Integrated Optimization on Double-Side Cantilever Yard Crane Scheduling and Green Vehicle Path Planning at U-Shaped Yard
The U-shaped yard is an important part of the U-shaped automated container terminal (U-ACT), which consists of a set of blocks used for storing containers, I-lanes for automated guided vehicles (AGVs) travel, and U-lanes for external trucks (ETs) travel. Double-side cantilever yard cranes (DCYCs) pe...
Uloženo v:
| Vydáno v: | IEEE transactions on intelligent transportation systems Ročník 26; číslo 3; s. 3684 - 3699 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2025
|
| Témata: | |
| ISSN: | 1524-9050, 1558-0016 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The U-shaped yard is an important part of the U-shaped automated container terminal (U-ACT), which consists of a set of blocks used for storing containers, I-lanes for automated guided vehicles (AGVs) travel, and U-lanes for external trucks (ETs) travel. Double-side cantilever yard cranes (DCYCs) perform stacking and unstacking operations for containers transported by AGVs and ETs. Managing and coordinating the operations of DCYC, AGVs, and ETs, not only improves the operation efficiency of U-ACTs but also helps to promote the development of green ports. This paper addresses the problem of scheduling DCYCs and path planning for AGVs and ETs in the U-ACT. To achieve this, we establish a bi-objective mixed integer programming model to minimize both the makespan and the energy consumption. The model considers conflicts between two DCYCs within each block, ensures workload balance for these DCYCs, optimizes parking slots for AGVs and ETs, and schedules appropriate entry times for AGVs and ETs into the yard to reduce conflicts. To solve this model, we develop an improved multi-objective particle swarm optimization (IMOPSO) algorithm, where a globally optimal heuristic search mechanism and several conflict avoidance strategies to plan conflict-free spatiotemporal paths are introduced to accelerate the convergence of the algorithm. Numerical experiments demonstrate the superiority of the IMOPSO approach in terms of multiple metrics, confirming the effectiveness of the optimized vehicle entry timing strategy, which improves efficiency by 7.33% and yields energy savings by 11.72%. These findings clearly highlight that our model and solution approach can effectively enhance the operational efficiency of DCYCs, AGVs, and ETs, contributing to the overall improvement of container terminal operations. |
|---|---|
| AbstractList | The U-shaped yard is an important part of the U-shaped automated container terminal (U-ACT), which consists of a set of blocks used for storing containers, I-lanes for automated guided vehicles (AGVs) travel, and U-lanes for external trucks (ETs) travel. Double-side cantilever yard cranes (DCYCs) perform stacking and unstacking operations for containers transported by AGVs and ETs. Managing and coordinating the operations of DCYC, AGVs, and ETs, not only improves the operation efficiency of U-ACTs but also helps to promote the development of green ports. This paper addresses the problem of scheduling DCYCs and path planning for AGVs and ETs in the U-ACT. To achieve this, we establish a bi-objective mixed integer programming model to minimize both the makespan and the energy consumption. The model considers conflicts between two DCYCs within each block, ensures workload balance for these DCYCs, optimizes parking slots for AGVs and ETs, and schedules appropriate entry times for AGVs and ETs into the yard to reduce conflicts. To solve this model, we develop an improved multi-objective particle swarm optimization (IMOPSO) algorithm, where a globally optimal heuristic search mechanism and several conflict avoidance strategies to plan conflict-free spatiotemporal paths are introduced to accelerate the convergence of the algorithm. Numerical experiments demonstrate the superiority of the IMOPSO approach in terms of multiple metrics, confirming the effectiveness of the optimized vehicle entry timing strategy, which improves efficiency by 7.33% and yields energy savings by 11.72%. These findings clearly highlight that our model and solution approach can effectively enhance the operational efficiency of DCYCs, AGVs, and ETs, contributing to the overall improvement of container terminal operations. |
| Author | Peng, Wenhao Chu, Feng Qiu, Huaxin Wang, Dujuan Yin, Yunqiang |
| Author_xml | – sequence: 1 givenname: Wenhao orcidid: 0000-0002-8900-5312 surname: Peng fullname: Peng, Wenhao email: pwh13183957689@163.com organization: Business School, Sichuan University, Chengdu, China – sequence: 2 givenname: Dujuan orcidid: 0000-0003-1617-7057 surname: Wang fullname: Wang, Dujuan email: djwang@scu.edu.cn organization: Business School, Sichuan University, Chengdu, China – sequence: 3 givenname: Huaxin surname: Qiu fullname: Qiu, Huaxin email: qiuhx@dhu.edu.cn organization: Glorious Sun School of Business and Management, Donghua University, Shanghai, China – sequence: 4 givenname: Feng orcidid: 0000-0003-1225-8319 surname: Chu fullname: Chu, Feng email: feng.chu@univ-evry.fr organization: Laboratory lBlSC, Univ-Évry, Université Paris-Saclay, Évry, France – sequence: 5 givenname: Yunqiang orcidid: 0000-0001-5761-6680 surname: Yin fullname: Yin, Yunqiang email: yinyq@uestc.edu.cn organization: School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, China |
| BackLink | https://hal.science/hal-04896455$$DView record in HAL |
| BookMark | eNp9kN9LwzAQgINM8OcfIPiQVx86c0mzto8ydRsMFLYJPpU0udpITUeaDfWvt3VDxAfh4I67--7gOyED1zgk5ALYEIBl18vZcjHkjMdDITlwSA_IMUiZRozBaNDXPI4yJtkROWnb164bS4Bj8j5zAV-8CmjowzrYN_upgm0c7eK22RQ1RgtrkI6VC7bGLXr6rLyhY68c0oWu0Gxq616ocoZOPKKjT1hZXSN9VKGij7Vy7nse6CpaVGrdPeovnJHDUtUtnu_zKVnd3y3H02j-MJmNb-aRFgkPUVZgWjAtGKSGs3JkMiMZFqXmmYECBSSF0SOuUaGCBJKSpSIrheZMl6UALk7J1e5upep87e2b8h95o2w-vZnnfY_FaTaKpdxCtwu7Xe2btvVY_gDA8l5z3mvOe835XnPHJH8YbcO3wuCVrf8lL3ekRcRfn1KeSRGLL8lKjYI |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_3390_jmse13101840 |
| Cites_doi | 10.1111/itor.13027 10.1109/TITS.2022.3213834 10.1016/j.asoc.2022.109504 10.1016/j.trc.2023.104429 10.1016/j.aei.2014.09.003 10.1109/TITS.2017.2780256 10.1016/j.ocecoaman.2022.106417 10.1016/j.swevo.2022.101201 10.1109/tits.2021.3127552 10.1016/j.cie.2019.01.023 10.1016/j.tre.2020.101966 10.1016/j.cie.2021.107695 10.1109/JAS.2022.105950 10.1287/trsc.2017.0816 10.1109/TITS.2020.3005854 10.1109/TCYB.2021.3049635 10.1287/trsc.2014.0533 10.1016/j.rcim.2021.102277 10.1016/j.cor.2019.04.010 10.1016/S0377-2217(01)00382-4 10.1287/trsc.2017.0811 10.1016/j.cor.2018.04.009 10.1080/00207543.2021.1998695 10.1016/j.tre.2022.102623 10.5019/j.ijcir.2006.68 10.1080/00207543.2019.1629666 10.1016/j.cor.2022.105863 10.1016/j.tre.2023.103110 10.1016/j.ejor.2019.04.028 10.1007/s10845-013-0792-4 10.1016/j.ejor.2018.05.007 10.1016/j.measurement.2022.112262 10.1080/01605682.2019.1595191 10.1016/j.ocecoaman.2021.105882 10.1016/j.ins.2016.08.043 10.1109/TASE.2019.2946196 10.1007/s10479-016-2335-9 10.1016/j.aei.2021.101292 10.1109/TASE.2022.3194082 10.1080/00207543.2020.1756507 10.1109/TSSC.1968.300136 10.1016/j.aei.2022.101722 10.1016/j.tre.2009.08.012 10.1016/j.ejor.2023.01.047 10.1016/j.ejor.2020.02.021 10.1016/j.trc.2018.10.019 10.1016/j.tre.2022.102657 10.1016/j.trc.2020.02.012 |
| ContentType | Journal Article |
| Copyright | Attribution - NonCommercial |
| Copyright_xml | – notice: Attribution - NonCommercial |
| DBID | 97E RIA RIE AAYXX CITATION 1XC VOOES |
| DOI | 10.1109/TITS.2024.3521218 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1558-0016 |
| EndPage | 3699 |
| ExternalDocumentID | oai:HAL:hal-04896455v1 10_1109_TITS_2024_3521218 10829534 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72371055; 72171161 funderid: 10.13039/501100001809 – fundername: Key Program of the National Natural Science Foundation of Sichuan Province grantid: 2024NSFSC0025 funderid: 10.13039/501100018542 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c372t-9be8b0c3018d20f6d9d50ebfc29d1be317bdc62ceaea1717f0839f3c20cff3123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001396000100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1524-9050 |
| IngestDate | Tue Oct 14 20:14:53 EDT 2025 Sat Nov 29 07:48:17 EST 2025 Tue Nov 18 22:17:42 EST 2025 Wed Aug 27 01:38:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | yard crane scheduling improved multi-objective particle swarm optimization algorithm vehicle path planning U-shaped automated container terminal integrated optimization |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c372t-9be8b0c3018d20f6d9d50ebfc29d1be317bdc62ceaea1717f0839f3c20cff3123 |
| ORCID | 0000-0003-1617-7057 0000-0003-1225-8319 0000-0001-5761-6680 0000-0002-8900-5312 |
| OpenAccessLink | https://hal.science/hal-04896455 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1109_TITS_2024_3521218 crossref_primary_10_1109_TITS_2024_3521218 ieee_primary_10829534 hal_primary_oai_HAL_hal_04896455v1 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 Guo-dong (ref11) 2020; 58 ref30 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref46 ref23 ref45 ref26 ref48 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref33 doi: 10.1111/itor.13027 – ident: ref44 doi: 10.1109/TITS.2022.3213834 – ident: ref23 doi: 10.1016/j.asoc.2022.109504 – ident: ref1 doi: 10.1016/j.trc.2023.104429 – ident: ref12 doi: 10.1016/j.aei.2014.09.003 – ident: ref16 doi: 10.1109/TITS.2017.2780256 – ident: ref43 doi: 10.1016/j.ocecoaman.2022.106417 – ident: ref47 doi: 10.1016/j.swevo.2022.101201 – ident: ref2 doi: 10.1109/tits.2021.3127552 – ident: ref14 doi: 10.1016/j.cie.2019.01.023 – ident: ref18 doi: 10.1016/j.tre.2020.101966 – ident: ref19 doi: 10.1016/j.cie.2021.107695 – ident: ref6 doi: 10.1109/JAS.2022.105950 – ident: ref24 doi: 10.1287/trsc.2017.0816 – ident: ref5 doi: 10.1109/TITS.2020.3005854 – ident: ref40 doi: 10.1109/TCYB.2021.3049635 – ident: ref15 doi: 10.1287/trsc.2014.0533 – ident: ref48 doi: 10.1016/j.rcim.2021.102277 – ident: ref46 doi: 10.1016/j.cor.2019.04.010 – ident: ref26 doi: 10.1016/S0377-2217(01)00382-4 – ident: ref4 doi: 10.1287/trsc.2017.0811 – ident: ref45 doi: 10.1016/j.cor.2018.04.009 – ident: ref7 doi: 10.1080/00207543.2021.1998695 – ident: ref22 doi: 10.1016/j.tre.2022.102623 – ident: ref37 doi: 10.5019/j.ijcir.2006.68 – volume: 58 start-page: 2647 issue: 9 year: 2020 ident: ref11 article-title: Scheduling the operations of a double-load crane in slab yards publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1629666 – ident: ref32 doi: 10.1016/j.cor.2022.105863 – ident: ref8 doi: 10.1016/j.tre.2023.103110 – ident: ref35 doi: 10.1016/j.ejor.2019.04.028 – ident: ref9 doi: 10.1007/s10845-013-0792-4 – ident: ref17 doi: 10.1016/j.ejor.2018.05.007 – ident: ref20 doi: 10.1016/j.measurement.2022.112262 – ident: ref21 doi: 10.1080/01605682.2019.1595191 – ident: ref31 doi: 10.1016/j.ocecoaman.2021.105882 – ident: ref38 doi: 10.1016/j.ins.2016.08.043 – ident: ref10 doi: 10.1109/TASE.2019.2946196 – ident: ref34 doi: 10.1007/s10479-016-2335-9 – ident: ref30 doi: 10.1016/j.aei.2021.101292 – ident: ref25 doi: 10.1109/TASE.2022.3194082 – ident: ref39 doi: 10.1080/00207543.2020.1756507 – ident: ref41 doi: 10.1109/TSSC.1968.300136 – ident: ref36 doi: 10.1016/j.aei.2022.101722 – ident: ref28 doi: 10.1016/j.tre.2009.08.012 – ident: ref3 doi: 10.1016/j.ejor.2023.01.047 – ident: ref27 doi: 10.1016/j.ejor.2020.02.021 – ident: ref42 doi: 10.1016/j.trc.2018.10.019 – ident: ref13 doi: 10.1016/j.tre.2022.102657 – ident: ref29 doi: 10.1016/j.trc.2020.02.012 |
| SSID | ssj0014511 |
| Score | 2.4534485 |
| Snippet | The U-shaped yard is an important part of the U-shaped automated container terminal (U-ACT), which consists of a set of blocks used for storing containers,... |
| SourceID | hal crossref ieee |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 3684 |
| SubjectTerms | Computer Science Containers Cranes improved multi-objective particle swarm optimization algorithm integrated optimization Layout Load modeling Loading Operations Research Optimization Particle swarm optimization Path planning Processor scheduling Scheduling U-shaped automated container terminal vehicle path planning yard crane scheduling |
| Title | Integrated Optimization on Double-Side Cantilever Yard Crane Scheduling and Green Vehicle Path Planning at U-Shaped Yard |
| URI | https://ieeexplore.ieee.org/document/10829534 https://hal.science/hal-04896455 |
| Volume | 26 |
| WOSCitedRecordID | wos001396000100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9OPOjBb3F-EcSTEE3TNmmOMhSFMQfbRE-lTV6doFN0in--72Xd2EVB6KGENCn5JXm_l7wPxk6MlkXqIyfi2DuB_F-L0plCOLBJZY20Plj53rVNp5Pd39tu7awefGEAIBifwRm9hrt8_-o-6agMV3imbBonDdYwRk-ctWZXBhRoKwRHVYmwMp1eYUbSnvdv-j1UBVVyFpOrKiX4mBNCjSGZQM7lVgmi5Wrtnz-1zlZrDskvJqBvsAUYbbKVuciCW-z7ZhoGwvNb3BVeandLjg9y5vIZRO_JA2_hwOK-gPOZP-Bc4S0UXcB7iKQnE_VHXow8D7Y5_A6G1B3vImfk01xHvBjzgegNizfsiFrYZoOry37rWtRJFoSLjRoLW0JWSofrPPNKVtpbn0ooK6esj0pAelF6p5WDAooIdb8KOZutYqekq6oY5d4OWxy9jmCXcaM00sWY8pDqBFBVqSxk4E2RaJ9pCU0mp6OeuzoCOSXCeM6DJiJtTkDlBFReA9Vkp7NP3ibhN_6qfIxQzupR4Ozri3ZOZbhPWZ2k6VfUZNuE4VxrE_j2finfZ8uKUv4Gs7MDtjh-_4RDtuS-xk8f70dhCv4Apk7X_Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NNontYR_AtG7ArGlPkwyO4zjxI6pArVY6pBYET1FiX1YkVhAraH_-7ty06gtISHmILMeO_LN9v7PvA-B7blWVhcTLNA1eEv-3svZ5JT0607hcuRCtfM8H-XBYXFy409ZZPfrCIGI0PsN9fo13-eHG3_NRGa3wQrssNWvwMjNGq7m71vLSgENtxfCo2kinssUlZqLcwbg_HpEyqM1-ys6qnOJjRQytTdgIciW7ShQux--e-Vvv4W3LIsXhHPYP8AKnm_BmJbbgFvzrLwJBBPGL9oU_rcOloIdYc32NcnQVUHRpaGlnoBktLmm2iC4JLxQjwjKwkfpvUU2DiNY54hwn3J04JdYoFtmORDUTZ3I0qW6pI25hG86Oj8bdnmzTLEif5nomXY1FrTyt9CJo1djgQqawbrx2IamRCEYdvNUeK6wS0v4aYm2uSb1WvmlSknwfYX16M8VPIHJtiTCmnInUGiRlpXFYYMgrY0NhFXZALUa99G0Mck6FcV1GXUS5koEqGaiyBaoDP5af3M4DcDxV-RtBuazHobN7h4OSy2inctZk2UPSgW3GcKW1OXyfHyn_Chu98cmgHPSHP7_Aa80JgKMR2g6sz-7ucRde-YfZ1d-7vTgd_wMLJdtE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Optimization+on+Double-Side+Cantilever+Yard+Crane+Scheduling+and+Green+Vehicle+Path+Planning+at+U-Shaped+Yard&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Peng%2C+Wenhao&rft.au=Wang%2C+Dujuan&rft.au=Qiu%2C+Huaxin&rft.au=Chu%2C+Feng&rft.date=2025-03-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=26&rft.issue=3&rft.spage=3684&rft.epage=3699&rft_id=info:doi/10.1109%2FTITS.2024.3521218&rft.externalDocID=10829534 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |