ident: 1953_CR35
  doi: 10.1007/978-3-319-46723-8_49
– volume: 20
  start-page: 464
  year: 2010
  ident: 1953_CR7
  publication-title: Rechtsmedizin
  doi: 10.1007/s00194-010-0705-1
– volume: 8150
  start-page: 246
  year: 2013
  ident: 1953_CR44
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013
– volume: 268
  start-page: 145
  year: 2016
  ident: 1953_CR12
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2016.10.002
– ident: 1953_CR30
  doi: 10.1109/CVPR.2017.660
– ident: 1953_CR37
– ident: 1953_CR23
  doi: 10.1007/s00414-018-1826-4
– ident: 1953_CR11
  doi: 10.1016/j.forsciint.2015.12.006
– volume: 15
  start-page: 1929
  year: 2014
  ident: 1953_CR39
  publication-title: J Mach Learn Res
– ident: 1953_CR31
  doi: 10.1109/CVPR.2017.549
– ident: 1953_CR3
– ident: 1953_CR22
– ident: 1953_CR43
– ident: 1953_CR47
– volume: 8
  start-page: 654
  year: 1997
  ident: 1953_CR16
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.572104
– volume: 117
  start-page: 220
  issue: 2
  year: 2014
  ident: 1953_CR20
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2014
  doi: 10.1007/978-3-319-10470-6_28
SSID ssj0017675
Score 2.3655946
Snippet Age assessment is used to estimate the chronological age of an individual who lacks legal documentation. Recent studies indicate that the ossification degree...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1191
SubjectTerms 3-D technology
Adolescent
Adolescents
Adults
Age
Age Determination by Skeleton - methods
Artificial neural networks
Automation
Bones
Cartilage, Articular - diagnostic imaging
Cartilage, Articular - pathology
Chronology
Datasets
Documentation
Encoders-Decoders
Estimation
Forensic Medicine
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Knee
Knee Joint - diagnostic imaging
Knee Joint - pathology
Legal medicine
Medical Law
Medicine
Medicine & Public Health
Networks
Neural networks
Original Article
Segmentation
Teenagers
Training
Ultrasonic imaging
Young Adult
Young adults
SummonAdditionalLinks – databaseName: Criminal Justice Database
  dbid: M0O
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61tIdKCPoCwqMyUk-trJp4E8cnhHioF2iFWolbFMdjtAISILtI_HvGjhNUIbj0EOVgO7E04_E3nvE3AF-V8fTHQnCLAvnEpI6bKp1wZWwti4lTonCh2IQ6OSnOzvTveODWxbTKwSYGQ23b2p-R_yATS1trJnWxe33DfdUoH12NJTRewxsCyrlP6TsWv8YogicqCVx7UnFdpGqIaoqeRHTH51-QD6Uzye__3ZeegM0ngdKw_xwt_-_M38NSRJ5sr1eVD_AKm4-w2B_bsf420ieY7s1nLYFYtKzD86t4MalhrWOEFNlFg8gI5jKyQqwaST3ZtGHygB2fsukVtXTMZ9OfM5_RHjWbfuyZM8Mr5J13n-Hv0eGf_Z88VmPgtVTpjGtnCa3gRFckXvIqXWEUYakdi7Z2GjPjDMoKlc1cliO5jSn1k6aStXD0VHIFFpq2wTVgWa5yY3IaX-Tk31mDoqiznMaF8oI6ATHIoqwjVbmvmHFZjiTLQXwlia_04ivvE_g2DrnueTpe6rw5SKqMS7YrH8WUwPbYTIvNR1CqBtu57-PZ_XPyGRNY7RVj_BthAZ0SWE3g-6Apjx9_dirrL09lA94RQtN9fvAmLMxu57gFb-u72bS7_RK0_QFlSQVl
  priority: 102
  providerName: ProQuest
Title Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks
URI https://link.springer.com/article/10.1007/s00414-018-1953-y
https://www.ncbi.nlm.nih.gov/pubmed/30392059
https://www.proquest.com/docview/2128935398
https://www.proquest.com/docview/2130056625
Volume 133
WOSCitedRecordID wos000473685700028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1437-1596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017675
  issn: 0937-9827
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED9BQWjSNBiwLRtUnrQnkKUQN7H9yDYQLy2osKlvUZycq2ojnUg7qf_9zs4HQrBJ4yGOIn_Esu_i3-XOPwN8ksbRH4chLzBEPjCR5SaLBlyaIhdqYGWorD9sQo5GajLRV80-7qqNdm9dkv5L3W12c9RQLmKCrB4dC75ahw1a7ZTTxvH198514NhJPMGekFyrSLauzKeaeLgYPUKYj7yjftE5335Wd3fgVYMx2WktFK9hDctd2Bo2XvRdeFn_q2P1FqQ9mJ0uF3NCrliwCqe3zW6kks0tI3jIfpSIjLAto08PyzomTzYrmfjKhmM2u6WcirkQ-ilzYeyNOFMfHF2mv_lg82ofvp2f3Xy54M0RDDwXMlpwbQuCKDjQGc0pmZJWGUkA6qTAIrcaY2MNigxlEds4QbIVIyonTCby0NKViTfQK-clvgMWJzIxJqH6KiGjrjAYqjxOqJ4_U1AHELZzkeYNP7k7JuNn2jEr-yFNaUhTN6TpKoCjrsqvmpzjX4UP2glOGz2tUlq4CbDFQqsAPnbZpGHObZKVOF-6Mo7SPyFDMYC3tWB0byMAoCNCqAEct1Jw3_hfu_L-v0p_gBeE0nQdI3wAvcXdEg9hM_-9mFV3fViXE-lT1YeNz2ejqzE9DcNLl8rrvleOP2PhBAY
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQS4rNAoICR4AKy6sabOD4gVFGqVu0uCBWptxDH42oFTUqz22r_FL-RsfNRoYreeuAQ5RA78W6ex28y4zcAr5Xx8sdCcIsC-cjEjpsiHnFlbCmzkVMic6HYhJpMsoMD_WUJfvd7YXxaZW8Tg6G2dem_ka-RiaWlNZE6-3D8i_uqUT662pfQaGGxi4szctma9zub9H7fxPHWp_2P27yrKsBLqeIZ187SqosjXdAwyTtymVHECdYt2tJpTIwzKAtUNnFJiuT-xNROmkKWwtFRSLrvNbjudfV8qYix-DxELbwwStD2k4rrLFZ9FFW0oqXrPt-DfDadSL74ex28QG4vBGbDerd193_7p-7BnY5Zs412KtyHJawewO32syRrd1s9hOnGfFYTSUfLGjw86jZeVax2jJgw-1EhMqLxjKwsKwbRUjatmNxk469sekRXGuZ3Cxwyn7HfzVx6sFcGDaeQV9-swLcr-bWPYLmqK3wCLElVakxK_bOU_FdrUGRlklK_UD5RRyD6d5-XnRS7rwjyMx9EpANccoJL7uGSLyJ4O3Q5bnVILmu82iMj70xSk5_DIoJXw2UyJj5CVFRYz30bX70gJZ84gsctEIenEdfRMZHxCN71yDy_-T-H8vTyobyEm9v74718b2ey-wxuERvVbS70KizPTub4HG6Up7Npc_IizDQG368asH8AzKxk1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VghAS4rOFQAEjlQuV1TRO4viAUMWyoiqsqgJSb2kcj6sVNGmb3aL9a_w6xs5HhSp664HDag-xEyd5Hr_JjN8ArEvt5I_DkBsMkcc6slwXUcylNqXIYivDzPpiE3IyyQ4O1N4S_O73wri0yt4mekNt6tJ9I98kE0tLayJUtmm7tIi90fj9ySl3FaRcpLUvp9FCZBcXv8h9a97tjOhdv4mi8cdvHz7xrsIAL4WMZlxZQyswxqqgIZOnZDMtiR9sGTSlVZhoq1EUKE1ikxTJFYqondCFKENLv0LQeW_ATRkTT_Bpg1-HCIYTSfE6f0JylUWyj6iGrYDplsv9IP9NJYIv_l4TLxHdS0Fav_aN7__PT-0B3OsYN9tup8hDWMLqEdxtP1eydhfWY5huz2c1kXc0rMGj425DVsVqy4ghsx8VIiN6z8j6smIQM2XTiokR-7LPpsd0pGFuF8ERc5n83YymCzvFUP_n8-2bFfh-LXe7CstVXeFTYEkqU61T6p-l5NcajWFWJin182UVVQBhj4O87CTaXaWQn_kgLu2hkxN0cgedfBHA26HLSatPclXjtR4leWeqmvwCIgG8Hg6TkXGRo6LCeu7auKoGKfnKATxpQTlcjTiQioikB7DRo_Ti5P8cyrOrh_IKbhNO8887k93ncIdIqmpTpNdgeXY2xxdwqzyfTZuzl37SMTi8brz-Af4XbbM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+segmentation+of+the+knee+for+age+assessment+in+3D+MR+images+using+convolutional+neural+networks&rft.jtitle=International+journal+of+legal+medicine&rft.au=Pr%C3%B6ve%2C+Paul-Louis&rft.au=Jopp-van+Well%2C+Eilin&rft.au=Stanczus%2C+Ben&rft.au=Morlock%2C+Michael+M&rft.date=2019-07-01&rft.issn=1437-1596&rft.eissn=1437-1596&rft.volume=133&rft.issue=4&rft.spage=1191&rft_id=info:doi/10.1007%2Fs00414-018-1953-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0937-9827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0937-9827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0937-9827&client=summon